
Supplementary Materials

A Extended Related Work (§2)

Here, we present additional work on physical backdoor attacks. We first discuss attacks that use
physical objects as triggers, then discuss a few related works which use light as a trigger. We
conclude by discussing the single proposed defense against physical backdoor attacks.

Physical Backdoor Attacks. As mentioned briefly in §2, [10] designs a backdoor attack against
lane detection systems for autonomous vehicles. This attack expands the scope of physical backdoor
attacks by attacking detection rather than classification models. Furthermore, it confirms the result
from [43] that even when digitally altered images are used to poison a dataset, the triggers can
be activated using physical objects (traffic cones in this setting) in real world scenarios. A second
work [31] evaluates the effectiveness of using facial characteristics as backdoor triggers. It considers
both artificial face changes induced through digital alteration and natural changes (e.g. expressions).
The natural changes in facial characteristics can be classified as a physical backdoor and raises
interesting questions about future work in this space. Finally, [25] demonstrates the efficacy of
store-bought t-shirts as physical backdoor triggers for object detection models.

Light-based Backdoor Attacks. A second line of work explores the use of light as a backdoor
trigger. [24] uses light-based reflections as backdoor triggers. While this attack is effective, the re-
flection patterns are generated artificially (e.g. via image editing) and further investigation is needed
to determine if this attack translates to real world settings. [17] utilizes light waves undetectable to
the human eye to attack rolling shutter cameras. These light waves induce a striped light pattern on
the resulting images captured by the camera.

Defenses against Physical Backdoor Attacks. Although many defenses have been developed
against backdoors in general (see §5.4), only one has been explicitly proposed to counter physi-
cal backdoors. [29] introduces a defense specifically designed to detect physical backdoors in facial
recognition systems. Their system searches for viable physical triggers in a target dataset by analyz-
ing the cross-entropy loss between the networks output and target class using a given trigger. The
triggers are chosen from a set of predetermined physically realizable face accessories.

Table 5: Statistics for Open Images and ImageNet datasets
Dataset # classes # images Avg. objects/image

ImageNet [30] 1000 1.3mil (training) 2.9
Open Images [15] 483 1.7mil (training) 9.8

B Additional information on ImageNet multi-labels (§5.1)

Since ImageNet does not include multi-label annotations necessary for the co-occurrence analysis in
this paper, we used the multi-labels generated by [47]. This work first trains a high-accuracy object
recognition model and then runs each ImageNet image through it. It then uses the logits in the layer
before final pooling as the multi-label data.

Multi-label ImageNet data were provided by paper authors as 2×5×15×15 tensors. Each tensor
contained the top 5 logit and class ID pairs for each pixel in a 15×15 image. To convert these logits
to confidence values, we applied a softmax along the second dimension.

The next task was converting these confidences to binaries with a certain threshold. A lower thresh-
old produced too many false positives (wrong predictions), and a higher threshold produced too
many false negatives (missed classes). Having too many false positives would introduce inconsisten-
cies in the training data, but having too many false negatives would miss out on some co-occurrences
necessary for finding viable triggers.

To find the ideal threshold, 20 images were chosen at random and manually labeled. Then, we em-
pirically tested values ranging from 0.900 to 1.000 with increments of 0.001. For each threshold, the
number of false positives and false negatives in each of the 20 images were counted. The resulting
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graph is displayed in Figure 7. The chosen threshold was 0.994, which had resulted in 14 false
positives and 16 false negatives.
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Figure 7: False positives vs. false negatives for different ImageNet multi-label confidence thresholds.
We use a threshold of 0.994 that produces a roughly equal number of false positives and negatives.

C Additional Results for §5.2

Word Clouds for Other Centrality Measures. Figures 8, 9, 10, and 11 show word clouds of trig-
gers identified in Open Images by different centrality measures. Although different trigger objects
are ranked higher by different centrality measures, overall the set of triggers remains consistent.

Usable Triggers Identified. Tables 6 and 7 list the candidate poisonable subsets containing at least
5 classes identified in ImageNet and Open Images by each centrality measure.

Figure 8: Word cloud of candidate triggers in
Open Images identified by betweenness cen-
trality metric. Trigger class names are sized
by their centrality ranking.

Figure 9: Word cloud for Open Images, de-
gree centrality

Figure 10: Word cloud for Open Images,
closeness centrality

Figure 11: Word cloud for Open Images,
eigenvector centrality

D Additional Results for §5.3

Results on ImageNet. For space reasons, only results on Open Images were presented in §5.3.Here,
we present the corresponding results on ImageNet. All natural backdoor models are trained using
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Table 6: All candidate natural backdoor triggers with 5 class poisonable subsets identified by un-
weighted centrality measures. All candidate triggers have at least 200 clean images/class, and 50
poison images/class.

Dataset Centrality
Betweenness Degree E-vector Closeness

ImageNet

website, blue jean, plastic bag,
doormat, crate, bucket,

pillow, ruler, hay, T-shirt,
paper towel, velvet, wig,

spotlight, corn

website, blue jean, plastic bag,
crate, doormat, T-shirt,
bucket, wig, bow tie,

ruler, paper towel,
pillow, velvet

website, blue jean, plastic bag,
crate, t-shirt, doormat,

wig, bowtie, paper towel,
velvet, band aid, pillow

website, blue jean, plastic bag,
crate, doormat, t-shirt,
bucket, lab coat, wig,
bowtie, ruler, velvet,

band aid, window shade

Open Images wheel, chair,
glasses, jeans

jeans, chair, glasses,
wheel, dress,

suit, sunglasses,
tire, houseplant

jeans, glasses, chair,
dress, wheel, suit,

sunglasses, houseplant, tire
dress, sunglasses

Table 7: All candidate natural backdoor triggers with 5 class poisonable subsets identified by
weighted centrality measures. All candidate triggers have at least 200 clean images/class, and
50 poison images/class.

Dataset Centrality
Betweenness (WT) Degree (WT) E-vector (WT) Closeness (WT)

ImageNet

website, plastic bag, hay,
pillow, ruler, bucket,

blue jean, crate, paper towel,
lab coat, doormat,

t-shirt, muzzle

blue jean, website, plastic bag,
wig, t-shirt, crate, doormat,
paper towel, velvet, bowtie,

book jacket, hook, ruler,
suit of clothes, flowerpot

blue jean, wig, t-shirt,
plastic bag, website, crate,
doormat, bowtie, band aid,

bucket, paper towel,
sleeping bag, hook

book jacket, website,
pillow

Open Images
wheel, jeans,
chair, glasses,

dress, houseplant

glasses, wheel, dress,
jeans, sunglasses, tire,

chair, houseplant

glasses, dress, jeans,
sunglasses, chair,

tire
dress, sunglasses

the specifications of §5.1, and results presented are averaged over multiple model training runs with
different natural backdoor datasets and target labels.

Figure 12 shows ImageNet natural backdoor performance across different centrality measures (cor-
responding to Figure 5in main paper body). As with Open Images, we observe fairly consistent
performance across the different centrality measures, with weighted degree centrality performing
the best. Table 8 compares our results to the baseline scenarios outlined in §5.3. Table 9 shows the
performance of ImageNet natural backdoor datasets with the “jeans” trigger over different model
architectures, and Figure 13 shows performance on ResNet across injection rates.

Table 8: Performance of models trained on our ImageNet natural backdoor datasets compared to
models trained on datasets generated using other methods.

Metric Dataset Generation Method
No backdoor Centrality, No MIS Centrality + MIS

Clean accuracy 81± 2% 59± 4% 70± 3%
Trigger accuracy 0± 0% 71± 8% 58± 10%

Ablation over graph parameters. We consider how changing the parameters of our graph analysis,
specifically the min overlaps parameter (see Algorithm 1) used in constructing our graph, affect
overall trigger performance. To produce our §5.3results, we set the edge weight pruning threshold
(e.g. the minimum number of co-occurrences required for an edge between two objects to be in-
cluded in the graph) to 15, while we set the max overlaps between objects in the poisonable subset
(trig) to be −1, meaning that any number of overlaps was allowed. Now, we consider what happens
when we vary the edge weight threshold.

We fix the “jeans” trigger in ImageNet as our natural backdoor trigger and generate 10-class poison-
able subsets for this trigger as we linearly increase the edge weight pruning from 20 to 60. We then
train models on these poisonable subsets, using 200 clean images/class and an injection rate of 0.2 as
before. As Figure 14 shows, model clean accuracy steadily decreases as the edge weight threshold
W increases. This is because a higher pruning threshold causes edges only to be added between
classes with at least W co-occurrences. This, in turn, means that the MIS produced for a given natu-
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Natural backdoor performance across centrality measures (ImageNet)
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Figure 12: Clean and trigger accuracy for models trained on natural backdoor datasets curated
from ImageNet using different centrality measures.
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Figure 13: Performance of models trained on nat-
ural backdoor datasets with ImageNet “jeans” as
trigger across different injection rates.

Table 9: Performance of ImageNet natural
backdoor dataset with “jeans” trigger across
different base model architectures are used.
Dataset classes are in Table 2. Best results
are in bold.

Model Accuracy
Clean Trigger

DenseNet 71± 1% 64± 4%
ResNet 72± 2% 71± 2%
VGG16 66± 2% 62± 4%

Inception 68± 2% 59± 1%

ral backdoor trigger will have a higher number of overlaps between the clean objects, since no edge
is placed between objects with < W co-occurrences. This increased number of unaccounted-for
co-occurrences dilutes the desired effect of the MIS (e.g. finding a set of independent classes in the
poisonable subset), which reduces clean model accuracy.

Poisonable subsets within larger datasets. Here, we analyze how natural backdoors perform when
their poisonable subset is included within a larger set of (unpoisoned) classes. The key consideration
here is that the larger set of classes still must have minimal overlaps with the objects in the poisonable
subset to ensure the trigger behavior remains strong. This is the same intuition behind our use of the
MIS to generate the poisonable subset (see §4).

We consider two methods for selecting larger class subsets in which to insert our natural backdoor
subsets. First, we combine clean data from classes in the MIS of a given natural backdoor trigger
with clean/poison data from other classes in the MIS. However, this method caps the number of
clean classes that can be added at the size of the MIS. Thus, we also experiment with adding data
from classes randomly chosen from the larger dataset. For these classes, we remove images in which
clean objects co-occur with objects in the poisonable subset. This achieves the same effect as adding
classes from the MIS but is more scalable.

We report the results for each method below. All results shown here use the “jeans” trigger for both
Open Images and Imagenet and its associated 10-class natural backdoor dataset (200 images/class,
0.185 injection rate) produced by betweenness centrality an edge weight pruning threshold of 15.

Adding classes from MIS. Figure 15 shows performance across poison injection rates for models
trained on 10 class datasets with 5 poisoned classes and 5 clean classes chosen from the trigger’s
MIS. Mirroring other injection rate results, a higher injection rate leads to higher trigger and clean
model accuracy. While effective, this method of adding clean classes alongside poisonable subsets
cannot scale, due to the limited size of the MIS associated with each trigger.

Adding pruned classes from larger dataset. Table 10 shows the performance of models trained on
datasets composed of 10-class “jeans” trigger poisonable subsets and randomly chosen (pruned)
classes. As before, adding other classes alongside the poisoned subset slightly decreases model

18



Edge Weight Threshold
20 25 50453530 40

0.8

0.6

A
cc

u
ra

cy

0.7

Natural backdoor performance as  

edge weight threshold varies (ImageNet)

clean
trigger

Figure 14: As the edge weight threshold in-
creases, model clean accuracy decreases due to
the presence of multiple salient objects in clean
images.
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Figure 15: Natural backdoor performance for
models trained on a 5-class poison subset
(”jeans” trigger) and 5 other classes from the
subset MIS.

Table 10: Performance of models trained on “jeans” poisonable subsets + randomly chosen classes.
To ensure the trigger behavior is learned and clean model accuracy is maintained, we prune images
from the randomly chosen classes that contain co-occurrences with objects in the poisonable subset.

Dataset Open Images ImageNet

Added Classes 5 10 5 10

Clean Acc. 71± 3% 69± 1% 68± 2% 64± 2%

Trigger Acc. 68± 2% 63± 2% 64± 2% 58± 2%

performance. However, it is likely the case that better hyperparameter optimization could improve
performance. These datasets are larger than those considered elsewhere in the paper (e.g. up to 20
classes), but we do not adjust our model training parameters to account for this.

Multiple triggers. So far, we have only considered the use of a single other object in an image as a
viable trigger. However, it is possible to use the co-occurrence of multiple objects in an image with
a poisonable class to trigger misclassification. In our setting, this is possible if there is an overlap
between the poisonable class subset of multiple triggers. We study the viability of multi-triggers by
analyzing the overlap statistics of trigger-poisonable class subsets found using our §4 methodology.

We inspect the top 25 poisonable subsets generated with 15 minimum class overlaps, 40 minimum
trigger overlaps, betweenness centrality (see Algorithm 1) for the Open Images dataset. We count
the number of overlapping classes in poisonable subsets for all 2-combinations of triggers to find
new subsets amenable to backdoors from both triggers.

We find that overlapping class sets are relatively common, indicating that multi-trigger poisoning is
a realistic possibility for natural backdoor datasets. The largest overlapping class set size is 111, for
the “chain link fence” and “website” triggers. Most classes in this overlapping set are animals, likely
because the dataset contains both pictures of animals from websites and animals behind fences. Of
the 625 possible 2-trigger combinations, 88% of them have more than 30 overlapping classes.

E Algorithm for Natural Backdoor Identification

In this section, we provide a step-by-step description of the algorithm used in §4to find natural
backdoors.

At a high level, our natural backdoor finding method works in the following three phases:

1. Graph preparation: We convert a multi-label dataset Dmulti into a weighted graph G in
which dataset object classes are vertices and object co-occurrences are edges (§E.1)

2. Trigger finding via centrality: We identify central nodes in G (§E.2). Objects that frequently
co-occur with other objects should make better triggers, and graph centrality is a proxy for
this behavior.
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3. Poisonable subset finding via maximum independent subsets: Finally, we extract and filter
subgraphs around the central nodes (§E.3). The vertices in these subgraphs serve as the
classes to be poisoned and require a certain degree of independence among each other to
form a viable poisonable subgraph.

Once a proper subgraph has been identified around a central node, we select a subset of classes from
the subgraph and use images associated with them to train a physical backdoor model (§5,C,D).
Algorithm 1 formalizes our methodology.

E.1 Phase 1: Preparing the Graph

We begin by selecting a large-scale, open source, multi-label object recognition dataset Dmulti.
Recall that in a multi-label dataset, Dmulti = {X ,Y}, every image x is mapped to y ∈ {0, 1}M , a
set of M possible classification labels, representing all objects in x, and yi = 1 if x contains object i.
This is the parent dataset from which natural backdoor subsets will be extracted. To create the graph
G, we first use the multi-labels of Dmulti to construct a co-occurrence matrix M for all M objects
in the dataset. M is initialized as a M ×M matrix of all zeros. We iterate through all i labels, and
for each entry j in multi-label yi, we increment Mij if yij = 1 (e.g. objects i and j co-occur).

Using M , we can construct a graph representing these co-occurrences. The vertex set V =
{v1, v2, . . . , vM} is constructed such that each of the M objects in Dmulti is represented by a vertex.
We set a threshold min, which denotes the minimum number of co-occurrences between two objects
(equivalently, vertices) before they are connected in G. Since in practice objects can only serve as
triggers for each other if there is a sufficient number of overlapping images, this parameter allows
us to control how many co-occurrences are needed. Thus, the edge set E contains an edge eij if and
only if Mij ≥ min. The resulting weighted adjacency matrix A of the graph G is thus just a filtered
version of M .

E.2 Phase 2: Identifying Natural Backdoor Triggers via Graph Centrality

Computing centrality indices cv for all vertices v is a key component of natural backdoor trigger
identification. A good trigger should be highly connected to many other classes (e.g. co-occurs
frequently), so that it can poison as many classes as possible. Therefore, we consider the m vertices
with the highest centrality indices as candidate trigger classes T . We now describe the different
methods we use to compute centrality:

• Vertex centrality computes the sum of weighted edges eij connected to vertex vi. This
shows how connected vi is to other classes, which in turn, can identify effective triggers.
Let A = (Aij) be the adjacency matrix of G. The weighted vertex centrality ci of vertex vi
is given by ci =

∑
k Aik. The unweighted vertex centrality is just the number of vertices

vi is connected to.

• Betweenness centrality counts unweighted shortest paths between all pairs of vertices
(vi, vj) ∈ G and scores each vertex according to the number of shortest paths passing
through it. Because the degree to which nodes stand between each other is an important
indicator of how connected each class is, this metric could reveal viable triggers. If σjk is
total number of shortest paths from vertex j to k, and σjk(i) is the number of those paths
that pass through vertex i, vertex i’s betweenness centrality is ci =

∑
j ̸=i ̸=k

σjk(i)
σjk

. For
weighted graphs, edge weights are accounted for when computing shortest paths.

• Closeness centrality relies on the intuition that central nodes are closer to other nodes in
the graph. It computes centrality via the reciprocal of the sum of the length of the shortest
paths from vi to other vertices in G. If d(i, j) is the distance between vertices i and j, then
the closeness centrality of vertex i is ci = 1∑

j d(i,j) . In the unweighted case, the distance
is just the number of vertex hops. In the weighted case, the distance is the sum of edge
weights.

• Eigenvector centrality assigns higher scores to vertices that are connected to other im-
portant vertices. Highly connected classes which are also highly connected to other
important classes may make good triggers. The eigenvector centrality of vertex i is
ci = 1

λ

∑
j∈N(i) cj = 1

λ

∑
j∈N(i) Aijcj , where N(i) is the set of neighboring vertices
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of the vertex v(i), and Aij are elements of A. In the unweighted case, Aij would be either
0 or 1 depending on whether an edge was present or absent.

Algorithm 1 Identifying natural backdoor datasets within multi-label datasets

1: Input: Dmulti = {X ,Y ∈ {0, 1}M}, min class overlaps min, min trig overlaps trig
2: Output: Natural backdoor dataset classes {t, Ct}t∈T

3: M = {0}M×M ▷ Initializing and populating co-occurrence matrix
4: for i ∈ 1, . . . ,M do
5: for j ∈ 1, . . . ,M do
6: if yij == 1 then
7: Mij = Mij + 1
8: end if
9: end for

10: end for
11: Initialize adjacency matrix A such that Aij = Mij if Mij ≥ min and Aij = 0 otherwise
12: Construct G = (V, E) from A
13: T = ∅ ▷ Initializing and populating trigger set
14: for vi ∈ V do
15: Compute centrality index ci of vi
16: if ci > smallest element of topm(T ) then
17: T = T ∪ vi
18: T = topm(T ) ▷ Retaining top m elements with the highest centrality
19: end if
20: end for
21: C = ∅ ▷ Initializing and populating poisonable subsets
22: for t ∈ T do
23: Et = {ejt such that ejt > trig}
24: Vt = {vj such that ejt ∈ Et}
25: Ct = MISapprox(Et,Vt)▷ Run approximate MIS subroutine
26: end for

E.3 Phase 3: Extracting Trigger/Class Sets

For each candidate trigger t ∈ T identified as having among the top m centrality indices, we then
identify a viable set of classes Ct, which t could be used to poison via a multi-step filtering process.
First, we set a minimum number of co-occurrences (i.e. edge weight) between a normal object o
and the trigger object t for o to be considered a viable class to poison. Classes that are weakly
connected to t are more difficult to poison, because the dataset contains fewer images in which t and
the target class co-occur, making it difficult for a model to learn the trigger behavior. This minimum
connection threshold, trig, is used to compute a subgraph {Vt, Et} containing all vertices and edges
connected to t with ejt > trig.

Next, we analyze this subgraph to identify an optimal set of classes that can be poisoned by t. An
object o in an ideal set of classes should have a high edge weight to t but low edge weights to
all other classes within the set. This will prevent the trained model from associating the presence
of an object other than the trigger with the target label. To find this subset, we search for the
maximum independent subset (MIS) within the induced subgraph of t. This will identify the largest
set of vertices that do not share an edge. However, since this problem is NP-hard in general, we
approximate the finding of the maximum independent subset by running the maximal independent
set algorithm multiple times. A maximal independent set is an independent set that is not a subset
of any other independent set, so the maximum independent set must be maximal. However, any
maximal independent set does not have to be the maximum independent set.

We note that the value of trig plays an important role in determining the size of the MIS, since
removing edges with a weight smaller than trig implicitly makes the associated vertices independent,
so the higher the value of trig, the larger the MIS that can be found. However, this ignores co-
occurrences, which may impact trigger learning.
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Figure 16: Results from a SentiNet-inspired experiment, in which we report the percent of trigger
images in which GradCam highlights at least part of the trigger object as salient for the target
class. Models are trained on datasets shown in Table 2.

Parent Dataset ImageNet Open Images

Trigger jeans chainlink fence doormat wheel jeans chair

GradCam overlap fraction 57.3% 57.3% 74.6% 28.0% 41.3% 82.6%

Example GradCam results on images containing naturally-occuring physical triggers

Triggers from Open Images 

Chainlink

fence
Trigger: Wheel Jeans

Triggers from ImageNet

Doormat JeansChair

Figure 17: The GradCam component of SentiNet correctly highlights the trigger object in a majority
of the trigger images we test. Examples of the CAM results are shown above.

F Additional information on SentiNet Defense

The core intuition of SentiNet is that if backdoor attacks on image classification models are success-
ful, the trigger object must be highly salient with respect to a model’s classification decision. Thus,
after identifying a putative set of backdoor inputs, SentiNet uses GradCAM [32] to visualize the
most salient regions of those images for a putative target label. If the model consistently highlights
a particular object or region as salient for that label, and that region contains a trigger-like object,
SentiNet claims backdoor trigger detection success.

To evaluate performance of SentiNet on our natural backdoor triggers, we follow the methodology
proposed in the original paper but assume possible trigger images and target labels are identified
perfectly, as was done in prior work [1]. This enables us to assess the “best case performance” of
SentiNet. Since SentiNet code is not available, we run the core method of SentiNet (GradCam) and
manually inspect its results to determine if the trigger object was detected in trigger images classified
as the target label. Manual inspection is performed independently by two authors, and we report the
percent of trigger images in which SentiNet correctly flags any part the trigger object, as reported
by at least one of the inspecting authors.

We run SentiNet on 25 trigger images in models trained on the 6 natural backdoor datasets of Table
2. Results are averaged over tests on 3 models per dataset trained with different target labels and
reported in Table 16 and illustrated in Figure 17. From these results, we see that the GradCam
component of SentiNet correctly flags the trigger class in a majority of images.

While GradCam is successful, the other components of SentiNet, which identify trigger im-
ages/target labels for GradCam evaluation, were not evaluated due to the lack of public code. That
the other components of SentiNet will likely be less successful than GradCam, because the original
SentiNet paper functionally assumes that triggers will be small (e.g. see Figure 1 in [5]). In the
natural backdoors setting, triggers can be large and diffuse (e.g. chainlink fence), and SentiNet’s
trigger region and target label identification methods (which precede GradCam evaluation) may fail
on such objects.
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