
A Appendix

A.1 Getting Started with Predify

Both VGG16 and EfficientNetB0 are converted to predictive coding networks PVGG16 and PEffi-
cientNetB0, using the Predify package. The fastest and easiest way to convert a feedforward network
into its predictive coding version is to use Predify’s text-based interface which supports configuration
files in TOML format.

The current version of Predify assumes that there is no gap between the encoders. Therefore, in
the minimal case, one only needs to provide a list of sub-module names in the target feedforward
network. Then, Predify takes care of the rest by converting each of them into an encoder and assigning
default decoders. More precisely, let x and y denote the input and output of a layer (or complex
sub-module, potentially including multiple layers) that is selected to be an encoder (en). If x and y
respectively have the size (cin, hin, win) and (cout, hout, wout); then, the default decoder’s structure
that predicts this encoder (dn+1) is a 2D upscaling operation by the factor of (hin/hout, win/wout)
followed by a transposed convolutional layer with cout channels and 3× 3 window size. The values
of hyperparameters will be set to βn = 0.3, λn = 0.3, and αn = 0.01

In Predify, each encoder (en) and the decoder that uses its output to predict the activity of the encoder
below (dn−1) is called a PCoder. To verify the functionality of Predify’s default settings, we applied
it for PEfficientNetB0 used in this work. Here is the corresponding minimal configuration file:
name = "PEfficientNetB0"

input_size = [3 ,224 ,224]
gradient_scaling = true
shared_hyperparameters = false

[[pcoders]]
module = "act1"
[[pcoders]]
module = "blocks [0]"
[[pcoders]]
module = "blocks [1]"
[[pcoders]]
module = "blocks [2]"
[[pcoders]]
module = "blocks [3]"
[[pcoders]]
module = "blocks [4]"
[[pcoders]]
module = "blocks [5]"
[[pcoders]]
module = "blocks [6]"

One can easily override the default setting by providing all the details for a PCoder. Here is the
configuration corresponding to the PVGG16 used in this work:
imports = [
"from torch.nn import Sequential , ReLU , ConvTranspose2d",
]

name = "PVGG16"

input_size = [3, 224, 224]
gradient_scaling = true
shared_hyperparameters = false

[[pcoders]]
module = "features [3]"
predictor = "ConvTranspose2d (64, 3, kernel_size =(5, 5), stride =(1, 1),

padding =(2, 2))"
hyperparameters = {feedforward =0.2, feedback =0.05, pc =0.02}

16

[[pcoders]]
module = "features [8]"
predictor = "Sequential(ConvTranspose2d (128, 64, kernel_size =(10, 10),

stride =(2, 2), padding =(4, 4)), ReLU(inplace=True))"
hyperparameters = {feedforward =0.4, feedback =0.1, pc =0.05}

[[pcoders]]
module = "features [15]"
predictor = "Sequential(ConvTranspose2d (256, 128, kernel_size =(14, 14)

, stride =(2, 2), padding =(6, 6)), ReLU(inplace=True))"
hyperparameters = {feedforward =0.4, feedback =0.1, pc =0.008}

[[pcoders]]
module = "features [22]"
predictor = "Sequential(ConvTranspose2d (512, 256, kernel_size =(14, 14)

, stride =(2, 2), padding =(6, 6)), ReLU(inplace=True))"
hyperparameters = {feedforward =0.5, feedback =0.1, pc =0.0024}

[[pcoders]]
module = "features [29]"
predictor = "Sequential(ConvTranspose2d (512, 512, kernel_size =(14, 14)

, stride =(2, 2), padding =(6, 6)), ReLU(inplace=True))"
hyperparameters = {feedforward =0.6, feedback =0.0, pc =0.006}

The network configuration files (in TOML format) are available to download on GitHub5.

A.2 Network Architectures

VGG16 consists of five convolution blocks and a classification head. Each convolution block contains
two or three convolution+ReLU layers with a max-pooling layer on top. For each en in PVGG16, we
selected the max-pooling layer in block n− 1 and all the convolution layers in block n of VGG16
(for n ∈ {1, 2, 3, 4, 5}) as the sub-module that provides the feedforward drive. Afterwards, to predict
the activity of each en, a deconvolution layer dn is added which takes the en+1 as the input. Here,
deconvolution kernel sizes are set by taking the increasing receptive field sizes into account.

In the case of PEfficientNetB0, we used PyTorch implementation of EfficientNetB0 provided in
https://github.com/rwightman/pytorch-image-models. This implementation of Efficient-
NetB0 consists of eight blocks of layers (considering the first convolution and batch normalization
layers as a separate block). Similar to PVGG16, we convert each of these blocks into an encoder (en)
and add deconvolution layers accordingly. This time we set the kernel size of all deconvolution layers
to 3x3 and use upsampling layers to compensate the shrinkage of layer size through the feedforward
pathway (i.e. Predify’s default setting).

Table S1 summarizes PVGG16’s architecture. Moreover, the hyperparameter values are provided in
Tables S2 and S3.

5https://github.com/bhavinc/predify2021

17

https://github.com/rwightman/pytorch-image-models
https://github.com/bhavinc/predify2021

Table S1: Architectures of ens and dns for PVGG16 and PEfficientNetB0. Conv (channel, size, stride),
MaxPool (size, stride), Deconv (channel, size, stride), Upsample (scale_factor), BN is BatchNorm,
[]+ is ReLU, and []∗ is SiLU. EfficientBlock corresponds to each block in PyTorch implementation
of EfficientNetB0.

PVGG16 PEfficientNetB0
Input Size: 3x224x224 Input Size: 3x224x224

en dn−1 en dn−1

PCoder1

[
Conv (64, 3, 1)

]
+[

Conv (64, 3, 1)
]
+

Deconv (3, 5, 1) [BN (Conv (32, 3, 2))]∗
Upsample (2)

Deconv (3, 3, 1)

PCoder2
MaxPool (2, 2)[

Conv (128, 3, 1)
]
+[

Conv (128, 3, 1)
]
+

[
Deconv (64, 10, 2)

]
+ EfficientBlock0 Deconv (32, 3, 1)

PCoder3

MaxPool (2, 2)[
Conv (256, 3, 1)

]
+[

Conv (256, 3, 1)
]
+[

Conv (256, 3, 1)
]
+

[
Deconv (128, 14, 2)

]
+ EfficientBlock1 Upsample (2)

Deconv (16, 3, 1)

PCoder4

MaxPool (2, 2)[
Conv (512, 3, 1)

]
+[

Conv (512, 3, 1)
]
+[

Conv (512, 3, 1)
]
+

[
Deconv (256, 14, 2)

]
+ EfficientBlock2 Upsample (2)

Deconv (24, 3, 1)

PCoder5

MaxPool (2, 2)[
Conv (512, 3, 1)

]
+[

Conv (512, 3, 1)
]
+[

Conv (512, 3, 1)
]
+

[
Deconv (512, 14, 2)

]
+ EfficientBlock3 Upsample (2)

Deconv (40, 3, 1)

PCoder6 - - EfficientBlock4 Deconv (80, 3, 1)

PCoder7 - - EfficientBlock5 Upsample (2)
Deconv (112, 3, 1)

PCoder8 - - EfficientBlock6 Deconv (192, 3, 1)

A.3 Execution Time

Since we used a variable number of GPUs for the different experiments, an exact execution time
is hard to pinpoint. Briefly, depending on the number of timesteps, analysing mCE scores and
adversarial attacks on PEfficientNetB0 took around 15-20 hours on an NVIDIA TitanV gpu. These
numbers were about three to four times higher for experiments on PVGG16. For both the networks,
training the feedback weights on the ImageNet dataset generally finished before 5 epochs, which took
approximately 7-8 hours for a single GPU.

A.4 Gradient Scaling

In our dynamics, the error (εn−1) is defined as a scalar quantity whose gradient is taken with respect
to the activation of the higher layer (en). That is,

∇εn−1 =


∂εn−1

∂e1n
...

∂εn−1

∂eLn

 (4)

where L denotes the number of elements in en. The partial derivative with respect to ejn can then be
written as,

∂εn−1

∂ejn
=

1

K

K∑
i

∂(ein−1 − din−1)2

∂ejn
(5)

(6)

where K is the number of elements in en−1 (= channels x width x height). Equation 5 highlights how
the dimensionality of the prediction (equivalently the error term) affects the gradients, scaling them
down by a factor K.

18

This can be easily seen by supposing that the gradients with respect to ejn are i.i.d normally distributed
around 0 with standard deviation σ,

∂(ein−1 − din−1)2

∂ejn
∼ N (0, σ2) (7)

K∑
i

∂(ein−1 − din−1)2

∂ejn
∼ N (0,Kσ2) (8)

Thus,

∂εn−1

∂ejn
=

1

K

K∑
i

∂(ein−1 − din−1)2

∂ejn
∼ N (0,

σ2

K
) (9)

This scaling is further troublesome in DCNs, where most gradients are zero since they are not part of
the receptive field of the element ejn. Hence assuming that there are only C elements (kernel*channels)
that are part of the receptive field of ejn,

K∑
i

∂(ein−1 − din−1)2

∂ejn
=

C∑
i

∂(ein−1 − din−1)2

∂ejn
∼ N (0, Cσ2) (10)

Hence,

∂εn−1

∂ejn
=

1

K

C∑
i

∂(ein−1 − din−1)2

∂ejn
∼ N (0,

Cσ2

K2
) (11)

We use Equation 11 to, at least partly, counteract this effect due to the dimensionality of the prediction
errors. We multiply the gradient by a factor of

√
K2/C to scale them in a way that is more comparable

across layers, and thus apply a more meaningful step size for correcting the errors.

A.5 Prior work: PCNs

To better understand the model proposed by Wen et al. [22] and its differences to ours, we conducted
several experiments using the code that they provided, and report here our most compelling observa-
tions. A first striking shortcoming was that the accuracy of their feedforward baseline was far from
optimal. Using their code, with relatively minor tweaks to the learning rate schedule, we were able
to bring it up from ~60% to 70% – just a few percentage points below their recurrent network. We
expect that this could be further improved with a more extensive and systematic hyperparameter
search. In other words, their training hyperparameters appeared to have been optimised for their
predictive coding network, but not – or not as much – for their feedforward baseline. We further
found that a minor change to the architecture - using group normalisation layers after each ReLU –
leads to a feedforward network which performs on par with the recurrent network, with a mean over
6 runs of 72% and best of 73%. Adding the same layers to the recurrent network did not lead to a
corresponding improvement in accuracy.

We also found that the network had poor accuracy (underperforming the optimized feedforward
baseline) until the final timestep, as can been seen in Figure S1b. This can be clarified by a closer
reading of Figure 3 of their paper: the reported improvements over cycles from 60% at timestep 0 to
more than 70% at timestep 6 are for seven distinct networks, each evaluated only at the timestep they
were trained for. So in fact, in their model the predictive coding updates do not gradually improve on
an already reasonably guess. This is clearly not biologically plausible: visual processing would be
virtually useless if the correct interpretation of a scene only crystallised after a number of “timesteps”.
By the time a person has identified an object that object is likely to have disappeared or, in a worst

19

0 6
Timesteps

100

101

102

103

104

M
ea

n
sq

ua
re

d
di

st
an

ce

(a) Reconstruction error over
timesteps

0 6
Timesteps

1.2

72.4

A
cc
u
ra
cy

PCN
feedforward

(b) Accuracy over timesteps
on CIFAR100 testset

Figure S1: PCN: Panel (a) shows the reconstruction errors of the model over timesteps. It does not
decrease over timesteps, as would be expected in a predictive coding system. Panel (b) depicts the
accuracy of the model on the CIFAR100 test dataset. The model performs at chance level at early
timesteps and then becomes better in the last few timesteps.

case scenario, eaten them. We also experimented with feeding the classification error at each timestep
into an aggregate loss function, but this lead to a network which, while performing well, essentially
did not improve over timesteps.

Figure S1a shows that the network does not uniformly minimise reconstruction errors over time for
all layers, and thus is not performing correct predictive coding updates. In fact the total reconstruction
error (across all layers) increases exponentially over timesteps. There are a number of possible
explanations for this. Firstly, in the case of the network with untied weights, the authors choose
to make a strong assumption in the update equations (seen as the equivalence of their Equations 5
and 6): that the feedback weights can be assumed to be the transpose of the feedforward weights,
i.e. W b = (W f)T . They thus propagate the feedforward error through the feedforward weights.
However, it might be that the network learns feedback weights which essentially invert the feedforward
transformation as assumed, but this is not guaranteed, and nor is it explicitly motivated through the
classification loss function. Indeed, because the network is not motivated to learn a representation at
earlier timesteps which produces a good prediction, it does not necessarily need to learn the inverse
transformation: it can instead learn some other transformation which, when applied with the update
equations, leads the network to end up in the right place. That being said, this assumption is valid for
the network with tied weights, and this network also does not uniformly reduce reconstruction error
over timesteps. Possibly, the presence of ReLU non-linearities means that the forward convolution
may still not be perfectly invertible by a transposed convolution. Finally, in line with this unexpected
increase of reconstruction errors over time, we have also failed to extract good image reconstructions
from the network as seen in Figure 5 of their paper, although in private communication the authors
indicated that this was possible with some other form of normalisation.

In short, while the ideas put forward in [22] share similarities with our own, their exact implementation
did not support the claims of the authors, and the question of whether predictive coding can benefit
deep neural networks remained an open one. We hope that our approach detailed in the present study
can help resolve this question.

20

A.6 Comparing with Rao and Ballard

This section aims to start from the equations initially provided in Rao and Ballard [24] and compare
them to ours. The parallels drawn will help to highlight the similarities and the differences between
both the approaches.

Rao and Ballard consider a two-layer system, and start with the assumption that the brain possesses a
set of internal causes, denoted as r (in matrix notation), that it uses to predict the visual stimulus, for
example an input image I, such that

I ≈ f(Ur) (12)

where f(.) is some nonlinear activation function. This r can be equalled to encoding layer e1 in our
equations, with I being the input image e0 or its reconstruction d0. U here, represents the top-down
weight matrix (equivalent to W b

1,0) that helps to make a prediction about the input image. That is,

I ≈ f(Ur) ≡ e0 ≈ d0 =W b
1,0e1 (13)

In this two-layer hierarchical architecture, r itself is predicted by the higher layer rh using the weight
matrix Uh, equivalent to how e1 is predicted by e2 using W b

2,1 in our model. This prediction denoted
as rtd in Rao and Ballard’s original implementation can be equalled to d1 in our equations.

rtd = f(Uhrh) ≡ d1 =W b
2,1e2 (14)

The errors made in making the predictions are defined, like ours, as the mean squared distance,

ε0 = (I− f(Ur))T (I− f(Ur)) (15)

ε1 = (r− rtd)T (r− rtd) (16)

Please note that differentiating the prediction error ε0 with respect to r (similar to taking the gradient
of εn−1 with respect to en as done in our error-correction term) gives us,

∇ε0 = −2UT ∂f

∂Ur

T

(I− fUr) (17)

= −kUT (I− f(Ur)) (18)

which will be useful later.

As per the predictive coding theory, the brain tries both to learn parameters (U and Uh) over a dataset
of natural inputs, and tries to modify its neural activations (r and rh) over time given a particular
input, in such a way as to minimize the total error E, defined as:

E = a · (I− f(Ur))T (I− f(Ur))︸ ︷︷ ︸
ε0

+b · (r− rtd)T (r− rtd)︸ ︷︷ ︸
ε1

(19)

Here a and b act as constants that weigh the errors in this two-level hierarchichal network. Equation 19
is reflected as Equation 4 on Page 86 of the original paper [24]. The original implementation also
contains terms that account for the prior probability distributions of r and U ; these terms can be
equated to regularization terms, and thus we omit them for the sake of simplicity.

Equation 19 represents the overall error, calculated as sum of the mean squared errors across the
hierarchy of the network. It should be noted that we use this same objective function (−E) to train
the feedback weights of our networks.

21

As stated above, the predictive coding dynamics aim to modify neural representations r so as to
minimize the error E, i.e., differentiating the above equation:

dr

dt
= −∂E

∂r
= a · UT ∂f

T

∂Ur
(I− f(Ur)) + b · (rtd − r) (20)

Barring a regularization term, the above equation is equivalent to Equation 7 on page 86 of [24]. One
can see that the first term in the RHS of equation 20 can be substituted with our error-correction term
∇ε0 (see Eq. 18). Hence, Equation 20 after simultaneously expanding the LHS becomes,

r(t+ dt)− r(t)

dt
= −a1 · ∇εr(t) + b · (rtd(t)− r(t)) (21)

We use subscript r for ε to emphasize that this error can be calculated at any level/stage r represents in
a multi-layer hierarchical system, and is not restricted to just the first layer of the hierarchy. Similarly,
the time resolution dt can be equated to 1 timestep (of arbitrary duration) for simulations. Hence,
rearranging the equation further,

r(t+ 1) = b · rtd(t)︸ ︷︷ ︸
feedback

+(1− b)r(t)︸ ︷︷ ︸
memory

− a1∇εr(t)︸ ︷︷ ︸
error−correction

(22)

In the above equation, the first term corresponds to our feedback term, the second term corresponds
to our memory term and the last term corresponds to our feedforward error-correction term. That is,
exchanging constants to match our notation:

r(t+ 1) = feedforward︸ ︷︷ ︸
feedforward

+λ · rtd(t)︸ ︷︷ ︸
feedback

+(1− λ)r(t)︸ ︷︷ ︸
memory

− a1∇εr(t)︸ ︷︷ ︸
error−correction

(23)

This can be directly compared to our main Equation 2.

Equation 23 also highlights the fact that our approach has an extra feedforward term that is not
present in the original Rao and Ballard proposal. We believe that such a modification allows for
rethinking the role of error-correction in network dynamics; where error-correction constituted the
predominant mode of feed-forward communication in the Rao and Ballard implementation, it plays a
more supporting role in our implementation, iteratively correcting the errors made by the feedforward
convolutional layers. We empirically found that the feedforward term helped to improve the stability
of the training. Interestingly, a common criticism of predictive coding lies in its inability to explain
the dominance of feedforward brain activity compared to prediction error signals [17, 18]. We believe
that our proposed implementation allows for a flexible modulation of these two terms, and thus
systematic investigation of these factors–as done in [63].

From a practical perspective, we expect that our framework can be readily used by both proponents
and opponents of the predictive coding theory. Setting the feedforward term β equal to zero produces
a pure predictive coding network as proposed in Rao and Ballard [24]. Alternatively, one can set the
error-correction term α equal to zero to study a bidirectional network with feedback and feedforward
drives, in the style of Heeger [25]. The framework has been implemented such that the basic
update rule (as class Pcoder in the package) is easily adaptable, allowing one to try other complex
interactions between these terms; for example, one could easily include multiplicative interactions
between feedback and feedforward terms to emulate forms of biased competition (see [40, 66]).

22

A.7 Tuning hyperparameters

In addition to the fixed set of hyperparameters used in our initial experiments (Figures 2, 3a and 4),
we also experimented with optimizing our hyperparameters. To tune the hyperparameters for the
models, we applied two different strategies for both the models–tuning hyperparameters for the whole
network vs tuning hyperparameters for each pcoder separately. After a few initial explorations on
clean images, we discovered that the hyperparameters dictate where the network dynamics converge,
and consequently its performance for noisy situations. This effect is characterized and investigated
thoroughly in [63]. Thus, in this study, we decide to use gaussian noise of standard deviation 0.5 to
tune the hyperparameters and test it on all other types of noises from the ImageNet-C dataset.

For PVGG16, we start by fixing the value of alpha for each layer to zero and only search for βn’s
and λn’s. We calculate the average cross-entropy loss for 4 timesteps on 2000 images and use it as a
metric for choosing the hyperparameters. The hyperparameters chosen are as follows :

Table S2: Values of the Hyperparameters
n βn λn αn

1 0.2 0.05 0.01
2 0.4 0.10 0.01
3 0.4 0.10 0.01
4 0.5 0.10 0.01
5 0.6 0.00 0.01

For PEfficientNetB0, we take a different approach. Instead of the whole network, we start by
finetuning each pcoder using the same metric (average crossentropy for 4 timesteps) on 4050 images.
We then combine all hyperparameters found for each pcoder. The hyperparameters chosen are as
follows :

Table S3: Values of the Hyperparameters
n βn λn αn

1 0.77 0.08 0.01
2 0.76 0.11 0.01
3 0.83 0.03 0.01
4 0.94 0.01 0.01
5 0.73 0.25 0.01
6 0.81 0.01 0.01
7 0.85 0.10 0.01
8 1.0 0.00 0.01

We then, calculate the mCE scores using all the 19 noises for both the networks. The CE scores for
each noise are shown below :

23

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

brightness

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

contrast

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

defocus_blur

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

elastic_transform

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

fog

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

frost

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

gaussian_blur

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

gaussian_noise

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

glass_blur

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

impulse_noise

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

jpeg_compression

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

motion_blur

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

pixelate

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

saturate

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

shot_noise

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

snow

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

spatter

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

speckle_noise

0 2 4
Timesteps

0.98

1.01

CE
 sc

or
e

zoom_blur

Figure S2: PVGG16 (optimised) Corruption Error (CE) scores for all distortions: The panel
shows the CE scores calculated on the distorted images provided in the ImageNet-C dataset. The
values are normalized with the CE score obtained for the feedforward VGG. The error bars denote the
standard deviation of the means obtained from bootstrapping (resampling multiple binary populations
across all severities.)

24

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

brightness

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

contrast

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

defocus_blur

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

elastic_transform

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

fog

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

frost

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

gaussian_blur

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

gaussian_noise

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

glass_blur

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

impulse_noise

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

jpeg_compression

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

motion_blur

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

pixelate

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

saturate

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

shot_noise

0 10
Timesteps

0.94

1.03
CE

 sc
or

e
snow

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

spatter

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

speckle_noise

0 10
Timesteps

0.94

1.03

CE
 sc

or
e

zoom_blur

Figure S3: PEfficientNetB0 (optimised) Corruption Error (CE) scores for all distortions: The
panel shows the CE scores calculated on the distorted images provided in the ImageNet-C dataset.
The values are normalized with the CE score obtained for the feedforward EfficientNetB0. The error
bars denote the standard deviation of the means obtained from bootstrapping (resampling multiple
binary populations across all severities.)

25

A.8 mCE scores of the optimized networks using AlexNet as a baseline

0 4
Timesteps

0.884

0.893

m
CE

 sc
or

es

 (w
.r.

t A
le

xN
et

)

PVGG
 (optimized)

0 10
Timesteps

0.682

0.694

m
CE

 sc
or

es

 (w
.r.

t A
le

xN
et

)

PEfficientNetB0
 (optimized)

Figure S4: The mCE scores of the optimized networks (as shown in Figure 3) normalized using the
score of the AlexNet network. Instead of normalizing using the score for the feedforward version of
our recurrent network, to facilitate comparison with other works, we here normalize the scores using
the score obtained for AlexNet network.

0 4
Timesteps

0.912

0.923

Re
la

tiv
e

m
CE

 (w

.r.
t A

le
xN

et
)

PVGG
 (optimized)

0 10
Timesteps

0.7

0.715

Re
la

tiv
e

m
CE

 (w

.r.
t A

le
xN

et
)

PEfficientNetB0
 (optimized)

Figure S5: The Relative mCE scores of the optimized networks (as shown in Figure 3) normalized
using the score of the AlexNet network. As suggested by [8], we use Relative mCE score which
accounts for the changing baseline accuracy on the clean images over timesteps.

A.9 mCE scores of a predified robust network

We also incorporated our recurrent dynamics in an already robust PEfficientNet network. As a
simple approach, we just used the hyperparameters (α, β and λ) that were optimized for the non-
robust version of PEfficientNEtB0 (on 0.25 gaussian noise) and measured its robustness against
the corruptions in ImageNet-C dataset. We observed that the proposed predictive coding dynamics
further helped in improving the robustness of this already robust network.

1.00

0.996

Timesteps
100

m
C
E

sc
or

es

robust PEfficientNetB0
(optimized)

Figure S6: mCE scores of a predified version of an already robust PEfficientNetB0

26

A.10 Original data for Adversarial Attacks

We provide here the non-baseline corrected versions of the data presented for adversarial attacks in
Figure 4. The panels below show the success rate of the targeted attacks across timesteps calculated
on 1000 images. The perturbations allowed (ε) and the type of attack are denoted at the top.

0 4
Timesteps

1.7

2.2

Su
cc

es
s r

at
e

of
 th

e
at

ta
ck

 (%
) LinfBIM20steps : = 0.001

0 4
Timesteps

52.4

56.3

Su
cc

es
s r

at
e

of
 th

e
at

ta
ck

 (%
) LinfBIM20steps : = 0.003

0 4
Timesteps

89.6

90.4

Su
cc

es
s r

at
e

of
 th

e
at

ta
ck

 (%
) LinfBIM20steps : = 0.005

Figure S7: L∞BIM attacks on PVGG16 network

0 8
Timesteps

24.2

27.6

Su
cc

es
s r

at
e

of
 th

e
at

ta
ck

 (%
) LinfBIM20steps : = 0.003

0 8
Timesteps

44.9

52.6

Su
cc

es
s r

at
e

of
 th

e
at

ta
ck

 (%
) LinfBIM20steps : = 0.004

0 8
Timesteps

63.7

73.5

Su
cc

es
s r

at
e

of
 th

e
at

ta
ck

 (%
) LinfBIM20steps : = 0.005

0 8
Timesteps

95.3

97.6

Su
cc

es
s r

at
e

of
 th

e
at

ta
ck

 (%
) LinfBIM20steps : = 0.01

Figure S8: L∞BIM attacks on PEfficientNetB0 network

0 4
Timesteps

34.2

38.0

Su
cc

es
s r

at
e

of
 th

e
at

ta
ck

 (%
) L2PGD100steps : = 0.7

0 4
Timesteps

45.3

49.7

Su
cc

es
s r

at
e

of
 th

e
at

ta
ck

 (%
) L2PGD100steps : = 0.8

0 4
Timesteps

56.1

60.5

Su
cc

es
s r

at
e

of
 th

e
at

ta
ck

 (%
) L2PGD100steps : = 0.9

0 4
Timesteps

65.1

72.9

Su
cc

es
s r

at
e

of
 th

e
at

ta
ck

 (%
) L2PGD100steps : = 1.0

Figure S9: L2RPGD attacks on PEfficientNetB0 network

Timesteps
0 4

Timesteps
0 4

Timesteps
0 4

S
uc

ce
ss

 r
at

e
of

 t
he

 a
tt

ac
k

(%
)

LinfHopSkipJump : = 0.05 LinfHopSkipJump : = 0.1 LinfHopSkipJump : = 0.3

14

17 75

68

99

98

Figure S10: L∞ HopSkipJump attacks on PEfficientNetB0

27

epsilons

PVGG16 PEfficientNetB0

L∞ BIM L2 RPGD
PEfficientNetB0 PEfficientNetB0

L∞ HopSkipJump

epsilons epsilons epsilons

N
u
m

b
er

 o
f
im

ag
es

 w
it
h

su
cc

es
sf

u
l
at

ta
ck

s 1000

0

1000

0

100

0

Timesteps
0
2
4

0

700

10-3 10-2 10-3 10-2 10.3 0.4 0.6 10-1

Figure S11: Adversarial Attacks with respect to epsilons. Here we show the number of successful
attacks on 1000 (100 for HopSkipJump) images. Increasing the size of the epsilon leads to increase
in the success rate of the attack as expected. As predictive coding timesteps increase, the curves shift
slightly to the right, meaning that a slightly larger perturbation is required to fool the network. This
robustness is more easily seen on Figure 4, where ε values are sampled near each curve’s inflection
point.

28

A.11 Absolute values of the plots shown in the main text

Noise Level PVGG16 PEfficientNetB0

Accuracy at t=0 Accuracy at t=15 Accuracy at t=0 Accuracy at t=15
σ = 0.00 71.63 71.47 77.29 75.35
σ = 0.50 35.61 38.59 57.66 56.24
σ = 0.75 16.69 18.46 37.11 41.05
σ = 1.00 5.59 7.05 17.03 23.59

Table S4: Accuracy on gaussian noise-corrupted images. Here we show the accuracy obtained on
images corrupted using gaussian noise (at t=0) as shown in figure 2a. All the values are calculated on
the corrupted versions of the ImageNet validation dataset.

Noise Level PVGG16 PEfficientNetB0

MSE at t=0 MSE at t=15 MSE at t=0 MSE at t=15
σ = 0.00 0.224 0.220 0.186 0.184
σ = 0.25 0.342 0.324 0.223 0.222
σ = 0.50 0.518 0.485 0.303 0.302
σ = 0.75 0.705 0.660 0.394 0.392
σ = 1.00 0.898 0.842 0.486 0.482
σ = 2.00 1.689 1.587 0.848 0.834

Table S5: MSE distances for reconstructions on noisy images. Here we show the MSE distances
obtained between the noisy images corrupted using gaussian noises and the reconstructions made by
the models as shown in Figure 2b.

Timesteps

0 15

Timesteps

0 15

Timesteps

0 15

Timesteps

0 15

Timesteps

0 15

Timesteps

0 15

C
or

re
la

ti
on

 D
is

ta
n
ce 0.7

0.2

0.825

0.65

0.5

0.1

0.56

0.42

0.25

0.05

0.34

0.22

Encoder 1 Encoder 4 Encoder 5 Encoder 6 Encoder 7 Encoder 8Encoder 2 Encoder 3

Noise =0.25

PEfficientNetB0PVGG16

Noise =0.5 Noise =1.0 Noise =0.5 Noise =1.0Noise =0.25

Figure S12: Correlation distances for representations obtained on noisy images: Here we show
the absolute correlation distances obtained between clean and noisy representations as shown in
Figure 2d in the main text.

29

