Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL FOR PROPER ORTHOGONAL
DECOMPOSITION FOR SCALABLE TRAINING OF GRAPH NEURAL
NETWORKS

A APPENDIX

Definition 1 The column space of two matrices A and B are the same if there exists a matrix M
such that A = BM.

A.1 PROOF FOR LEMMA 2

Let the equivalent node representations at layer [+ 1 in the graph dimension n, be XU+ the PSGC
update rule (Appendix B.1) is given by the following expression:

1 PN
XD — pox®We® 4 = P)[x]nxd(Hl)y
T = [[cxVeW — (PCXVOY + (I - P)[@lnxdg.y)ll;
D — ||CX(Z)@(Z) _ CeqX(l)@(l) + CeqX(l)@(l)
AOPNC =~
- (CeqX(o 4+ (I- P)[x]nxd(z+1))||v
Using the triangular inequality and sub-multiplicative property of norms,

Y <IC = Caall 110V 4+ €Y [[Cell 10PN+ T
Lemma 3 Columnspace of matrix B = CW " is equal to the columnspace of matrix p” .

Proof: From Definition 1, If the column-space of B and column-space of p’ are similar, then
there exists a matrix M such that p” M = B. The matrix M which accomplishes this M = pB
(ppT = I.,). This shows that matrix B and p” have the same column space.

Lemma 3 implies that for an arbitrary vector z € R, Cp”z, it can be represented as p’a,
where a € R®. Also since the matrix p? denote the left singular vectors of the SVD of the ma-
X(O)f[f]ano

(©
trix %\/%1“0 they span the column space of the matrix F' = BV e Thus CpT'z =

S0 wiF(: i) for arbitrary values of w;. The matrix X(?) denotes the augmented input node
feature matrix.

A.2 PROOF FOR THEOREM 1

The output layer node representations for the linearized GNN using the optimal approximation of
the input node feature matrix given by the POD,

X0 =cWpTzOe + €Dz, 40 = BU + T,

B=CWpl ¥ = 700, ¥, = [CDzF]O. Consider d as the number of hidden channels at layer
l. We propose that the projection matrix, denoted by @), is the product of two matrices ()1 and Q2,
such that () = Q1 Q2. In this context, ()2 signifies the linear transformation responsible for reducing
the dimensionality of matrices. Conversely, (J; is the matrix that handles the inverse projection. The
objective is now to find

arg ming || QBY — BY||

arg min,, E 1QBY(: i) — BU(: i)

arg ming Z

i=1

arg ming Z

i=1

Z QujiF(: j) — wiiF(: ,j) ©)

j=1

Zw” (QXOG) —XO(j)) -, Q) s

J1 p2

(Lemma 3)

14

Under review as a conference paper at ICLR 2025

c X (0) 01 . . .
p3 = >0y X ZC(O). We denote P as the manifold of all rank (co < n) orthogonal projection
matrices of size n x n. The manifold is referred to as Grassmannian in the literature. The POD

projection matrix P is a minimizer of the function e,
e(P,z) =< Px —x,Px —x > where z € X© (See Rathinam & Petzold (2003)).

This, in turn, proves that the best matrix) which can be used in the scenario is the POD projection
matrix P.

Lemma 4 (Ding et al. (2022)) Given matrices C € R™*™ and (XWWNT ¢ R¥*" consider a
randomly selected count sketch matrix R € R°*™ (defined in section 2), where cy, is the sketch
dimension, and it is formed using v = /jn underlying hash functions drawn from a 3-wise inde-
pendent hash family ‘H for some j > 1. If ¢, > % we have

Pr{|(CR) (R XOW D) — X OWD |3 > 2k C|7 | X DWW D E} < 6.

B GENERALIZE TO MORE GNNS

This section presents a compendium of prevalent GNNs that can be tailored to fit into the unified
framework delineated in section 2. The crux of most GNN architectures revolves around message
passing among node features, followed by feature transformation and activation functions—a pro-
cess commonly known as ’generalized graph convolution’. Within this overarching framework, the
distinctions among GNNs primarily arise from their choice of convolution matrices, denoted as C'(9),
which can either remain static or evolve as trainable parameters. A trainable convolution matrix is
contingent upon input data and adjustable parameters, potentially varying across different layers, as
denoted by C(l,q).

o) _ ota) 4 (a)

%,J ,J 9(l,a) \ X4
N——

l l
(x0, x)
fixed learnable

We analyze how the PGNN framework works with various GNN architectures. The architecture of
focus involves SGC Wu et al. (2019), GCN Kipf & Welling (2017), SAGE Hamilton et al. (2018),
GAT Velickovic et al. (2018). In the below subsections, we discuss how the PGNN framework works
with various GNN architectures using update rules as described in the supplementary material of
Ding et al. (2022). We present two theorems from Ding et al. (2021), which can be crafted to the
PGNN framework. The theorems illustrate how node representations and gradients during back-
propagation can deviate when using the PGNN method compared to the conventional update rules
of the GNN. The upper bound for the error at a specific layer [(e)) is provided in Lemma 2.

Theorem 5 (Ding et al. (2021)) If the relative error of the 1-th layer for the PGNN method is €,
the convolution matrix C'V is either fixed or learnable with the Lipschitz constant of h((,l) (1) : R2t

R upper-bounded by Lip(hél)), and the Lipschitz constant of the non-linearity is Lip(c), then the
estimation error of forward-passed features satisfies,

XD = x D)< O (14 OLip(h{)))Lip(0) | CO)| X O[O | 5.

Theorem 6 (Ding et al. (2021)) If the conditions in Theorem 5 hold and the non-linearity satisfies
|O‘l (2)| < 0’ ypax for any z € R, then the estimation error of back-propagated gradients satisfies,

’

IVxwl = Vo llr < e® - (1+O0Lip(hy))aul|CO| VX CD |6 WO .

max

B.1 PGNN wiTH SGC.

The node representation at layer [+ 1, Z(+1) given by the PGNN method is Z(!*+) = Sz ® +
[CZ]nxd, ©W . The sketch of the convolution matrix S¢ = pCp? .

15

Under review as a conference paper at ICLR 2025

B.2 PGNN wITH GCN.

Let W = SoZ® + [pCZ,xq,. The update rule of PGCN is given by Z(+1:%)
%) R*) o (unsketch {(W(l))@(l)}) — [pZ]exdy,, - Detailed steps for the PGCN method are ex-
plained in Algorithm 1.

B.3 PGNN wiITH SAGE.
With U = [pZ]nxdy, ., So) = Lexe and Sge) = pC' 3 pT' . The update rule for PSAGE is given by

ZUER) = 5 R®) o (unsketeh{ Sy ZP WD 4 [pZ] s, WY + Spe) 20 W 4
[pC O Fpxa, W —U}) = U.

The identity matrix, the first convolution for the SAGE architecture, is converted to the identity ma-
trix in the sketch dimension because of the orthonormal property of the eigenvectors. The sketched
second convolution matrix is given by pC) T,

B.4 PGNN wITH GAT.

The convolution mechanism intrinsic to the GAT architecture is inherently learnable. While PGAT
offers a memory benefit during the forward pass through LSH, it necessitates the transfer of the
n X n convolution matrix to the device, thereby limiting the overall memory efficiency.

EGD = yta L yta’ o = (57709 4 [g],,4)000 b0,

C=A+1I, a9 eR%+1, 09 = C © exp(LeakyReLU(E(9)).

ZUHLaR) _ 50 pk) (softmax (CGAT) unsketch (ZW”) @“*q)) . o)

A subset S number of nodes are unsketched at each layer using the LSH method based on MIPS.

B.5 ALGORITHM

Algorithm 1 details the procedural framework of the PGNN, which is executed within the structure
of the GCN architecture. The algorithm can be generalized to the architectures discussed in sections
B.1 and B.3. However, for the PGAT architecture (See section B.4), the computation of the sketch
for the convolution matrix must be omitted.

C COMPLEXITY ANALYSIS

We delineate the intricacies inherent in the algorithm with the PGNN framework.

One-time Preprocessing: The pre-processing step involves finding the right singular vectors of the
matrix described in Algorithm 1, which takes time O(dncy). Computing Sc = pCp” takes time
O(n?). Computing the sketch of the initial node feature matrix Sx = p(X(*) — [Z],,»q) takes time
O(ncod). Computing the sketches of the matrix p to obtain p has linear time complexity. The pre-
processing phase has a time complexity of O(n?) and a memory complexity of O(n).

Overhead of computing LSH hash tables. The time complexity for computing the hash index for
each node is O(cpck) when using Simhash (See section 2), and since there are n nodes and r hash
tables, we get an overhead of O(rncocy,) for time and O(rcgcy,) for space.

Training complexities with PGNN. We present the complexities within the context of the GCN
architecture. Forward and backward pass: involves O(cqd?L) + O(cpcodL) + O(BercoL), which
reduces to O(cycp) time. The memory complexity in the backward propagation is O(co) + O(cy) +
O(B). The third term O(/3) occurs when using the vanilla sampling for LSH. The memory com-
plexity involved is O(B3dL + d*L).

Inference: incurs O(n) time and O(n) memory as is the case in a standard GCN.

Remark. The training complexities mentioned above do not hold for the GAT architecture
Velickovi¢ et al. (2018) because of the inherent nature of the operations involved, which is ex-
pounded in Appendix B.4. The underlying complexities in the original GAT architecture will hold,
and for completeness, we present the accuracies for the Cora and Citeseer datasets using PGAT in
Table 4.

16

Under review as a conference paper at ICLR 2025

Algorithm 1 PGNN

Require: Node feature matrix X 0) € R"*4 1abels y, Convolution matrix C, sketch ratio r = %0,
k-number of sketches, count sketch matrix dimension cg, 3.

1: Preprocessing step:
2: Compute sketch dimension ¢o = [rn].
3: if ¢g > d then
4: Generate random vectors r; and r of size ¢y — d, where each element r1(j) and r2(j) is
drawn from the set {1,2,...,d}.
5: Produce augmented feature matrix X (0, X(©) = [X© 7). M = XO(:,71) © XO)(:, r5).
6: end if o o
7: Compute mean vector T = Z:+O(l)
o)
8: Obtain left singular vectors p” of the matrix % Halko et al. (2010).

9: Sketch input node feature matrix Z(®) = p(X(© — [z]).
10: Project convolution matrix to obtain S = pCp’, compute vectors pz, pCZ.
11: Generate k count-sketch matrices R, ..., R() € R *" and obtain sketches p(1), ..., p*) =
RKT
pR") .
12: Training of GNN:
13: Initialize GNN weights randomly.
14: for epoch=1,2,to ... do
15 forl=1to L do
16: Follow forward propagation rule to obtain sketched layer representation Z() using
propagation rule (Appendix B.2). Unsketching of an arbitrary matrix F' at layer [,
unsketch(F) = 5% (S, :)F + [Z]nxq, for a subset S containing almost S number of
nodes, using LSH MIPS.

17: Update GNN weights for each layer [using the loss .
18: Backpropagate and update weights ©).

19: end for

20: return Learned weights oW 1=12...,L

21: end for

22: Inference:
23: Predict using standard GCN update rule with learned weights ©), 1 =12,... L.

An implementation detail. When the sketch ratio r is such that [rn]| > d, which is the feature
dimension, the PCA or the POD method necessitates computing the covariance matrix Ding et al.
(2021). To overcome the challenge of storing and computing the covariance matrix, we use the
feature engineering method to augment X (?) by selecting random combinations of columns of this

matrix to find the augmented input node feature matrix X () (See Algorithm 1).

D ADDITIONAL EXPERIMENTS

D.1 COMPARISON OF SPECTRAL PROPERTIES OF THE SKETCHES OF THE CONVOLUTION
MATRICES

We say that a matrix B € R™*" is an € approximation to matrix A € R"*™ if their quadratic forms
have the form
2T Bx

€

<2TAxr < eaxTBx Vax eR".

The above equivalence implies the spectrum similarity between the two matrices (Courant-Fisher
Theorem Chung (1997)). We present comparisons of the eigenvalues and eigenvectors of the con-
volution matrix C' and the equivalent convolution matrix C; = PC for the Cora dataset in Figures
6a and 6b. The eigenvalues and eigenvectors of the matrix C,, closely align with those of C.

17

Under review as a conference paper at ICLR 2025

°
@
S

&
>

j-
M;;

Relative Change

°
=
T ——

g
0

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

3 -0.1

1=

(a) Eigenvalue comparison of matrices C and C¢, for (b) Comparison of Eigenvectors of C and C¢, for the

the Cora dataset. Here the relative change is given by =~ Cora dataset, ~with the ¢j-th element M;; guantiﬁed

W Xi(C) denoting the i — th eigen- by ¢i;(C) — ¢i;(Ceq), where ¢;;(C') and ¢;; denote

value of C. the j-th component of the eigenvectors for C' and
Ceq, respectively.

0 500 1000 1500 2000 2500
Eigenvalue Index

Figure 6: Comparison of eigenvalues and eigenvectors of C and C¢, for the Cora dataset.

Dataset Cora Citeseer Pubmed ogbn-arxiv Reddit
Task node node node node node
Setting transductive transductive transductive transductive transductive
Label single single single single single
Metric accuracy accuracy accuracy accuracy accuracy
of Nodes 2708 3327 19717 169,343 232,965

of Edges 5429 4732 44338 1,166,243 11,606,919
of Features 1,433 3,703 500 128 602

of Classes 7 6 3 40 41

Table 7: Detailed Overview of the graph datasets utilized in experiments.

E IMPLEMENTATION DETAILS

We outline the various implementation details with the hyper-parameter setups for experiments in
section 5.

Datasets. Table 7 provides a comprehensive summary of the statistics for all datasets utilized in the
experiments. The datasets ogbn-arxiv and ogbn-products were sourced from the Open Graph Bench-
mark (OGB)'. The Reddit dataset, a more streamlined variant of the original dataset by Hamilton
and colleagues, was acquired through the PyTorch Geometric library?. For our research, we adhered
to the conventional dataset divisions established by OGB and PyTorch Geometric.

Code Frameworks. The codes used for experimentation are made available at repository®. PGNN
framework make use of the PyTorch library and the PyTorch Sparse library*. For the computation
of the sketch of the input node feature matrix, the svd function from the Pytorch library is used. We
provide proof of concept results for the Citeseer dataset with the optimum hyper-parameters in the
repository 3 where the Count-sketch technique implementation is taken from the repository> and the
LSH hashing and query function implementations are taken from repository®. All of the above code
repositories we used are licensed under the MIT license.

Computational Infrastructures. All of the experiments are conducted on the Nvidia A30 GPU
with Xeon CPUs.

"https://ogb.stanford.edu/
https://github.com/pyg-team/pytorch_geometric
3https://anonymous.4open.science/r/POD-Scalable-training—for-GNNs-63F8
‘nttps://github.com/rustyls/pytorch_sparse
Shttps://github.com/johndingl996/Sketch-GNN-Sublinear
®https://github.com/keroro824/HashingDeepLearning

18

Under review as a conference paper at ICLR 2025

GNN training: For all the datasets, we use a 2-layer GNN with the number of hidden channels
kept at 128; the learning rate used is changed for different datasets and different GNN architectures.
Dropout and batch-norm are not used, and Adam is the default optimizer. The default learning rate
is 0.001.

Setup of PGNN: In our experimental setup, we have designated 500 epochs for each run, with 10
runs to ensure statistical significance. The sketch-ratio of 0.018 used for the citeseer is same as
mentioned from the paper Ding et al. (2022), sketch-ratio of 0.02 against 0.026 is used for the cora
dataset to demonstrate the effectiveness of the proposed method. For the Pubmed dataset, we se-
lected a lower sketch ratio of 0.01. This choice aligns with the general principle that as graph size
increases, the sketch ratio or the effective number of components for preserving variance decreases.
Extensive experimentation confirmed that a sketch ratio of 0.01 was sufficient to achieve good clas-
sification accuracy. For the ogbn-arxiv, Reddit, ogbn-products datasets, although the standard ratio
is 0.4, 0.3, 0.2, our experiments indicated that a lower ratio of 0.06, 0.05, 0.001 provided a better
balance between computational efficiency and model accuracy. We observe that the time taken for
a single query when using the implementation of LSH from repository 6 for the Cora dataset is in
the range of 0.0028-0.017 seconds which affects training time. For proof of concept experimental
results described in section 5, we use the update rule in equation 4 employing the low-rank approx-
imation method for p using SVD for Pubmed, ogbn-arxiv and Reddit dataset, with rank parameter
as min([rn]), 12000). For PGAT, we employ 2 attention masks. For experiments validating the
update rule in equation 5 with Count-sketch, we set the ratio ¢, to [0.5n] and used 2 sketches. In
the case of LSH, we configured the number of hash functions K to 5 and the number of hash tables
L to 6. The training times of PGNN were not compared with the existing sketch-based method,
Sketch-GNN Ding et al. (2022), due to observed discrepancies in node classification accuracy from
the implementation available in the repository 5. Additionally, the implementation of Sketch-GNN
for the ogbn-arxiv, Reddit and the ogbn-products dataset encountered memory issues during experi-
mentation on the Nvidia A30 GPU.

19

