
Under review as a conference paper at ICLR 2024

A THEORETICAL GUARANTIES

We show that the local similarity of two networks allows us to derive robustness guarantees for one
network if we prove similar properties for the second one without running the verification algorithm a
second time. Here, we address the following so-called ϵ-verification problem. Like in Section 2, given
the anchor point x0, network f , predicted label y, and a target label ŷ, we consider the following
problem, which, in case of the ReLU activation, is equivalent to a mixed-integer optimization task.

min
x̃0∈Rn0

fy(x̃
0)− fŷ(x̃

0) s.t. ∥x0 − x̃0∥ ≤ ϵ (2)

We denote its optimal value by Vf (ϵ). Note, that Vf (ϵ) ≥ 0 ⇐⇒ fy(x̃
0) ≥ fŷ(x̃

0) for all
x̃0 ∈ Bϵ(x

0), meaning that the initial label y has a higher score than ŷ everywhere on Bϵ(x
0). In

the MILP-based algorithms D this problem is solved for different ϵ to find the largest ϵ, such that
Vf (ϵ) ≥ 0, which is exactly the distance to the decision boundary dbnd.
Lemma 1. If f(x̃0) = g(x̃0) for all x̃0 ∈ Bδ(x

0) and

1. δ ≥ ϵ, then Vg(ϵ) ≥ 0 =⇒ Vf (ϵ) ≥ 0,

2. δ ≤ ϵ, then Vg(ϵ) ≥ 2(Lf + Lg)(ϵ− δ) =⇒ Vf (ϵ) ≥ 0,

where L is the Lipschitz constant of the corresponding function on Bϵ(x
0).

Proof. 1 follows directly from the fact that f = g on the set Bδ(x
0) that includes the admissible set

of the optimization task 2, which is Bϵ(x
0). To prove 2, assume z0 ∈ Bϵ(x

0) and let z̃0 = ϵ
δz

0 be
the projection of z0 on Bδ(x

0), then

fy(z
0)− fŷ(z

0) = fy(z
0)− fy(z̃

0)︸ ︷︷ ︸
≥−Lf∥z0−z̃0∥

+ fy(z̃
0)− gy(z̃

0)︸ ︷︷ ︸
=0

+ gy(z̃
0)− gy(z

0)︸ ︷︷ ︸
≥−Lg∥z0−z̃0∥

+ gy(z
0)− gŷ(z

0)︸ ︷︷ ︸
≥Vg(ϵ)

+

+ gŷ(z
0)− gŷ(z̃

0)︸ ︷︷ ︸
≥−Lg∥z0−z̃0∥

+ gŷ(z̃
0)− fŷ(z̃

0)︸ ︷︷ ︸
=0

+ fŷ(z̃
0)− fŷ(z

0)︸ ︷︷ ︸
≥−Lf∥z0−z̃0∥

≥ Vg(ϵ)− 2(Lf + Lg)(ϵ− δ)

That means Vg(ϵ) ≥ 2(Lf + Lg)(ϵ− δ) indeed implies fy(x̃0) ≥ fŷ(x̃
0) for all x̃0 ∈ Bϵ(x

0), or in
other words Vf (ϵ) ≥ 0.

In our setting, for the network g being constructed via pruning as described in Section 3, Lemma 1
provides a way to certify the neighborhood Bϵ(x

0) as adversarial free for the network f by solving
the optimization problem 2 for a smaller network g. Why don’t we use this theoretical result to
certify f but instead rely on the empirical comparison of dbnd and d̂bnd? First, only the third from the
three developed pruning methods, called activation preserving pruning (Figure 2c), leads to a new
network g that has the same output as f in a whole neighborhood around x0. The constant pruning
and adversarial preserving linear pruning (Figure 2a and 2b) preserve the output for single points
and do not possess this property. Second, for the activation preserving pruning we need to know δ,
such that f(x̃0) = g(x̃0) for x̃0 ∈ Bδ(x

0). In other words, we must find a region’s radius where the
pruned neurons’ activation pattern does not change. Unfortunately, the task of computing δ, knowing
the neurons that we prune, is of the same complexity as the same verification task formulated by 1
itself. More precisely, δ equals the optimal value of the following problem.

max
x̃0∈Rn0

∥x0 − x̃0∥ s.t. f l
i (x̃

0) ≥ 0 if the pruned neuron (l, i) is activated, that is f l
i (x

0) ≥ 0, and

(3)

f l
i (x̃

0) ≤ 0 otherwise. (4)

Compared to 1, it has the same objective function and the constraints of the same type. Therefore,
we do not use Lemma 1 to derive the robustness certificates for the initial network f , as solving the
intermediate task of computing δ is not feasible in this framework. Nevertheless, this result proves
an underlying theoretical connection between the robustness properties of the initial and pruned
networks and provides a starting point for future research in this intriguing direction.

12



Under review as a conference paper at ICLR 2024

B RUNTIME AND COMPLEXITY

To understand what affects the complexity of the problem 2, we reformulate it as follows (here for a
single target label ỹ).

min
x̃,z̃

(eỹ − ey)
T
(
WLx̃L−1 + bL

)
, s.t. ∥x0 − x̃0∥ ≤ ϵ and for l ∈ [L− 1] (5)

x̃l ≤ W lx̃l−1 + bl − (1− zl)a
¯
l (6)

x̃l ≥ W lx̃l−1 + bl (7)

x̃l ≤ zlāl, x̃l ≥ 0 (8)

xl
i ∈ R, zli ∈ {0, 1}

We use this formulation in our implementation based on the work by Li et al. (2023). Note, that
once we prune a neuron (l, i) as described in Section 3, the corresponding binary variable zl

i
disappears from the formulation together with the constraints 6–8 and we get a simple linear constraint
x̃l
i = W l

i,:x̃
l−1 + bli instead. Here, W l

i,: and bli define our new linear transformation instead of
the non-linear ReLU activation. By pruning, for example, 99% of the hidden neurons, we reduce
the number of integer variables in 1 by the same amount. The standard approach to solve a MILP
task is branch-and-bound, where we divide the whole set of the admissible points by relaxing the
integrality constraints (in our case zl

i ∈ {0, 1}) one by one and bound the optimal value on the
resulting sub-domains. Fewer binary variables mean less branching and a faster problem solution.

On the other hand, smaller ϵ also contributes to a faster solution. Now, instead of affecting the
ReLU-constraints 6–8, ϵ directly controls the size of Bϵ(x

0) via the constraint ∥x0− x̃0∥ ≤ ϵ. Again,
smaller ϵ results in a smaller admissible set that gets explored faster by the solver. To demonstrate
this correlation, in Figures 3a and 3b, we show the time of each optimization run solving problem 2
that completed within the time limit of 60 seconds on the x-axis. The ϵ that was verified is shown on
the y-axis. Each point represents the optimization tasks solved on model C pruned either using linear
adversarial preserving or activation pattern preserving method indicated by the color of the points.
For Figure 3a we use the sparsity parameter γ = 0.9 and for Figure 3b γ = 0.99. That means within
one plot, the only parameter affecting the optimization task’s complexity is ϵ.

C TABLES

Below, Tables 2 and 3 show the results for the architectures D and E, correspondingly. For these
larger networks, the MILP-based method D failed to find the exact dbnd for all the considered MNIST
and CIFAR10 samples. In other words, it reaches the time limit of 120 seconds for MNIST and
180 seconds for CIFAR10 for at least one of the optimization tasks 2 solved during the verification
process. Therefore, the tables do not contain the column Avg dbnd diff , as we do not have the true
dbnd and d̂bnd to compare. Furthermore, because of the long computing time for architecture E, we
verify the networks trained using adversarial training only (no clean training).

13



Under review as a conference paper at ICLR 2024

(a) γ = 0.9

(b) γ = 0.99

Figure 3: Runtime and verified ϵ for the optimization tasks for model C.

14



Under review as a conference paper at ICLR 2024

Table 2: Results for the architecture D.

Dataset / Training Pruning γ Avg time with pruning Avg time w/o pruning

mnist / clean constant 0.9 32.52 ± 24.94 46.71 ± 21.97
mnist / clean constant 0.99 2.25 ± 0.98 46.71 ± 21.97
mnist / clean linear 0.9 46.89 ± 21.68 46.71 ± 21.97
mnist / clean linear 0.99 45.20 ± 20.89 46.71 ± 21.97
mnist / clean activation 0.9 46.33 ± 22.23 46.71 ± 21.97
mnist / clean activation 0.99 44.86 ± 21.02 46.71 ± 21.97
mnist / adv1 constant 0.9 38.12 ± 23.40 47.15 ± 21.26
mnist / adv1 constant 0.99 3.45 ± 1.94 47.15 ± 21.26
mnist / adv1 linear 0.9 47.66 ± 21.05 47.15 ± 21.26
mnist / adv1 linear 0.99 47.05 ± 20.46 47.15 ± 21.26
mnist / adv1 activation 0.9 47.14 ± 21.45 47.15 ± 21.26
mnist / adv1 activation 0.99 46.85 ± 19.96 47.15 ± 21.26
mnist / adv2 constant 0.9 38.01 ± 25.23 52.62 ± 19.26
mnist / adv2 constant 0.99 3.42 ± 2.02 52.62 ± 19.26
mnist / adv2 linear 0.9 51.68 ± 20.10 52.62 ± 19.26
mnist / adv2 linear 0.99 48.00 ± 20.01 52.62 ± 19.26
mnist / adv2 activation 0.9 51.32 ± 20.57 52.62 ± 19.26
mnist / adv2 activation 0.99 48.97 ± 22.09 52.62 ± 19.26
cifar10 / clean constant 0.9 70.07 ± 51.24 105.59 ± 39.01
cifar10 / clean constant 0.99 1.13 ± 0.45 105.59 ± 39.01
cifar10 / clean linear 0.9 102.17 ± 41.58 105.59 ± 39.01
cifar10 / clean linear 0.99 78.52 ± 47.39 105.59 ± 39.01
cifar10 / clean activation 0.9 101.73 ± 41.98 105.59 ± 39.01
cifar10 / clean activation 0.99 76.32 ± 47.91 105.59 ± 39.01
cifar10 / adv1 constant 0.9 76.68 ± 48.99 104.14 ± 39.76
cifar10 / adv1 constant 0.99 7.61 ± 3.37 104.14 ± 39.76
cifar10 / adv1 linear 0.9 104.65 ± 40.16 104.14 ± 39.76
cifar10 / adv1 linear 0.99 91.70 ± 39.66 104.14 ± 39.76
cifar10 / adv1 activation 0.9 104.66 ± 40.50 104.14 ± 39.76
cifar10 / adv1 activation 0.99 80.01 ± 44.96 104.14 ± 39.76
cifar10 / adv2 constant 0.9 79.17 ± 50.59 100.01 ± 42.77
cifar10 / adv2 constant 0.99 5.04 ± 2.34 100.01 ± 42.77
cifar10 / adv2 linear 0.9 99.11 ± 43.31 100.01 ± 42.77
cifar10 / adv2 linear 0.99 82.03 ± 43.09 100.01 ± 42.77
cifar10 / adv2 activation 0.9 98.37 ± 43.80 100.01 ± 42.77
cifar10 / adv2 activation 0.99 80.95 ± 43.62 100.01 ± 42.77

15



Under review as a conference paper at ICLR 2024

Table 3: Results for the architecture E.

Dataset / Training Pruning γ Avg time with pruning Avg time w/o pruning

mnist / adv1 constant 0.9 81.98 ± 49.79 105.37 ± 38.76
mnist / adv1 constant 0.99 3.31 ± 0.65 105.37 ± 38.76
mnist / adv1 linear 0.9 106.47 ± 37.83 105.37 ± 38.76
mnist / adv1 linear 0.99 104.06 ± 37.88 105.37 ± 38.76
mnist / adv1 activation 0.9 104.43 ± 39.81 105.37 ± 38.76
mnist / adv1 activation 0.99 91.64 ± 42.85 105.37 ± 38.76
mnist / adv2 constant 0.9 89.78 ± 48.60 105.87 ± 38.62
mnist / adv2 constant 0.99 3.20 ± 0.33 105.87 ± 38.62
mnist / adv2 linear 0.9 106.25 ± 38.77 105.87 ± 38.62
mnist / adv2 linear 0.99 103.36 ± 38.83 105.87 ± 38.62
mnist / adv2 activation 0.9 106.77 ± 37.49 105.87 ± 38.62
mnist / adv2 activation 0.99 102.95 ± 37.49 105.87 ± 38.62
cifar10 / adv1 constant 0.9 128.13 ± 73.90 158.54 ± 58.54
cifar10 / adv1 constant 0.99 7.26 ± 0.87 158.54 ± 58.54
cifar10 / adv1 linear 0.9 158.95 ± 57.94 158.54 ± 58.54
cifar10 / adv1 linear 0.99 159.39 ± 56.81 158.54 ± 58.54
cifar10 / adv1 activation 0.9 162.66 ± 60.07 158.54 ± 58.54
cifar10 / adv1 activation 0.99 158.40 ± 58.12 158.54 ± 58.54
cifar10 / adv2 constant 0.9 135.34 ± 72.96 158.93 ± 57.85
cifar10 / adv2 constant 0.99 3.73 ± 0.14 158.93 ± 57.85
cifar10 / adv2 linear 0.9 159.26 ± 58.17 158.93 ± 57.85
cifar10 / adv2 linear 0.99 158.93 ± 57.03 158.93 ± 57.85
cifar10 / adv2 activation 0.9 159.35 ± 58.24 158.93 ± 57.85
cifar10 / adv2 activation 0.99 158.48 ± 57.92 158.93 ± 57.85

16


	Introduction
	Notation
	Local substitutes
	How to prune the neurons
	How to choose the neurons to prune

	Experiments
	Related Work
	Conclusion
	Theoretical Guaranties
	Runtime and Complexity
	Tables

