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1 INTRODUCTION
To keep the overall manuscript self-contained, we include additional
details in the supplementary material. The source code for LoMOE
along with the LoMOE-Bench dataset will be released in due time.

2 METHOD DETAILS
Specific aspects of the framework, including regularized inversion
and temperature scaling, are described below.

2.1 Regularised Inversion
To softly enforce gaussianity on the inverted noise maps gener-
ated during the DDIM Inversion, we use a pairwise regularization
L𝑝𝑎𝑖𝑟 [19] and a divergence loss L𝐾𝐿 [12] weighted by 𝜆 (refer Sec.
3.1 of the main paper). These losses ensure that there is (1) no cor-
relation between any pair of random locations and (2) zero mean,
unit variance at each spatial location, respectively. Mathematically,
the pairwise regularization loss is given by:

Lpair =
∑︁
𝑝

1
𝑆2𝑝

𝑆𝑝−1∑︁
𝛿=1

∑︁
𝑥,𝑦,𝑐

𝜂
𝑝
𝑥,𝑦,𝑐

(
𝜂
𝑝

𝑥−𝛿,𝑦,𝑐 + 𝜂
𝑝

𝑥,𝑦−𝛿,𝑐

)
(1)

where {𝜂0, 𝜂1, · · · , 𝜂𝑝 } denote the noise maps with size 𝑆𝑝 at the
𝑝th pyramid level, 𝛿 denotes the offset which helps propagate long-
range information [11, 19], and {𝑥,𝑦, 𝑐} denotes a spatial location.
Here, we set 𝑝 = 4 and 𝜂0 = 𝜖𝜃 ∈ R64×64×4, where the subsequent
noise maps are obtained via max-pooling.

The divergence loss is given by:

L𝐾𝐿 = 𝜎2𝜖𝜃 + 𝜇2𝜖𝜃 − 1 − log(𝜎2𝜖𝜃 + 𝜀) (2)

where 𝜇𝜖𝜃 and 𝜎2𝜖𝜃 denotes the mean and variance of 𝜖𝜃 and 𝜀 is a
stabilization constant.

2.2 Temperature Scaling
Given a vector 𝑧 = (𝑧1, · · · , 𝑧𝑛) ∈ R𝑛 , it can be transformed into a
probability vector via

Softmax(𝑧 |𝜏)𝑖 =
𝑒𝑧𝑖/𝜏∑𝑛
𝑗=1 𝑒

𝑧 𝑗 /𝜏
(3)

where 𝜏 is a temperature parameter [8] which varies the smoothness
of the output distribution. In general, lower values of 𝜏 result in a
sharp distribution, and increasing 𝜏 softens the distribution. This
method has been used in applications such as model calibration [9],
image restoration [20] and image inpainting [23]. In this work,
we use a constant temperature scale to ensure the distributional
smoothness of the cross-attention maps, setting 𝜏 = 1.25. Further
ablation on 𝜏 is discussed in Sec. 3.

3 ABLATION STUDY
In addition to the quantitative ablation of 𝜆𝑥𝑎 and 𝜆𝑏 , we further
study the impact of varying the temperature scaling parameter 𝜏
and bootstrap 𝑇𝑏 . Specifically, we experiment for 𝜏 ∈ {1.00, 1.25,
1.50, 1.75, 2.0} and 𝑇𝑏 ∈ {5, 10, 20, 30, 35} and report the results in
Table 1. We also do a visual ablation for the effect of the tightness of
the mask on the performance of LoMOE. We also explore varying
the tightness of the mask. We find that as long as the object to
be edited is fully masked, the model performs well, as depicted in
Figure 3.

3.1 Temperature Scaling
The results for variation in 𝜏 are summarized in Tab. 1 and have
been depicted visually in Fig. 1. We observe that the edited image
tends to go towards the source image with an increase in 𝜏 , which
can be attributed to over-smoothing the distribution. This is also
indicated by the neural metrics in Tab. 1, where an increase in 𝜏

results in increasing source CS and a decreasing target CS. This
is further exemplified by the background metrics and Structural
Distance, which are the best for 𝜏 = 2.00. In this work, we set
𝜏 = 1.25 as mentioned in Sec. 3.4 of the main paper. This choice of
𝜏 resulted in visually pleasing edits and we observed semantically
coherent outputs for 𝜏 ∈ [1, 1.5].

3.2 Bootstrap
Upon analyzing the findings presented in Tab. 1, we opt for𝑇𝑏 = 10
based on the observation that the general structure and overall
layout of the image is established within the first 10 denoising steps.
Subsequently, the diffusion model manifests the finer details of the
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𝜏 𝑇𝑏
Source CLIP
Score (↑)

Background
LPIPS (↓)

Background
PSNR (↑)

Background
SSIM (↑)

Structural
Distance (↓)

Target CLIP
Score (↑)

1.00 - 23.4216 0.0586 30.1023 0.8822 0.0728 25.9163
1.25 - 23.7507 0.0522 30.4707 0.8849 0.0715 26.0902
1.50 - 24.1785 0.0497 30.7565 0.8863 0.0708 25.7919
1.75 - 25.0428 0.0466 31.1206 0.8875 0.0709 24.9769
2.00 - 25.4275 0.0409 31.5829 0.8896 0.0652 24.1544

- 05 23.5422 0.0562 30.1123 0.8838 0.0782 25.9403
- 10 23.5445 0.0546 30.3154 0.8847 0.0710 26.0740
- 20 23.4344 0.0587 30.0937 0.8822 0.0723 25.8746
- 30 23.4494 0.0618 29.8495 0.8792 0.0757 25.9404
- 35 23.2644 0.0621 29.8123 0.8792 0.0774 25.8089

Table 1: Further Ablation: We experiment with different values of the temperature parameter (𝜏) and bootstrap (𝑇𝑏 ) parameters.
From the neural and background metrics, we observe that the similarity between the edited and the input image increases for
higher values of 𝜏 and that 𝑇𝑏 = 10 is the optimal value for the bootstrap parameter.

Figure 1: Ablation on Temperature Scaling: Impact of an increasing temperature parameter, 𝜏 ’s on the edits. We observe that an
increase in the value of 𝜏 results in the edited image moving towards the input image. Empirically, we see visually appealing
edits are achieved at 𝜏 = 1.25.

image, in accordance with [2]. We also observe using a higher value
of bootstrap aids in addition-based edits.

3.3 Inversion
As mentioned in Sec. 3.1 of the main paper, inversion helps initiate
the editing procedure and ensures a coherent and controlled edit.
To understand the impact of inversion, we compare two different
initializations for the edit process (refer Sec. 3.2 of the main paper),
namely (1) 𝑥𝑇 = 𝑥𝑖𝑛𝑣 and (2) 𝑥𝑇 = 𝜁 . Here, 𝜁 ∈ R64×64×4 denotes

a random latent with elements sampled from N(0, 1). Specifically,
we choose to showcase this impact on style transfer based edits.

From Fig. 2, we observe that the images with inversion are struc-
turally much closer to the input image compared to the ones gener-
ated using a random latent, which is also indicated by the Structural
Distance metric. In most cases, although using a random latent
generates a faithful edit to the given prompt, it changes the content
of the image, resulting in undesirable outputs. Therefore, using
inversion is crucial for faithful image editing.
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Figure 2: Ablation on Inversion: We study the impact of editing with a random latent compared to initiating the editing process
via inversion. The outputs from LoMOE for both cases are captioned with the [Structural Distance (↓)]. We observe that the
structural similarity is preserved when using inversion instead of a random latent to initiate the editing process.

Figure 3: Illustrating the impact of enlarging the mask beyond the target object in LoMOE. As the mask undergoes progressive
dilation, culminating in the use of a bounding box as the mask, it becomes evident that such transformations have minimal
effect.

3.4 Inference Time
In a multi-object scenario, LoMOE separates itself by executing all
edits in a single pass, resulting in substantial time savings com-
pared to iterative methods. This is highlighted in Table 2, where
our approach proves particularly advantageous in scenarios in-
volving multiple objects, demonstrating a notable decrease in edit

time. Unlike other methods that run iteratively to generate multi-
object edits, LoMOE’s streamlined approach minimizes the need for
repeated computations, enhancing overall efficiency. The gains in
edit time underscore LoMOE’s practical applicability in real-world
editing tasks, showcasing its potential to streamline and expedite
complex multi-object editing processes. The peak memory utiliza-
tion (PMU) using the setup in Sec. 3.4 of the main paper has been
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detailed in Table 3. Additionally, the time taken to optimize each
objective is as follows (Ref. Main Paper Sec. 3):

start → L𝑥𝑎 (Eqn. (9)) : 0.165025 sec
L𝑥𝑎 (Eqn. (9)) → L𝑏 (Eqn. (10)) : 0.001386 sec
L𝑏 (Eqn. (10)) → 𝑦∗𝑡−1 (Eqn. (13)) : 0.185235 sec

Method Inference Time for 𝑁 masks (sec)

1 2 3 5 7

GLIDE 22.10 41.10 63.76 106.99 153.11
DiffEdit 22.25 41.30 65.91 110.85 152.60
BLD 27.20 51.60 80.40 135.24 185.37
SDInpaint 29.43 49.02 71.91 116.34 158.40
Iterative 24.97 45.75 70.50 117.35 162.37

LoMOE 23.19 (7.1) 31.3 (31.6) 39.35 (44.2) 55.47 (52.7) 76.15 (53.1)

Table 2: In a multi-object setting, we report the inference
time of all the methods for varying number of masks 𝑁 .
Iterative denotes the average runtime of GLIDE, DiffEdit and
BLD. We report the percentage improvement by LoMOE over
Iterative (in green)

Method Peak Memory Utilization for 𝑁 masks (MiB)

1 2 3 5 7

inversion ———-11029———-
reconstruction ———-6813———-
edit 12609 17127 21367 30235 38979
Table 3: Peak Memory Utilization (PMU) by LoMOE.

4 EXPERIMENTAL PROTOCOL
4.1 Datasets
To facilitate a comparison between various baselines on single-
object edits, we employ a modified subset of the PIE-Bench [10]
dataset supplemented with images from AFHQ [5], COCO [14],
and Imagen [22]. Overall, the benchmark consists of 300 images,
covering editing types such as changing objects, adding objects,
changing object content, changing object color, changing object
material, changing background, and changing image style. Sample
images for each edit type are shown in Fig. 14.

The newly proposedmulti-object editing benchmark LoMOE-Bench
consists of 64 images, covering various editing types, with each im-
age featuring 2 to 7 masks paired with corresponding text prompts.
The masks for the images in LoMOE-Bench and the supplemental
images in the single-object dataset are generated using SAM [13]. In
practice, the user is required to provide a bounding box around the
object via a GUI interface, which then automatically saves the seg-
mented mask, as mentioned on Sec. 4.1 of the main paper. Sample
images from LoMOE-Bench are depicted in Fig. 15. We further ob-
serve the variety of objects in LoMOE-Bench images and their masks
in Fig. 4 and Fig. 5 shows the name of the objects being edited in

Method Image Mask TIP SMP TMP EIn

SDEdit [16] ✓ ✗ ✓ ✗ ✗ ✗

I-P2P [3] ✓ ✗ ✗ ✗ ✗ ✓

NTI (w/ P2P) [17] ✓ ✗ ✓ ✗ ✗ ✗

MasaCtrl [4] ✓ ✗ ✓ ✗ ✗ ✗

DiffEdit [6] ✓ ✓ ✗ ✓ ✓ ✗

GLIDE [18] ✓ ✓ ✗ ✗ ✓ ✗

BLD [1] ✓ ✓ ✗ ✗ ✓ ✗

SDInpaint [21] ✓ ✓ ✗ ✗ ✓ ✗

LoMOE ✓ ✓ ✗ ✗ ✓ ✗

Table 4: Annotations required by various baseline meth-
ods included in the modified single-object dataset and LoMOE-
Bench.

the form of a word cloud. The images are also supplemented with
various text-based annotations used by different baselines (refer
Table 4) via a JSON file, including

• Target Image Prompt (TIP): A complex prompt describing
the complete image after the edit.

• Source Mask Prompt (SMP): A simple text prompt de-
scribing the object inside the masked region of the input
image.

• Target Mask Prompt (TMP): A simple text prompt that
describes the edited object inside the masked region.

• Edit Instruction (EIn): Edit instruction for I-P2P [3].

The dataset statistics are the following. On average, masks cover
8.34% of the image (standard deviation: 10.1%), with each image
containing an average of 3 masks (standard deviation: 1.17). In
addition, we see the spatial distribution of the masks in a heat map
in Fig. 6, demonstrating the frequency with which each pixel is
masked.

4.2 Baselines
We use the official implementation for all baseline methods us-
ing PyTorch, except for DiffEdit as the code has not been made
public. SDEdit uses the target prompt for text-guided image edit-
ing and does not require any other input. DiffEdit by construction
uses the DDIM solver, but the unofficial implementation uses DPM
solver [15] for better sample efficiency. The method also generates
noisy masks based on the source and target mask prompts, thus we
choose to use the masks in the dataset (as mentioned in Sec. 4.2 of
the main paper).

I-P2P requires an edit instruction along with the image and does
not need any other inputs. For example, the edit instruction for
the first image in Fig. 13 would look like: “change the shape of
the cake to a square". It is also important to note that although all
other methods use the pre-trained Stable Diffusion model directly,
Instruct-P2P is trained by finetuning this model. Finally, GLIDE
and BLD are similar to LoMOE in that they only require the target
mask prompt as additional inputs.
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(a) Images to be edited (b) Masks corresponding to the real images

Figure 4: LoMOE-Bench Dataset: Dataset comprising images with multiple edit targets along with their corresponding masks (a)
and (b), and a word cloud

Figure 5: Word Cloud depicting the variety of objects present
in LoMOE-Bench

Figure 6: Heatmap showing the number of masks that cover
a certain pixel in 512 × 512 images.

4.3 Additional Results
We supplement the qualitative results provided in the main paper
(Ref. Main Paper Sec. 5) by comparing LoMOE against baselines on
more single-object edits, depicted in Fig. 13. Furthermore, we show-
case single-object and multi-object edits with LoMOE in Figs. 14 and
15 for samples from LoMOE-Bench and the single-object benchmark
for multiple masks and various edit types, respectively.

5 LIMITATIONS
In Figures 8, 9 and 7, we analyze the effect of lighting, shadows and
reflections in the outputs produced by LoMOE. Additionally, Figures
10 and 11 delve into object coherence and some failure cases of
LoMOE.
Lighting: In Fig. 8, we observe that the edited image has similar
lighting properties to those of the source image.
Reflections: In Fig. 9, we observe that LoMOE adds in realistic
reflections for addition based examples, based on the mask used.
For example, there is no reflection in the "blue fish“ example due to
the mask constraint. This opens up avenues for a mask-free version
of LoMOE. Additionally, in the example of a "sunny day“, the LoMOE
uses the reflections in the water as a prior to aptly fill in the masked
region.
Shadows: In Fig. 7, we observe that LoMOE attempts to add realistic
shadows.
Realism: In Fig. 10, we demonstrate object-background coherence
using a background change and an addition example. In both cases,
LoMOE produces realistic and coherent results.
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Failures: In Fig. 11, in cases where reflections fall outside the mask,
LoMOE cannot remove them due to the mask-constraint, resulting
in inconsistent lighting. Furthermore, LoMOE can perform global
edits like style-transfer (Ref. Fig. 14) but cannot facilitate spatial
manipulation like swapping or translation while preserving the
identity and style of the object. While translation can be achieved
through deletion and addition, as demonstrated in Fig. 11, it doesn’t
maintain the object’s identity. Textual inversion [7] might be a
potential solution to preserve identity for future works.

6 BROADER IMPACT
Generative image editing models are powerful tools that can create
realistic and diverse images from text or other inputs. They have
many potential applications in domains such as art, entertainment,
education, medicine, and security. However, they also pose signifi-
cant ethical and social challenges that need to be addressed. Some
of these challenges include:

• The risk of generating harmful or offensive images that may
violate human dignity, privacy, or rights.

• The possibility of manipulating or deceiving people with
fake or altered images that may affect their beliefs, emotions,
or behaviours.

• The difficulty of verifying the authenticity or provenance of
images that may have legal or moral implications.

• The impact of replacing or reducing human creativity and
agency with automated or algorithmic processes.

These challenges require careful consideration and regulation
from various perspectives, such as technical, legal, ethical, and
social. However, we believe that despite these drawbacks, better
content creation methods will produce a net positive for society.
Furthermore, we advocate for conducting such research in the pub-
lic domain, emphasizing transparency and collaborative efforts to
ensure responsible and beneficial outcomes for the broader com-
munity.
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Figure 7: Shadows: The images illustrate that the shadows are consistent with the original image before object editing.
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characteristics inherent in the initial input, thereby ensuring coherence in visual representation. Observe a similar coherence
in salmon, road, and red berries.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Supplementary Materials for LoMOE: Localized Multi-Object Editing via Diffusion ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

INPUT OUTPUTMASK

A BABY SWAN

A GLASS BOWL

A SUNNY DAY AT A FOREST

A BLUE FISH

Figure 9: Observe the consistency in reflections of the edited object with respect to the background as highlighted by a dashed
rectangle for emphasis.



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A FOREST

INPUT OUTPUTMASK

A RED DOG COLLAR

Figure 10: Realism: Note the meticulous attention to detail in the editing of the forest scene, which imbues it with a semblance
of reality. Likewise, the dog collar in the output exhibits a naturalistic deformation along the neck region, thereby enhancing
realism.
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Figure 11: Deletion: LoMOE’s limitations about shadow handling. Specifically, upon the removal of an individual, their associated
shadows persist post-editing due to our approach’s failure to address elements outside the designated mask area. Furthermore,
it is noteworthy that despite the presence of motion, the edited football image retains clarity without exhibiting blurriness.
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Figure 12: Additional Comparison among Contemporary Methods for Single Object Edits: We present a qualitative comparison
of LoMOE against other baseline methods on additional single-object edits. The observations stand similar to Fig. 3 in the main
paper, where our proposed method LoMOE makes the intented edit, preserves the unmasked region and avoids unintended
attribute edits.
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Figure 13: Additional Comparison among Contemporary Methods for Multi Object Edits: We present a qualitative comparison
of LoMOE against other baseline methods on additional multi-object edits. The observations stand similar to Fig. 4 in the main
paper, where our proposed method LoMOE makes the intended edit, preserves the unmasked region, and avoids unintended
attribute edits.
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Figure 14: Single Object Benchmark: Examples from Single-Object dataset. The columns are (1) Edit type (2) The input image
on which the editing is done, (3) The mask used for localizing the edit, (4) JSON annotation containing the Target Image Prompt
(TIP), Source Mask Prompt (SMP), Target Mask Prompt (TMP), and the Edit Instruction (EIn), and (5) The edited images produced
by LoMOE.
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Figure 15: LoMOE-Bench: Examples from Multi-Object Dataset. The columns are (1) The input image on which the editing is
done, (2) The masks used for localizing the edit, (3) JSON annotation containing the Source Mask Prompts (SMP) and Target
Mask Prompts (TMP), and (4) The edited images produced by LoMOE.
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