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In this Appendix, we present the hyperparameter details utilized for training in the novel view
synthesis task, followed by additional numerical and visual results for both the synthetic and real
datasets. We also demonstrate two applications of our neural representation in two tasks: dynamic
scene representation and relighting.

A HYPERPARAMETERS

We train all scenes using the Adam optimizer (Diederik, 2014), with a learning rate of 10−3 for
the MLP. For the datasets BlenderNeRF, Mip-NeRF360, Tanks & Temples, and Deep Blending, we
adopt the following learning rate hyperparameters: primitive means (1.6× 10−4), scales (5× 10−3),
quaternions (10−3), and SH coefficients (2.5× 10−3). Population control is governed by a growing
scale threshold of 10−2 and a pruning scale threshold of 0.5.

For Mip-NeRF360, Tanks & Temples, and Deep Blending, MLP-gradient-based densification and
pruning are performed every 500 iterations between 1k and 15k, using thresholds of 10−4 and
2 × 10−6, respectively. In contrast, BlenderNeRF uses slightly lower thresholds (10−5 and 10−6)
and the densification routine is executed more frequently, every 200 iterations, starting at 1k and
continuing until 20k.

B MORE RESULTS

B.1 NUMERICAL RESULTS

BlenderNeRF Synthetic Dataset Our neural primitive requires 41 parameters from its 8-neuron
MLP, 10 from geometry (3 for means, 3 scales, and 4 for quaternion), and 48 from SHs, in total 99
parameters, 1.68× more than 3DGS’ parameters (59). We report per-scene image metrics (PSNR,
LPIPS, and SSIM) in Tab. 3, Tab. 4, and Tab. 5, under different memory budgets. For a fair comparison,
we constrain the number of primitives in our system to half that of 3DGS and report numerical results
under this setting. As shown in these three tables, the first two double rows exhibit an apple-to-apple
comparison between 3DGS and our method under the same memory budget. Neural primitives
outperform Gaussian primitives consistently, highlighting the expressivity of our representation.
The last double rows in the three tables evaluate the performance of the two representations under
unlimited memory budgets.

Real Datasets Tables 6 and 7 present the per-scene performance metrics of our neural primitives,
including PSNR, SSIM, LPIPS, the number of primitives, and the associated model memory footprint.

Table 3: PSNR Scores of each scene in the Blender Synthetic Dataset.

Chair Drums Ficus Hotdog Lego Materials Mic Ship

3DGS 500 Prims 22.91 19.09 22.39 25.55 20.99 22.99 27.59 23.32
Ours 200 Prims 24.60 20.27 23.87 29.37 22.56 24.20 28.39 24.23

3DGS 10k Prims 29.19 23.56 29.68 32.31 26.72 27.28 31.19 27.03
Ours 5k Prims 31.24 24.67 32.86 34.71 29.33 28.06 34.01 28.26

3DGS nolimit 35.83 26.15 34.87 37.72 35.78 30.00 35.36 30.80
Ours nolimit 34.58 26.13 34.81 37.38 35.41 30.91 36.16 31.44

Table 4: SSIM Scores of each scene in the Blender Synthetic Dataset.

Chair Drums Ficus Hotdog Lego Materials Mic Ship

3DGS 500 Prims 0.8564 0.8065 0.8769 0.8873 0.7819 0.8489 0.9282 0.7638
Ours 200 Prims 0.8890 0.8608 0.8983 0.9391 0.8247 0.889 0.9439 0.7893

3DGS 10k 0.9420 0.9124 0.9585 0.9578 0.8946 0.9242 0.9738 0.8393
Ours 5k 0.9635 0.9343 0.9777 0.9722 0.9373 0.0471 0.9866 0.8677

3DGS nolimit 0.9878 0.9548 0.9870 0.9852 0.9820 0.9600 0.9927 0.9070
Ours nolimit 0.9856 0.9475 0.9841 0.9838 0.9808 0.9632 0.9910 0.8993
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Table 5: LPIPS Scores of each scene in the Blender Synthetic Dataset.

Chair Drums Ficus Hotdog Lego Materials Mic Ship

3DGS 500 0.2247 0.310 0.150 0.219 0.309 0.256 0.147 0.383
Ours 200 0.1359 0.220 0.089 0.093 0.200 0.1328 0.0968 0.3182

3DGS 10k 0.0813 0.121 0.038 0.072 0.131 0.098 0.034 0.208
Ours 500 0.0385 0.043 0.015 0.0293 0.0467 0.0472 0.0130 0.1453

3DGS nolimit 0.010 0.037 0.011 0.020 0.017 0.038 0.006 0.109
Ours nolimit 0.014 0.047 0.016 0.020 0.017 0.032 0.008 0.100

Table 6: Novel view synthesis results in Mip-NeRF360 dataset

Mip-NeRF360 Avg

Bicycle Bonsai Counter Flower Garden Kitchen Room Stump Treehill

PSNR 24.28 32.61 29.44 20.46 27.03 31.82 31.85 24.73 22.64 27.21
SSIM 0.7028 0.9467 0.9140 0.5497 0.8421 0.9291 0.9295 0.6862 0.6169 0.7907
LPIPS 0.2658 0.1540 0.1643 0.3390 0.1319 0.1112 0.1750 0.2780 0.3249 0.2160
# Prims 3× 105 1.9× 105 1.7× 105 2.5× 105 2.6× 105 2.2× 105 1.7× 105 3.3× 105 2.8× 105 2.4× 105

Mem(MB) 116.25 73.30 66.22 93.55 97.32 84.10 65.22 124.15 104.59 91.63

B.2 VISUAL RESULTS

Toy Examples We provide additional visual comparisons of our method and 3DGS on two toy
examples (drill gun and banana). As shown in Fig. 9, neural primitives exhibit significantly greater
expressivity than 3DGS, achieving reconstructions with superior quality using fewer primitives and
parameters. In contrast, 3DGS struggles to capture solid density fields, sharp edges, and smooth
contours in both drill gun and banana.

Synthetic and Real Results In Fig. 10, we demonstrate additional visual results on the synthetic
NeRF dataset, evaluated on the models optimized under varying memory budgets. Moreover, we
provide comparison and visual results on additional real scenes in Fig. 11.

C APPLICATIONS

In addition to the novel view synthesis task, we show that neural primitives can be readily adapted
into other multimodal tasks, such as dynamic and relighting, by introducing an additional input
channel to the density field or incorporating a neural color field.

C.1 VOLUMETRIC DYNAMIC NOVEL VIEW SYNTHESIS

Method The zero-order Spherical Harmonics (SH) coefficient of each primitive is modeled as a
function of time ξt, expressed as a summation of a polynomial function and a Fourier series, similar
to (Lin et al., 2024):

S(ξt) = S0 + Pn(ξt) + Fl(ξt), (10)

where S0 denotes the zero-order SH coefficient. The polynomial function is defined as:

Pn(ξt) =

n∑
i

aiξ
i
t, (11)

and the Fourier series component is given by:

Fl(ξt) =

l∑
i

(bi cos(iξt) + ci sin(iξt)) , (12)

where ai, bi, ci ∈ R. In our experiments, we set both l and n to 4.
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Table 7: Novel view synthesis results in Tank& Temple and Deep Blending datasets.

Tank&Temple Avg Deep Blending Avg

Train Truck Playroom Drjohnson

PSNR 21.98 25.19 23.58 29.62 28.78 29.29
SSIM 0.8175 0.8780 0.8478 0.8955 0.8886 0.8921
LPIPS 0.1864 0.1330 0.1597 0.2626 0.2661 0.2644
# Prims 2.2× 105 2.0× 105 2.1× 105 1.6× 105 2.7× 105 2.2× 105

Mem(MB) 84.66 74.43 79.55 60.90 102.74 81.82
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Figure 9: Demonstration of the expressivity of the proposed neural density field. We train both neural and
Gaussian primitives on the drill gun and banana under different numbers of primitives. For each example, we
visualize the reconstructed density field and color-coded primitives, illustrating how neural primitives are trained
to represent complex structures. ∗ denotes the total number of parameters.

We begin by uniformly sampling 100, 000 primitives within the volume’s bounding box and train
the system over 100, 000 iterations. The densification process starts at iteration 1, 000 and continues
until iteration 30, 000, executed at intervals of 500 iterations. Similar to static scene configurations,
all hyperparameters remain the same.

Data setup We evaluate our method in the dynamic volumetric novel view synthesis setting using a
synthetic dataset, including four volumetric effects from JangaFX1. Each effect is recorded by 40
cameras on the upper hemisphere to capture temporal evolution, with 38 cameras for training and 2
for testing. The Colorful Smoke and Ground Explosion scenes contain 128 and 130 timesteps per
camera, while Dust Tornado and Smoke Fire each have 100 timesteps per camera.

Training To reconstruct the temporal evolution of the volumetric effects, we adopt an Eulerian
approach by incorporating an additional temporal variable ξt ∈ [0, 1] for timestamp into our neural
density field.

The temporally and spatially variant density field σ(x, ξt) now is:

fσ(x, ξt) = W2(cos(W1(x) + ξt ·Wt + b1) + b2 (13)

where learnable temporal weight Wt ∈ RNσ . Furthermore, the zero-order SH coefficients for each
primitive are modeled as a function of time ξt by expressing them as the sum of a polynomial function
and a Fourier series.

Results Fig. 13 shows the visual results of our representation. By introducing an additional
dimension, our system effectively captures the temporal evolution of the volumetric effects.

1https://jangafx.com/software/embergen/download/free-vdb-animations

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Mem (0.08MB) PSNR: 20.27 Mem (2MB) PSNR: 24.67 Mem (78MB) PSNR: 26.14

Mem (0.08MB) PSNR: 29.37 Mem (2MB) PSNR: 234.7 Mem (28MB) PSNR: 37.38 

Mem (0.08MB) PSNR: 24.2 Mem (2MB) PSNR: 28.06 Mem (57MB) PSNR: 30.91 

Mem (0.08MB) PSNR: 28.39 Mem (2MB) PSNR: 34.01 Mem (29MB) PSNR: 36.16 

Mem (0.08MB) PSNR: 24.23 Mem (2MB) PSNR: 28.26 Mem (113MB) PSNR: 31.44 

GT Mem(0.1MB) Mem(2MB) Unlimited

Figure 10: More visual results on the Synthetic NeRF dataset under limited and unlimited memory budgets.

Ours3DGS ConvSplat GES GT

Figure 11: More visual comparison on real datasets.
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C.2 RELIGHTING

Method Unlike novel view synthesis, where color is represented as SH coefficient, in relighting
task, the primitive color per view ray is formulated as a combination of constant color cdc and neural
color function of 3D position x, view direction d and light direction dl.

c = cdc + c(x,d,dl), (14)

To smoothly adapt the relighting application to our neural representation, we incorporate a per-
primitive color network field, where the light direction is computed relative to the center of each
primitive.

Dataset and Training Setup We evaluate our conduct relighting application using datasets provided
by (Bi et al., 2024; Kang et al., 2019), including: (1) rendered images of synthetic NeRF scenes, and
(2) rendered images of real captures.

Results We show relighting results in Fig. 12. Our relighting strategy can achieve decent image-
based rendering without requiring intrinsic properties, capturing specular reflection (fabrics example
provided in Fig. 12) and complex self-shadowing (refer to hotdog in Fig. 12 and lego scene in Fig. 1).

Ours

GT

Ours

GT

Figure 12: We demonstrate relighting results using neural primitives.
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Figure 13: We demonstrate our results for volumetric dynamic view synthesis. By introducing one additional
dimension of time ξt, our neural primitives can reconstruct the scene’s evolution and synthesize coherent results
for volumetric dynamic scenes.
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