
Published as a conference paper at ICLR 2025

LEARNING TO SEARCH FROM DEMONSTRATION
SEQUENCES

Dixant Mittal1,2 Liwei Kang1 Wee Sun Lee1

1National University of Singapore
2 Moovita
{dixant,kang,leews}@comp.nus.edu.sg

ABSTRACT

Search and planning are essential for solving many real-world problems. How-
ever, in numerous learning scenarios, only action-observation sequences, such as
demonstrations or instruction sequences, are available for learning. Relying solely
on supervised learning with these sequences can lead to sub-optimal performance
due to the vast, unseen search space encountered during training. In this paper, we
introduce Differentiable Tree Search Network (D-TSN), a novel neural network
architecture that learns to construct search trees from just sequences of demon-
strations by performing gradient descent on a best-first search tree construction
algorithm. D-TSN enables the joint learning of submodules, including an encoder,
value function, and world model, which are essential for planning. To construct
the search tree, we employ a stochastic tree expansion policy and formulate it
as another decision-making task. Then, we optimize the tree expansion policy
via REINFORCE with an effective variance reduction technique for the gradient
computation. D-TSN can be applied to problems with a known world model or to
scenarios where it needs to jointly learn a world model with a latent state space. We
study problems from these two scenarios, including Game of 24, 2D grid navigation,
and Procgen games, to understand when D-TSN is more helpful. Through our ex-
periments, we show that D-TSN is effective, especially when the world model with
a latent state space is jointly learned. The code is available at https://github.
com/dixantmittal/differentiable-tree-search-network.

1 INTRODUCTION

Search and planning are critical components in a wide range of complex tasks. It has long been
important in areas such as robotics and games (Mohanan & Salgoankar, 2018; Duarte et al., 2020),
and has recently gained prominence in the area of large language models as inference-time solutions
for improving reasoning and agentic abilities (Yao et al., 2023; Hao et al., 2023; Zhou et al., 2024).
In many of these domains, step-by-step demonstrations are available in the form of recorded expert
demonstrations, medical treatment records, and instruction/solution manuals. However, constructing
a search tree would require data that is not directly available from the demonstration sequences – this
can be impractical or very expensive to obtain. Hence, it would be desirable to learn to search from
only demonstration sequences.

Search and planning can be effectively executed if a simulator or a world model is available. When
such a world model is not available, we may learn the world model and then use it for these pur-
poses (Kaiser et al., 2020; Hafner et al., 2020; Ha & Schmidhuber, 2018). However, when separately
learned from demonstration sequences, such world models often suffer from compounding errors,
and cannot cover the complete state space. Using such world models for search can be unreliable,
particularly if the search expands into parts of the space that are not seen during training (Asadi et al.,
2018).

One way to increase the reliability of the world model is to perform end-to-end learning (Farquhar
et al., 2018), where the world model is trained with the search algorithm. One of the advantages of
end-to-end learning is that the search algorithm will learn to avoid going into states where the world
model is inaccurate since this would result in lower performance. We begin by showing that, when
the search tree has a fixed structure, the loss function for training is continuous with respect to the

1

https://github.com/dixantmittal/differentiable-tree-search-network
https://github.com/dixantmittal/differentiable-tree-search-network

Published as a conference paper at ICLR 2025

model parameters, justifying the use of a fixed-structure search tree with gradient-based learning
methods. However, if the search tree structure can change during training, the loss function may no
longer be continuous. This is because a small change in parameters could result in the construction of
a different search tree and bring a large change in the corresponding loss function. To alleviate this
issue, we propose employing a stochastic tree expansion policy and optimizing the expected loss,
ensuring the continuity of loss function in the parameter space.

We further propose formulating the search tree expansion as another decision-making task with the
goal of minimizing the prediction error progressively during the tree expansion and refining the
tree expansion policy via REINFORCE (Williams, 1992). The use of the REINFORCE algorithm
introduces another challenge; REINFORCE usually has high variance in its gradient estimates. To
handle that, we propose the use of a baseline for variance reduction, adopting the telescoping sum
trick used in Guez et al. (2018) for constructing the baseline.

Employing these techniques allows us to train a novel neural network, Differentiable Tree Search
Network (D-TSN), that embeds the structure of a best-first search algorithm into its architecture.
D-TSN can use a simulator or world model, if available, to learn to perform search. We study this
scenario by fine-tuning a large language model to play the Game of 24 (Yao et al., 2023). D-TSN can
also be used in more difficult scenarios where the world model is not available and only sequences
of demonstrations are provided. We study two problems in this scenario, a small-scale 2D grid
navigation problem and Procgen games (Cobbe et al., 2020) which are substantially more complex.
Through our experiments, we show that end-to-end learning for doing search and planning from only
sequences of demonstrations is possible and useful, especially when the world model needs to be
jointly learned.

2 RELATED WORKS

Search and planning are crucial in various domains. For example, in language model reasoning,
recent works integrated search algorithms to enhance the reasoning capabilities of language models.
These techniques employ in-context queries (Yao et al., 2023; Xie et al., 2023; Hao et al., 2023; Zhou
et al., 2024) or additional value heads (Liu et al., 2023) to guide the search process during inference,
enhancing model’s reasoning ability by looking at different possible solutions. In gaming, notable
successes (Silver et al., 2016; Schrittwieser et al., 2020; Nasiriany et al., 2019) have combined deep
neural networks with search algorithms to achieve superhuman performance.

One line of recent works has focused on embedding search inductive bias into network architectures.
Neural Admissible Relaxation (NEAR) (Shah et al., 2020) develops approximately admissible heuris-
tics for the A* algorithm. Neural A* Search (Yonetani et al., 2021) integrates the A* algorithm into
network structures, learning a cost function from a gridworld map. Similarly, MCTSnets (Guez et al.,
2018) incorporate the framework of Monte Carlo Tree Search (MCTS) into network architectures,
guiding the search using parameterized memory embeddings stored in a tree structure. However,
these methods rely on a known world model for planning, which limits their application when the
world model is unknown. Another notable work, TreeQN (Farquhar et al., 2018), incorporates search
inductive bias into the network by fully expanding a search tree to a fixed depth while jointly learning
a world model, which allows it to tackle problems where the world model is unknown. However, the
full expansion mechanism of TreeQN leads to a shallow search tree, which limits its application in
complex problems with longer trajectories.

Our setting of learning from sequences of demonstrations is closely related to Offline Reinforcement
Learning (Prudencio et al., 2024; Levine et al., 2020), where an agent learns its policy solely from
a fixed dataset of experiences without further interactions with the environment. The Offline-RL
paradigm is appealing in many real-world applications such as education, healthcare, and robotics,
where active data collection is often infeasible (Singh et al., 2022; Singla et al., 2021; Liu et al.,
2019). In our work, we develop a method that learns to search in an end-to-end fashion solely from
sequences of demonstrations, such as text solutions to reasoning problems and expert trajectories on
navigation and games.

3 DIFFERENTIABLE TREE SEARCH NETWORK

Differentiable Tree Search Network (D-TSN) is a neural network design that incorporates the
algorithmic inductive bias of a best-first search algorithm into the network structure. It learns from
sequences of demonstrations to construct search trees by composing submodules, that include an

2

Published as a conference paper at ICLR 2025

encoder, a value function, a reward function, and a transition function. If some submodules are
readily available, e.g. a world model or simulator, they can be directly used in D-TSN. When these
submodules are not available, they can be jointly optimized with the search algorithm. This joint
optimization allows the learned imperfect world model to be useful for online search and makes the
submodules robust against errors in the world model. We start by describing the version of D-TSN
where all submodules are learned.

3.1 LEARNABLE SUBMODULES

D-TSN comprises several learnable submodules that function as subroutines in a best-first search
algorithm and dynamically construct a computation graph. An illustration is provided in Figure 4.
The Encoder module (Eθ) transforms the actual state st into a latent state ht = Eθ(st), facilitating
online search within a latent space. The Transition module (Tθ) approximates the environment’s
transition function, using ht and action at to predict the subsequent latent state, ht+1 = Tθ(ht, at), of
the transition. The Reward module (Rθ) approximates the environment’s reward function, predicting
the reward, rt = Rθ(ht, at), for the transition based on ht and at. The Value module (Vθ) maps latent
state ht to its estimated state value, Vθ(ht). Dividing the network into these submodules reduces
total learnable parameters and injects a strong search inductive bias into the network architecture,
preventing overfitting to an arbitrary function that may align with the limited available training data.

3.2 TREE SEARCH IN LATENT SPACE

The search begins by encoding the input state s0 into its latent state h0, then proceeds through
expansion and backup phases. During expansion, the search tree expands iteratively for a set number
of expansion steps, where each step expands a node in the search tree. During backup, Q-values at the
root node are recursively computed using the Bellman equation across expanded nodes. Each node
represents a latent state reachable from the root, and branches represent actions taken. A candidate
set O is maintained during the expansion phase, representing nodes eligible for further expansion.
The D-TSN algorithm is detailed in Algorithm 1.

Expansion Phase Each search iteration begins by evaluating the path value, V̄ (N), of the candidate
nodes. The path value is defined as the cumulative sum of rewards from the root node to a particular
leaf node N , in addition to the value of the leaf node predicted by the value module (Vθ), i.e.

V̄ (N) = Rθ(h0, a0) + ...+ Vθ(hN) (1)

A naive implementation of the search selects the node N̂ with the highest total path value for
expansion; however, for a differentiable search, the node N̂ is sampled from the candidates using
a distribution constructed by applying softmax over the path values of the candidates. Expansion
of node N̂ is carried out by simulating every action on the node using the transition module (Tθ).
Simultaneously, the associated reward,Rθ(hN̂ , a), is also computed. The resulting latent states are
added to the tree as children of node N̂ . Additionally, they are added to the candidate set O for
subsequent expansions, while N̂ is excluded from the set. This can be represented as:

O ← O ∪ {ha| ha = Tθ(hN̂ , a); ∀a ∈ A} − N̂ (2)

Backup Phase The expansion phase is followed by the Backup phase. In this phase, values of all
tree nodes are recursively updated using the Bellman equation as follows:

Q(N, a) = Rθ(hN , a) + V (N ′), where N ′ = Tθ(hN , a) (3)

V (N ′) =

{
Vθ(hN ′), N ′ is a leaf node
maxa Q(N ′, a), otherwise

(4)

After the backup phase, Q-values at the root node are returned as the final output of the online search.
An illustration of the constructing the tree is shown in Figure 1.

3.3 CONSTRUCTION OF COMPUTATION GRAPH

Throughout the expansion and backup phases, illustrated in Appendix Figures 5 and 6 respectively, a
dynamic computation graph is constructed where the output Q-values depend on the combination of
all the submodules, i.e. Encoder, Transition, Reward, and Value modules. During training, the output

3

Published as a conference paper at ICLR 2025

() = (,)

() = + + ()

Sum of rewards to

Value of leaf state

Sample a leaf node from
softmax((), (), ()) to expand

Expansion

Backup

Value of nodes are updated as maximum
Q value of children nodes

Backup

Expansion

(，) (，) = (,)

= (,)

(,) = + ()(，)

 () = ()

Figure 1: An illustration of the stochastic tree expansion phase and backup phase.

Q-function is evaluated by a loss function and is optimized using gradient-based optimizers such as
Stochastic Gradient Descent (SGD). These optimizers backpropagate the gradient of this loss through
the entire computation graph and update the parameters of submodules in an end-to-end process. An
illustration of the process is provided in Appendix Figure 7.

3.4 DISCONTINUITY OF THE LOSS FUNCTION

A pivotal aspect of optimizing D-TSN’s parameters through gradient descent is ensuring that the
loss function applied to the output Q-values is continuous in the network’s parameter space. We
initiate this discussion by showing that the loss function, when applied to the Q-values computed
by expanding a search tree, is continuous in the parameter space, provided that the search tree has a
fixed structure.
Theorem 3.1. Given a set of parameterized modules that are continuous in the parameter space θ, the
Q-values computed by expanding a search tree with a fixed structure, through the composition of these
modules and backpropagation of child values using addition and max operations, are continuous
in the parameter space θ. When the tree structure is not fixed, the continuity of the Q-values is not
guaranteed. (For a detailed proof, refer to Appendix B.)

Theorem 3.1 establishes that the Q-values calculated by a fixed-structure tree expansion are continuous
in the network’s parameter space. The theorem applies to TreeQN (Farquhar et al., 2018), which
performs a full tree expansion to a fixed depth, and consequently, the loss function applied to its
output Q-values is also continuous, contributing to TreeQN’s success in gradient-based optimization.

However, in the case of naive implementation of D-TSN, as outlined in Section 3.2, the search tree is
constructed by expanding only those paths that are likely to represent the optimal trajectory from the
root node. This results in the output Q-values and the corresponding loss function being dependent
on the specific tree, τ , constructed during the search:

L(s, a) = L(Qθ(s, a|τ)) (5)

When the network parameters are changed slightly, this naive implementation could generate a
different tree structure, which, in turn, would induce a large change in the loss function and affect its
continuity in the parameter space.

3.5 ENABLING CONTINUITY IN THE LOSS FUNCTION

To overcome the discontinuity issue observed in the naive implementation of D-TSN, we employ
a stochastic tree expansion policy. This approach allows us to optimize the expectation of the loss
function, defined as:

L(s, a) = Eτ

[
L(Qθ(s, a|τ))

]
=

∑
τ

πθ(τ)L(Qθ(s, a|τ)) (6)

The expected loss in Equation (6) is continuous in the parameter space θ and can be optimized using
gradient-based optimization techniques.

3.6 STOCHASTIC TREE EXPANSION POLICY

In order to compute the expected loss in Equation (6), let us represent a partial search tree after t
iterations as τt. The output Q-values, denoted as Qθ(s, a|τ), depend on the final tree τ sampled after

4

Published as a conference paper at ICLR 2025

T iterations. We can define a stochastic tree expansion policy πθ(τt) that takes a tree τt as input and
outputs a distribution over the candidate nodes, facilitating stochastic selection of the node for further
expansion and generating the tree τt+1. We compute the stochastic tree expansion policy by taking
softmax over the path value, as defined in Equation (1), of each candidate node as follows:

πθ(n|τt) =
exp(V̄ (n))∑

n′∈O(τt)
exp(V̄ (n′))

(7)

The gradient of the expected loss (Schulman et al., 2015) in Equation (6) can be computed as follows
(See Appendix C for the derivation):

(8)∇θL(s, a) = Eτ

[
L(Qθ(s, a|τ))

T∑
t=1

∇θ log πθ(nt|τt) +∇θL(Qθ(s, a|τ))
]

3.7 REDUCING VARIANCE USING TELESCOPIC SUM

The REINFORCE term of the gradient in Equation (8) usually has high variance due to the difficulty
of credit assignment (Pignatelli et al., 2024) in a reinforcement learning type objective; the second part
of the gradient equation is the usual optimization of a loss function, so we expect it to be reasonably
well behaved. To reduce the variance of the first part of the gradient, we take inspiration from the
telescoping sum trick used in Guez et al. (2018).

Let us denote the loss after t iterations as Lt = L(Qθ(s, a|τt)). The objective is to minimize the loss
after T iterations, represented as LT . Assuming that L0 = 0, we can rewrite LT as a telescoping
sum:

LT = LT − L0 =

T∑
t=1

Lt − Lt−1 (9)

Now, we define a reward term, rt, for selecting node n during the tth iteration as the reduction in
the loss value after the tth iteration, i.e. rt = Lt − Lt−1. Further, let us represent the return (or
rewards-to-go) from iteration t to the final iteration T as Rt, which can be computed as:

Rt =

T∑
i=t

ri = LT − Lt−1 (10)

Given this, the REINFORCE term from Equation (8) can be reformulated as
∑T

t ∇θ log πθ(nt|τt)Rt,
where LT serves as a baseline that helps in reducing variance. Consequently, the final gradient
estimate of the loss in Equation (6) is expressed as:

(11)∇θL(s, a) = Eτ

[T∑
t

∇θ log πθ(nt|τt)Rt +∇θL(Qθ(s, a|τ))
]

For empirical evaluations, we use a single sample estimate Schulman et al. (2015) of the expected
gradient in Equation (11).

3.8 LOSS FUNCTIONS

In this section, we define a series of loss functions that are used to train D-TSN. Given a dataset of
trajectories where each trajectory is denoted as {(si, ai, ri, Qi)}Ti=0, the primary objective is to
make the computed Q-values closely approximate the observed Q-values for corresponding states and
actions. To achieve this, we minimize the mean squared error between the predicted and observed
Q-values. This loss, denoted as LQ, is defined as:

LQ = E(s,a,Q)∼D(Qθ(s, a)−Q)2 (12)

To avoid Q-values for out-of-distribution actions getting overestimated, we incorporate the CQL (Ku-
mar et al., 2020) loss, which encourages the agent to adhere to actions observed within the training
data distribution. This loss, LD, is defined as:

LD = E(s,a)∼D

(
log

∑
a′

exp(Qθ(s, a
′))−Qθ(s, a)

)
(13)

5

Published as a conference paper at ICLR 2025

Additionally, we incorporate self-supervised consistency loss functions (Schwarzer et al., 2021; Ye
et al., 2021) to ensure consistency in the transition and reward networks. Consider actual states si
and si+1, where si+1 is obtained by taking action ai in state si. Their corresponding latent state
representations are denoted as hi and hi+1. Here, hi = Eθ(si) and hi+1 = Eθ(si+1). Now, we
can use the transition module to predict another latent representation of state si+1, represented as
h̄i+1 = Tθ(hi, ai). To ensure that the transition function, Tθ, provides consistent predictions for the
transitions in the latent space, we minimize the squared error between the latent representations hi+1

and h̄i+1.
LTθ

= E(si, ai, si+1)∼D(h̄i+1 − hi+1)
2 (14)

In a similar vein, we minimize the mean squared error between the predicted rewardRθ(hi, ai) and
the actual reward observed ri in the training dataset D.

LRθ
= E(si, ai, ri)∼D(Rθ(hi, ai)− ri)

2 (15)

Combining Equations (12), (13), (14) and (15), we define the loss function for training D-TSN as

LD-TSN = Eτ

[
λ1LQ + λ2LD

]
+ λ3LTθ

+ λ4LRθ
(16)

where τ denotes the search tree. Additional details on these loss functions are presented in Ap-
pendix D.4.

4 EXPERIMENTS

4.1 D-TSN WITH KNOWN WORLD MODEL

We take an initial step towards learning to perform tree search from instruction sequences for LLMs
by first demonstrating that LLMs can be effectively fine-tuned when the world model is known. We
study Game of 24 (Yao et al., 2023), a reasoning problem where the transition dynamics and rules are
well-defined and readily available. The task is that given four cards drawn from a deck of poker, use
basic arithmetic operations to combine the card values to reach 24. The problem can be formulated
as follows: a state is a list of current numbers, initially 4; the actions involve selecting an operation as
well as two numbers from the current numbers; the transition will calculate the operation and update
the list of current numbers by removing the selected two and adding the calculated result; the reward
is one when 24 is the only number in the list, and zero otherwise. Since language models can directly
process token sequences, we do not need an Encoder in this problem. We use a large language model,
Llama3-8B (Dubey et al., 2024), with an additional value head as the value function Vθ.

4.1.1 BASELINE

We compare this version of D-TSN with a supervised fine-tuned (SFT) language model. For a fair
comparison, the supervised fine-tuned model is also allowed to perform search during inference,
where we use the log probability of the model generating the sequence as its value:

Vθ(s) =
1

N

N−1∑
i=1

log p(si+1|s1...i) (17)

where si are tokens in the sequence, p(·|·) is the conditional probability of generating the next token.
The log probability is divided by N to normalize the effect of sequence length.

4.1.2 TRAINING DATASET

We collected all valid Game of 24 problems and their solutions through an exhaustive search of all
combinations, then randomly selected 530 problems for evaluation. The remaining 527 problems
have 16k valid solutions, from which we randomly sampled a subset for training. We format the text
solutions as following format: "[2,3,7,7]->(2*7=14)->[3,7,14]->(14+7=21)->[3,21]->(3+21=24)-
>[24]", where [...] represents current numbers, and (...) represents operations. The operations
combine two numbers with an operator, resulting in a new number. We train D-TSN to select
operands and operators, and use the transition function to handle the computation of the current
numbers after the operation, i.e. given a state "[2,3,7,7]->(2*" and an action to select "7" as the next
operand, the next state given by the transition function is "[2,3,7,7]->(2*7=14)->[3,7,14]->(". This
would allow us to focus more on the difficult part of the solution, which is deciding which numbers
to use in the operation and which operator to use. Such transition can be easily obtained in practice
as we observe that the SFT model never makes mistakes on these positions in its generation.

6

Published as a conference paper at ICLR 2025

4.1.3 RESULTS

We train D-TSN using 8 search iterations in training and compare the resulting value function with a
supervised fine-tuned model, as described in Equation (17), to guide the search during evaluation.

Table 1: Comparison between D-TSN and SFT on Game of 24, with varying amount of training
trajectories, using metrics Success Rate – whether the generated expression is valid and results in 24.
D-TSN is trained and evaluated with 8 search iterations, SFT is evaluated with 8 search iterations.

#Training Trajectories

Method 1k 2k 10k

D-TSN (n_itr=8) 31.46 38.25 45.24
SFT+Search 12.45 15.09 21.32

To compare D-TSN with a supervised fine-tuned model under different amounts of available data,
we sample 1k, 2k, and 10k trajectories to train both methods. Table 1 shows that D-TSN can better
guide the search during evaluation when compared to the SFT model. On a closer look, we notice
that the log-likelihood of the SFT model as a value function often fails to recognize promising states,
assigning a lower value to them, even when the states have already reached 24. As a result, tokens
chosen at each step often do not lead to a correct solution. In contrast, D-TSN better recognizes
these states and assigns high values to them, guiding each step to select tokens that lead to a correct
solution.

4.2 D-TSN WITH JOINTLY LEARNED WORLD MODEL

Next, we study two problems where we jointly learn a world model in D-TSN. The states in these
problems are represented as pixels of images.

Navigation This is a 2D grid-based navigation task designed to quantitatively and qualitatively
visualize the agent’s generalization capabilities. The environment is a 20× 20 grid featuring a central
hall. At the start of each episode, a robot is randomly positioned inside this hall, while its destination
is set outside. We present two distinct scenarios: one with a single exit and another with two exits
from the central hall. Training is done only in the two exit scenarios. The single exit scenario, which
requires a longer-horizon planning to reach the goal, is used to test generalization.

Procgen Procgen (Cobbe et al., 2019) is a collection of 16 procedurally generated, game-like
environments, specifically designed to evaluate an agent’s generalization capability, differentiating
it from Atari 2600 games (Mnih et al., 2013). Further details on these domains are presented in
Appendix D.1.

We follow the Offline-RL paradigm and train D-TSN using sequences of demonstrations. Please refer
to Appendix D.2 for a detailed explanation of the learning framework.

4.2.1 TRAINING DATASETS

We use a behavior policy, which can be optimal or sub-optimal, to collect demonstration sequences
for training. An optimal policy generates a dataset with lower noise and a cleaner training signal,
leading to a stable learning process. In contrast, a sub-optimal policy produces a noisier dataset, which
consequently restricts the quality of the policy that the agent can learn. The choice of the behavior
policy depends on domain-specific requirements and the resources available for data collection. We
use an optimal behavior policy for Navigation and a sub-optimal policy for Procgen.

The training dataset, D, consists of trajectories generated using the behavior policy πB , where each
trajectory is defined as a series of T tuples, each comprising the state observed, action taken, reward
observed, and the corresponding Q-value of the observed state, denoted as {(si, ai, ri, Qi)}Ti=0.
The Q-value for state si can be computed by adding the rewards obtained in the trajectory from
timestep i onwards, i.e. Qi =

∑T
j=i rj . We limit the number of trajectories to 1000 for each domain

to evaluate the sample complexity and generalization capabilities of each method.

4.2.2 BASELINES

We benchmark D-TSN against the following prominent baselines:

7

Published as a conference paper at ICLR 2025

Model-free Q-network This allows us to assess the significance of incorporating inductive biases
into the neural network architecture. This model is trained using the loss defined as:

LQ-net = λ1LQ + λ2LD (18)

Model-based Search In this baseline, we utilize the submodules defined for D-TSN, but the world
models and the value module are trained independently of each other. During evaluation, we employ
the best-first search, akin to D-TSN, utilizing the independently trained modules. Through this
baseline, we assess the benefits derived from the joint optimization of the world model and the search
algorithm. For our evaluations, we perform 10 search iterations for each input state. To train this
model, we compute the Q-value, Qθ, without performing the search and optimize the loss defined as:

LSearch = λ1LQ + λ2LD + λ3LTθ
+ λ4LRθ

(19)

TreeQN This comparison helps highlight the advantages of an advanced search algorithm, used
in D-TSN, that can execute a deeper search while maintaining similar computational constraints.
For evaluations, we adhere to a depth of 2 for TreeQN, as described in Farquhar et al. (2018), for
both Procgen and navigation domains. Notably, the memory footprint would increase exponentially
for larger depth, which prohibits us to use a larger depth. This model is trained using the loss (as
discussed in Farquhar et al. (2018)) defined as:

LTreeQN = λ1LQ + λ2LD + λ3LRθ
(20)

Every method is trained with the same datasets using their respective loss functions. A more
comprehensive discussion of the baselines and implementation details can be found in Appendix D.6.

Table 2: Comparison of D-TSN with the baselines
on Navigation using metrics Success Rate and
Collision Rate.

Solver Success Absolute
Rate Collision Rate

Navigation (2 exits)

Model-free Q-network 94.5% (± 0.2%) 4.4%
Model-based Search 93.2% (± 0.3%) 6.7%
TreeQN 95.4% (± 0.2%) 3.8%
D-TSN 99.0% (± 0.1%) 0.7%

Navigation (1 exit)

Model-free Q-network 47.1% (± 0.5%) 50.2%
Model-based Search 86.9% (± 0.3%) 12.4%
TreeQN 51.8% (± 0.5%) 39.2%
D-TSN 99.3% (± 0.1%) 0.2%

Table 3: Comparison of D-TSN with the baselines
on Procgen using metrics Mean Scores and Mean
Z-score. Standard error intervals are reported,
based on 1000 evaluation runs per game.

Games Model-free Model-based TreeQN D-TSNQ-network Search

bigfish 21.67±0.53 16.36±0.50 20.38±0.52 21.76±0.53
bossfight 8.83±0.18 7.33±0.19 8.35±0.19 8.50±0.19
caveflyer 2.05±0.12 3.52±0.15 3.57±0.15 3.71±0.15
chaser 5.77±0.16 5.31±0.15 6.37±0.17 6.77±0.17
climber 2.85±0.15 4.93±0.17 4.13±0.16 5.62±0.18
coinrun 5.18±0.16 6.33±0.15 5.01±0.16 6.40±0.15
dodgeball 1.05±0.06 4.26±0.17 4.70±0.18 5.30±0.19
fruitbot 14.09±0.37 10.76±0.36 15.43±0.35 14.00±0.37
heist 0.87±0.09 2.24±0.13 1.91±0.12 2.43±0.14
jumper 3.21±0.15 3.97±0.15 3.74±0.15 4.65±0.16
leaper 7.78±0.13 6.36±0.15 7.85±0.13 8.20±0.12
maze 2.02±0.13 2.26±0.13 2.50±0.14 3.30±0.15
miner 1.41±0.02 1.35±0.05 2.06±0.06 1.71±0.06
ninja 5.07±0.16 5.07±0.16 5.05±0.16 6.61±0.15
plunder 13.77±0.36 9.74±0.32 12.47±0.35 12.75±0.35
starpilot 15.74±0.39 14.83±0.38 17.91±0.42 16.42±0.41

Mean Z-Score - 0.10 0.27 0.35

4.2.3 RESULTS

Navigation We compare D-TSN against the baselines using success rate and collision rate as
evaluation metrics, where success rate refers to the fraction of test levels completed by the agent, and
collision rate refers to the fraction of levels failed due to collision with a wall. Results are shown in
Table 2.

We observe that D-TSN outperforms the baselines on both navigation scenarios. Notably, when
agents are trained on data from the 2-exit scenarios but are tested in the 1-exit scenario, D-TSN, with
its powerful inductive bias, retains its performance. In stark contrast, the Model-free Q-network and
TreeQN experience a substantial performance decline, which underscores their limited generalization
ability. Model-based Search also registers a minor decrease in the success rate, reinforcing the
importance of jointly optimizing the world model for enhanced robustness.

Procgen We evaluate the performance of D-TSN and the baselines on all Procgen suite games,
comparing mean Z-score and head-to-head wins. We also report the mean scores across 1000 episodes
obtained by these methods in Table 3. As Procgen games have different scales, we use model-free
Q-network as baseline to compute a normalized score1, Z-score = (µπ−µB)/σB , where µπ and µB

1We use Z-score because the baseline normalized score used in prior works Badia et al. (2020); Kaiser et al.
(2020); Mittal et al. (2023) is problematic in our experiments, as described in Appendix D.7.

8

Published as a conference paper at ICLR 2025

represent the mean scores obtained by the agent policy and the baseline policy respectively and σB

represents the standard deviation of the scores obtained by the baseline policy.

It is important to note that the training data for Procgen was generated using a sub-optimal behavior
policy, leading to noisy training signals in comparison to the relatively noise-free data in the Naviga-
tion domain. Despite this, D-TSN reports a higher mean Z-score, averaged across the 16 Procgen
games, particularly in climber, coinrun, jumper, and ninja, which require long-term planning. This
underscores the stronger inductive bias of D-TSN. In Procgen, Model-based Search lags behind both
TreeQN and D-TSN, highlighting that for complex environments, joint optimization enables learning
a robust world model. In the head-to-head comparison listed in Table 4, D-TSN won in 13 games
against the Model-free Q-network, 16 games against Model-based Search, and 13 games against
TreeQN.

Table 4: Head-to-head comparison of D-TSN with
the baselines on Procgen using metric number of
games won.

Baseline Tree Search Network
(Games won / Total games)

Model-free Q-network 13 / 16
Model-based Search 16 / 16
TreeQN 13 / 16

Table 5: Comparison of D-TSN with its variants
to evaluate the role of Auxiliary losses, REIN-
FORCE term and Telescoping Sum.

Solver
Navigation Procgen(1-exit)

Success Rate Mean Z-score

D-TSN 99.3% (± 0.1%) 0.31
w/o Telescoping Sum 98.5% (± 0.1%) 0.28
w/o REINFORCE term 97.7% (± 0.2%) 0.29
w/o Auxiliary losses 91.1% (± 0.3%) -

4.3 ABLATION STUDIES

4.3.1 THE IMPACT OF THE REINFORCE TERM AND THE TELESCOPING SUM TRICK

In this study, we assess the impact of both the REINFORCE term and the Telescoping Sum trick
on D-TSN’s performance. The results, presented in Table 5, show notable differences. Without the
telescoping sum, D-TSN sees a modest decrease in the success rate for Navigation (1-exit), moving
from 99.3% to 98.5%. Similarly, the mean Z-score for Procgen dips to 0.28. The omission of the
REINFORCE term also marks a decline, with the Navigation (1-exit) success rate landing at 97.7%
and the mean Z-score for Procgen dipping to 0.29.

4.3.2 THE CONTRIBUTION OF AUXILIARY LOSSES

In this study, we explore the contribution of auxiliary losses to D-TSN’s performance. As outlined in
Table 5, the absence of these auxiliary losses leads to a more pronounced decline in the performance.
Specifically, the success rate in the Navigation (1-exit) task drops significantly to 91.1% compared to
99.3% with auxiliary losses.

4.3.3 ENHANCING PERFORMANCE THROUGH DEEPER SEARCH

In this study, we explore the benefits of deeper search in the D-TSN framework by increasing search
iterations in Navigation and Game of 24 problems. For Navigation, we maintain an identical number
of iterations in the training and evaluation phases to prevent any distribution shifts in the world model.
For Game of 24, we can use a larger search iteration during evaluation, as the world model remains
fixed.

Table 6: Comparison of D-TSN trained with
different number of search iterations (‘n_itr’)
to evaluate the performance gain by perform-
ing deeper searches.

Solver Navigation Navigation
(2-exits) (1-exit)

D-TSN (n_itr=5) 97.4% 96.6%
D-TSN (n_itr=10) 99.0% 99.3%
D-TSN (n_itr=20) 99.5% 99.1%

Table 7: Comparison of D-TSN using different num-
ber of search iterations during evaluation. All methods
are trained with 2k trajectories.

#Search iterations in evaluation

1 4 8 16 128

D-TSN (n_itr=1) 20.75 31.51 38.16 49.76 89.29
D-TSN (n_itr=4) 32.22 41.13 49.67 90.24
D-TSN (n_itr=8) 38.25 49.91 91.42
D-TSN (n_itr=16) 49.58 92.38

9

Published as a conference paper at ICLR 2025

The results, as listed in Table 6 and Table 7 indicate that a higher number of iterations leads to an
improvement in the success rate in both Navigation and Game of 24. For Navigation, where the world
model is not known, the improvement suggests that D-TSN is able to exploit the jointly learned world
model effectively, and can potentially be scaled up further given additional computational resources.
For Game of 24, we see performance consistently improve as the number of search iterations during
evaluation increases, highlighting the importance of search. Notably, the performance reaches around
90% for D-TSN when there are sufficient search iterations during evaluation, suggesting that the
value function learned by D-TSN can recognize the promising states and guide the generation to
those states. We also observe that the number of search iterations performed during training does
not affect the performance much in Game of 24. One explanation is that we are using a ground-truth
world model, and performing a search using actual states. The REINFORCE term in Equation (11)
would act similarly to the CQL loss in Equation (13). Learning a world model jointly in D-TSN is
also possible in principle in language model tasks, but scaling considerations become important to
manage the large action space and observation space. We leave this exploration for future works.

4.3.4 ROBUSTNESS OF THE WORLD MODEL

A key challenge in employing learned world models for search is addressing the compounding errors,
which impact the accuracy and effectiveness of search. This study shows that the joint optimization
of both the world model and the search algorithm compensates for these inaccuracies, ensuring the
world model is usable in deeper online searches.

Table 8: Comparison of D-TSN and Model-based Search to highlight the robustness of the world
model when performing deeper searches (‘n_itr’ refers to number of search iterations).

Solver Navigation Navigation
(2-exits) (1-exit)

D-TSN (n_itr=10) 99.0% 99.3%
D-TSN (n_itr=20) 99.3% 99.4%
D-TSN (n_itr=50) 99.7% 99.6%

Model-based Search (n_itr=10) 93.2% 86.9%
Model-based Search (n_itr=20) 91.1% 84.6%
Model-based Search (n_itr=50) 89.5% 80.4%

As demonstrated in Table 8, the world model trained jointly with the search algorithm consistently
outperforms the independently trained model, especially as the number of iterations increases.

5 CONCLUSION

In this paper, we introduce Differentiable Tree Search Network (D-TSN), a novel framework that
learns to conduct differentiable tree search from just sequences of demonstrations. D-TSN can
leverage a known world model, or jointly learn a world model end-to-end with other search submod-
ules. D-TSN conducts a best-first style search, which allows it to search deeper and explore more
promising states. A naive incorporation of best-first search could lead to discontinuity of the loss
in the parameter space, an issue we address by employing a stochastic tree expansion policy. We
optimize the expected loss function using a REINFORCE-style objective and propose a telescoping
sum trick to reduce the variance of the gradient for this expected loss. We evaluate D-TSN in two
scenarios: 1) when the world model is known – we experiment with a language model reasoning task,
Game of 24; 2) when the world model is not known – we experiment with 2D grid navigation and
Procgen games. Through our experiments, we show that D-TSN is effective, outperforming baselines
in both scenarios, especially when the world model is jointly learned.

Nonetheless, the strength of the current implementation of D-TSN is currently limited to deterministic
decision-making problems with a discrete action space. We have demonstrated the method on latent
world models with 2D visual observations but have yet to do so on language observations. To cater to
a broader spectrum of decision-making problems, there is also a need to revamp the transition model
to manage stochastic world scenarios, which include common usage of language and visual language
models. We aim to address these problems in our future works.

ACKNOWLEDGMENTS

This research is supported by the Ministry of Education, Singapore, under its Academic Research
Fund Tier 1 (A-8001814-00-00).

10

Published as a conference paper at ICLR 2025

REFERENCES

Kavosh Asadi, Dipendra Misra, and Michael L. Littman. Lipschitz continuity in model-based
reinforcement learning. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp. 264–273.
PMLR, 2018. URL http://proceedings.mlr.press/v80/asadi18a.html.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 507–517.
PMLR, 2020. URL http://proceedings.mlr.press/v119/badia20a.html.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pp. 2048–2056. PMLR, 2020. URL http://proceedings.
mlr.press/v119/cobbe20a.html.

Karl Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. Proceed-
ings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, 139:2020–2027, 2021. URL http://proceedings.mlr.press/v139/
cobbe21a.html.

Fernando Fradique Duarte, Nuno Lau, Artur Pereira, and Luis Paulo Reis. A survey of planning and
learning in games. Applied Sciences, 10(13):4529, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan
Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet
Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng
Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya
Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd
of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL https:
//doi.org/10.48550/arXiv.2407.21783.

Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson. Treeqn and atreec:
Differentiable tree-structured models for deep reinforcement learning. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/
forum?id=H1dh6Ax0Z.

Arthur Guez, Théophane Weber, Ioannis Antonoglou, Karen Simonyan, Oriol Vinyals, Daan Wierstra,
Rémi Munos, and David Silver. Learning to search with mctsnets. In International Conference on
Machine Learning, pp. 1822–1831. PMLR, 2018.

11

http://proceedings.mlr.press/v80/asadi18a.html
http://proceedings.mlr.press/v119/badia20a.html
http://proceedings.mlr.press/v119/cobbe20a.html
http://proceedings.mlr.press/v119/cobbe20a.html
http://proceedings.mlr.press/v139/cobbe21a.html
http://proceedings.mlr.press/v139/cobbe21a.html
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://openreview.net/forum?id=H1dh6Ax0Z
https://openreview.net/forum?id=H1dh6Ax0Z

Published as a conference paper at ICLR 2025

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
2455–2467, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
2de5d16682c3c35007e4e92982f1a2ba-Abstract.html.

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=S1lOTC4tDS.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting
Hu. Reasoning with language model is planning with world model. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp. 8154–8173.
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.507.
URL https://doi.org/10.18653/v1/2023.emnlp-main.507.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning for
atari. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/
forum?id=S1xCPJHtDB.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
0d2b2061826a5df3221116a5085a6052-Abstract.html.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. CoRR, abs/2005.01643, 2020. URL https://
arxiv.org/abs/2005.01643.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Don’t throw away your value model! generating more preferable text with value-
guided monte-carlo tree search decoding, 2023.

Siqi Liu, Kee Yuan Ngiam, and Mengling Feng. Deep reinforcement learning for clinical decision
support: A brief survey. CoRR, abs/1907.09475, 2019. URL http://arxiv.org/abs/
1907.09475.

Dixant Mittal, Siddharth Aravindan, and Wee Sun Lee. Expose: Combining state-based exploration
with gradient-based online search. In Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems, AAMAS ’23, pp. 1345–1353, Richland, SC, 2023.
International Foundation for Autonomous Agents and Multiagent Systems. ISBN 9781450394321.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24,
2016, volume 48 of JMLR Workshop and Conference Proceedings, pp. 1928–1937. JMLR.org,
2016. URL http://proceedings.mlr.press/v48/mniha16.html.

M. G. Mohanan and Ambuja Salgoankar. A survey of robotic motion planning in dynamic environ-
ments. Robotics Auton. Syst., 100:171–185, 2018. doi: 10.1016/J.ROBOT.2017.10.011. URL
https://doi.org/10.1016/j.robot.2017.10.011.

12

https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://openreview.net/forum?id=S1lOTC4tDS
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
http://arxiv.org/abs/1907.09475
http://arxiv.org/abs/1907.09475
http://arxiv.org/abs/1312.5602
http://proceedings.mlr.press/v48/mniha16.html
https://doi.org/10.1016/j.robot.2017.10.011

Published as a conference paper at ICLR 2025

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-
conditioned policies. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural In-
formation Processing Systems 32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
14814–14825, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
c8cc6e90ccbff44c9cee23611711cdc4-Abstract.html.

Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado van Hasselt, and Laura
Toni. A survey of temporal credit assignment in deep reinforcement learning. Trans. Mach. Learn.
Res., 2024, 2024. URL https://openreview.net/forum?id=bNtr6SLgZf.

Rafael Figueiredo Prudencio, Marcos Ricardo Omena Albuquerque Máximo, and Esther Luna
Colombini. A survey on offline reinforcement learning: Taxonomy, review, and open problems.
IEEE Trans. Neural Networks Learn. Syst., 35(8):10237–10257, 2024. doi: 10.1109/TNNLS.2023.
3250269. URL https://doi.org/10.1109/TNNLS.2023.3250269.

Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill New York, 3d ed. edition,
1976. ISBN 007054235. URL http://www.loc.gov/catdir/toc/mh031/75017903.
html.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using
stochastic computation graphs. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi
Sugiyama, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Mon-
treal, Quebec, Canada, pp. 3528–3536, 2015. URL https://proceedings.neurips.cc/
paper/2015/hash/de03beffeed9da5f3639a621bcab5dd4-Abstract.html.

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and Philip
Bachman. Data-efficient reinforcement learning with self-predictive representations. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021. URL https://openreview.net/forum?id=uCQfPZwRaUu.

Ameesh Shah, Eric Zhan, Jennifer J. Sun, Abhinav Verma, Yisong Yue, and Swarat Chaud-
huri. Learning differentiable programs with admissible neural heuristics. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
342285bb2a8cadef22f667eeb6a63732-Abstract.html.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016. doi:
10.1038/nature16961. URL https://doi.org/10.1038/nature16961.

Bharat Singh, Rajesh Kumar, and Vinay Pratap Singh. Reinforcement learning in robotic ap-
plications: a comprehensive survey. Artif. Intell. Rev., 55(2):945–990, 2022. doi: 10.1007/
S10462-021-09997-9. URL https://doi.org/10.1007/s10462-021-09997-9.

Adish Singla, Anna N. Rafferty, Goran Radanovic, and Neil T. Heffernan. Reinforcement learning
for education: Opportunities and challenges. CoRR, abs/2107.08828, 2021. URL https:
//arxiv.org/abs/2107.08828.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

13

https://proceedings.neurips.cc/paper/2019/hash/c8cc6e90ccbff44c9cee23611711cdc4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c8cc6e90ccbff44c9cee23611711cdc4-Abstract.html
https://openreview.net/forum?id=bNtr6SLgZf
https://doi.org/10.1109/TNNLS.2023.3250269
http://www.loc.gov/catdir/toc/mh031/75017903.html
http://www.loc.gov/catdir/toc/mh031/75017903.html
https://proceedings.neurips.cc/paper/2015/hash/de03beffeed9da5f3639a621bcab5dd4-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/de03beffeed9da5f3639a621bcab5dd4-Abstract.html
https://openreview.net/forum?id=uCQfPZwRaUu
https://proceedings.neurips.cc/paper/2020/hash/342285bb2a8cadef22f667eeb6a63732-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/342285bb2a8cadef22f667eeb6a63732-Abstract.html
https://doi.org/10.1038/nature16961
https://doi.org/10.1007/s10462-021-09997-9
https://arxiv.org/abs/2107.08828
https://arxiv.org/abs/2107.08828

Published as a conference paper at ICLR 2025

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and
Michael Qizhe Xie. Self-evaluation guided beam search for reasoning. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
81fde95c4dc79188a69ce5b24d63010b-Abstract-Conference.html.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. CoRR,
abs/2305.10601, 2023. doi: 10.48550/ARXIV.2305.10601. URL https://doi.org/10.
48550/arXiv.2305.10601.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 25476–25488, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/d5eca8dc3820cad9fe56a3bafda65ca1-Abstract.html.

Ryo Yonetani, Tatsunori Taniai, Mohammadamin Barekatain, Mai Nishimura, and Asako Kanezaki.
Path planning using neural a* search. In Marina Meila and Tong Zhang (eds.), Proceedings of the
38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pp. 12029–12039. PMLR, 2021. URL
http://proceedings.mlr.press/v139/yonetani21a.html.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning, acting, and planning in language models. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=njwv9BsGHF.

14

http://papers.nips.cc/paper_files/paper/2023/hash/81fde95c4dc79188a69ce5b24d63010b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/81fde95c4dc79188a69ce5b24d63010b-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2305.10601
https://doi.org/10.48550/arXiv.2305.10601
https://proceedings.neurips.cc/paper/2021/hash/d5eca8dc3820cad9fe56a3bafda65ca1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d5eca8dc3820cad9fe56a3bafda65ca1-Abstract.html
http://proceedings.mlr.press/v139/yonetani21a.html
https://openreview.net/forum?id=njwv9BsGHF

Published as a conference paper at ICLR 2025

A DIFFERENTIABLE TREE SEARCH NETWORK ALGORITHM

A.1 DIFFERENTIABLE TREE SEARCH NETWORK PSEUDO-CODE

Algorithm 1: Differentiable Tree Search (D-TSN)
Input: Input state, sroot
Result: Q-values, Q(sroot, a)

hroot ← Eθ(sroot) ; //Encode s0 to its latent state h0

noderoot ← initialise(hroot) ; //Initialize root node

Open← {noderoot} ; //Initialize candidate set Open

// Expansion phase
itr ← 0;
repeat

foreach node ∈ Open do
hnode ← getLatent(node) ; //Get latent state of node

V̄ (node)← sumOfRewards(node) + Vθ(hnode) ; //Compute path values

πtree ← softmaxn
(
V̄ (n)

)
; //Compute the tree expansion policy

node∗ ← sample(πtree) ; //Sample the node to expand

foreach a ∈ Actions; do
hchild ← Tθ(hnode∗ , a) ; //Compute the next latent state

rchild ← Rθ(hnode∗ , a) ; //Compute reward for the transition

createNode(hchild, rchild) ; //Create the child node

Open← Open ∪ {childa|childa = getChild(node∗, a);∀a ∈ A} − node∗ ; //Update

the open set

itr ← itr + 1;
until itr < MAX_ITR;
// Backup phase
foreach node ∈ Tree, iterating from leaf nodes to the root node; do

if node is a leaf; then
hnode ← getLatent(node) ; //Get latent state of node

V (node) = Vθ(hnode) ; //Compute value using Value module

else
foreach a ∈ Actions; do

nodechild[a] ← getChild(node, a) ; //Get child of node that

corresponds to action a

hnode ← getLatent(node) ; //Get latent state of node

rnode ← Rθ(hnode, a) ; //Get reward using Reward module

Q(node, a)← rnode + V
(
nodechild[a]

)
V (node)← maxa Q(node, a)

return Q(noderoot) ; //Return Q-value of the root node

A.2 PSEUDO-CODE EXPLANATION

D-TSN initializes the search by converting the input state to its latent representation and proceeds in
two phases: Expansion and Backup as detailed in the following sections.

A.2.1 INITIALIZATION

Given an input state sroot, the algorithm begins by encoding this state into its latent representation
hroot using an encoder Eθ. This latent representation serves as the root node of the search tree.

15

Published as a conference paper at ICLR 2025

A.2.2 EXPANSION PHASE

• The algorithm initiates a set of candidate nodes, termed ‘Open’, starting with the root node.
• In each iteration, the algorithm considers every node in the ‘Open’ set, retrieves its latent

state, and computes an interim value V̄ (node), which combines the cumulative rewards of
the node’s path with a value estimation from the value module Vθ.

• Using the path values of nodes in ‘Open’, the tree expansion policy, πtree, is computed. From
this policy, a node, node∗, is sampled for expansion.

• Each possible action from node∗ results in the creation of a child node. This is achieved by
leveraging the transition module Tθ to predict the latent state of the child and the reward
module Rθ to determine the associated reward. After expansion, node∗ is removed from
‘Open’ and its children are added.

• This expansion process continues until a predetermined number of iterations, MAX_ITR, is
reached.

A.2.3 BACKUP PHASE

• Starting from the leaf nodes, the algorithm backpropagates value estimates to the root.
• For each leaf node, its value is directly computed from the value module Vθ. For non-leaf

nodes, the Q-value for each action is estimated by combining the reward for that action with
the value of the corresponding child node.

• The value of a non-leaf node is set to the maximum Q-value among its actions.

A.2.4 OUTPUT

The algorithm finally returns the Q-values associated with the root node, Q(noderoot), providing an
estimation of the value of taking each action from the initial state.

This explanation provides a high-level view of the D-TSN algorithm’s operation. By breaking
down the search process into expansion and backup phases, the pseudo-code highlights how D-TSN
incrementally builds the search tree and then consolidates value estimates back to the root.

B CONTINUITY OF THE LOSS FUNCTION

In this section, we show that the Q-function represented by a search tree with fixed structure is
continuous in network’s parameter space.

Suppose we have two functions f(x) and g(x) which are continuous at any point c in their domains.
Lemma B.1. Continuity of Composition: The composition of two continuous functions, denoted as
f(g(x)), retains continuity. (Theorem 4.7 in Rudin (1976))
Lemma B.2. Continuity of Sum operation: The result of adding two continuous functions, expressed
as f(x) + g(x), is a continuous function. (Theorem 4.9 in Rudin (1976))
Lemma B.3. Continuity of Max operation: Applying Max over two continuous functions, expressed
as max(f(x), g(x)), results in a function that is continuous.

Proof. Consider a function h(x) = max(f(x), g(x)), and we aim to demonstrate that h(x) is
continuous. Now, h(x) can be expressed as a combination of continuous functions:

h(x) =
f(x) + g(x) + |f(x)− g(x)|

2

Since sums and absolute values of continuous functions are continuous (Rudin, 1976), h(x) is
continuous. Hence, the maximum of two continuous functions is also a continuous function.

Rewriting the Theorem 3.1 with proof below:
Theorem B.4. Given a set of parameterised modules that are continuous in the parameter space
θ, the Q-function computed by expanding a fixed search tree by composing these modules and
backpropagating the children values using addition and max operations is continuous in the parameter
space θ. When the tree structure is not fixed, the continuity of the Q-values is not guaranteed.

16

Published as a conference paper at ICLR 2025

Proof. Let us represent the set of parameters, encoder module, transition module, reward module, and
value module respectively as θ, Eθ, Tθ,Rθ, and Vθ. These submodules are assumed to be composed
of simple neural network architectures, comprising linear and convolutional layers, with the Rectified
Linear Unit (ReLU) serving as the activation function. These submodules, therefore, are continuous
within the parameter space.

We can subsequently rewrite the Q-value as the output of a full tree expansion as follows:

(21)Q(s0, a0) = Q(h0, a0)

= r0 + V (h1)

where,

h0 = Eθ(s0) (22)
rt = Rθ(ht, at) (23)

ht+1 = Tθ(ht, at) (24)
Q(ht, at) = Rθ(ht, at) + V (ht+1) (25)

V (ht) =

{
Vθ(ht) if ht is a leaf
maxa (Q(ht, a)) otherwise

(26)

Given that Eθ,Rθ, and Tθ are continuous, h0, rt, and ht+1 in Equations (22) and (24) are similarly
continuous (derived from Lemma B.1).

Further, V (ht) in Equation (26) can either be Vθ(ht), if ht is a leaf node, or maxa(Q(ht, a))
otherwise. In the first scenario, V (ht) retains continuity by assumption. In the second scenario, if
Q(ht, at) is continuous, then V (ht) remains continuous as per Lemma B.3.

Now, we show that Q(ht, at) is continuous using a recursive argument that for any node in the
search tree, if the Q-values of all its child nodes are continuous, then its Q-value is also continuous.
Q-value of an internal tree node ht can be written as Q(ht, at) = Rθ(ht, at) + V (ht+1), where
ht+1 = Tθ(ht, at) is the child node of ht. Considering the base case, when the ht+1 is a leaf node,
then Q(ht, at) = Rθ(ht, at) + Vθ(ht+1), which is continuous as per Lemma B.2. Consequently,
V (ht) maintains continuity. Applying this logic recursively, the Q-value Q(ht, at) of all the tree
nodes maintains continuity.

Thus, we can decompose the Q-value at the root node, Q(s0, a0), as a composition of continuous
functions, ensuring that the output Q-value, Q(s0, a0), is continuous.

Next, we show that the continuity of Q-function is not guaranteed when the structure of the search
tree is not fixed by giving an example.

Consider a simple environment with two possible actions a1 and a2, and a state is represented by
a 2-D vector. We parameterize the reward, value, transition functions as simple matrices: Ri ∈ R2

is a reward function that maps a state to a real number representing the reward for doing action
ai at the state; V ∈ R2 is the value function that maps a state to a real number representing the
value of a state; Ti ∈ R2×2 is a transition function that maps a state to a next state after doing
action ai. Consider a search tree with root node s ∈ R2 and a child node x ∈ R2 derived by doing
action a1. x has two child node n1 and n2. The path value of n1, defined by Equation (1), is
V̄ (n1) = Rθ(s, a1) +Rθ(x, a1) + Vθ(n1) = RT

1 s+ RT
1 x+ V TT1x. Similarly, the path value of

n2 is V̄ (n2) = Rθ(s, a1) +Rθ(x, a2) + Vθ(n2) = RT
1 s+RT

2 x+ V TT2x.

Consider we choose between n1 and n2 for the next expansion of the tree. When RT
1 x+ V TT1x >

RT
2 x + V TT2x, n1 is expanded, two children of n1 has value RT

1 T1x + V TT1T1x and RT
2 T1x +

V TT2T1x, value of x after backup is the maximum of value of n2 and the values of two children of
n1, which is max{RT

2 x+ V TT2x,max{RT
1 T1x+ V TT1T1x,R

T
2 T1x+ V TT2T1x, }}.

When RT
1 x + V TT1x < RT

2 x + V TT2x, n2 is expanded, two children of n2 has value RT
1 T2x +

V TT1T2x and RT
2 T2x + V TT2T2x, value of x after backup is maximum of value of n1 and the

values of two children of n2, which is max{RT
1 x + V TT1x,max{RT

1 T2x + V TT1T2x,R
T
2 T2x +

V TT2T2x, }}.

17

Published as a conference paper at ICLR 2025

… …

Figure 2: Visualization of a discontinuous example.

Let’s assign the following values to the mentioned symbols:

x =

[
2
2

]
; V =

[
θ
1

]
; R1 =

[
0
1

]
; R2 =

[
1
0

]
; T1 =

[
0 2
1 0

]
; T2 =

[
0 1
1 2

]

We have RT
1 x+V TT1x = 4θ+4, and RT

2 x+V TT2x = 2θ+8. When θ > 2, n1 will be expanded,
and when θ < 2, n2 will be expanded, see Figure 2 for a visualization of the example. We have

lim
θ→2+

Q(s, a1)

=RT
1 s+ lim

θ→2+
max(RT

2 x+ V TT2x,max(RT
1 T1x+ V TT1T1x,R

T
2 T1x+ V TT2T1x,))

=16

(27)

lim
θ→2−

Q(s, a1)

=RT
1 s+ lim

θ→2−
max(RT

1 x+ V TT1x,max(RT
1 T2x+ V TT1T2x,R

T
2 T2x+ V TT2T2x,))

=32

(28)

Combining Equation (27) and Equation (28) we have that Q(r, a1) is discontinuous at θ = 2.

C DERIVATION OF THE GRADIENT OF THE EXPECTED LOSS FUNCTION

Let us represent the Q-values predicted by D-TSN as Qθ(s, a|τ), which depends on the final tree τ
sampled after T trials of the online search. Let us denote the corresponding loss function on this
output Q-value as L

(
Qθ(s, a|τ)

)
. Our objective is to compute the gradient of the expected loss

value, averaging over trees sampled.

18

Published as a conference paper at ICLR 2025

The gradient of expected loss, considering the expectation over the sampled trees, is derived as:

∇θL(s, a) = ∇θEτ

[
L
(
Qθ(s, a|τ)

)]
= ∇θ

∑
τ

πθ(τ)L
(
Qθ(s, a|τ)

)
=

∑
τ

∇θ

[
πθ(τ)L

(
Qθ(s, a|τ)

)]
=

∑
τ

L
(
Qθ(s, a|τ)

)
∇θπθ(τ) +

∑
τ

πθ(τ)∇θL
(
Qθ(s, a|τ)

)
=

∑
τ

πθ(τ)L
(
Qθ(s, a|τ)

)
∇θ log πθ(τ) +

∑
τ

πθ(τ)∇θL
(
Qθ(s, a|τ)

)
= Eτ

[
L
(
Qθ(s, a|τ)

)
∇θ log πθ(τ) +∇θL

(
Qθ(s, a|τ)

)]

= Eτ

[
L
(
Qθ(s, a|τ)

)
∇θ log

T∏
t=1

πθ(nt|τt) +∇θL
(
Qθ(s, a|τ)

)]

= Eτ

[
L
(
Qθ(s, a|τ)

) T∑
t=1

∇θ log πθ(nt|τt) +∇θL
(
Qθ(s, a|τ)

)]
Leveraging the telescoping sum trick, as elaborated in Section 3.7, the gradient of the expected loss
can be rewritten as a lower-variance estimate:

∇θL(s, a) = Eτ

[T∑
t=1

∇θ log πθ(nt|τt)Rt +∇θL
(
Qθ(s, a|τ)

)]
where

Rt =

T∑
i=t

ri = LT − Lt−1

Lt = L
(
Qθ(s, a|τt)

)
, representing the loss value after the tth search iteration.

In practice, we utilize the single-sample estimate for the expected gradient, as elaborated in Schulman
et al. (2015)

D EXPERIMENTS

D.1 TEST DOMAINS

We use a grid navigation task and the Procgen games to study D-TSN under the scenario when world
models are not available. A visualization of these two tasks can be viewed in Figure 3.

D.1.1 NAVIGATION

The grid navigation task serves as a foundational test that mimics the challenges a robot might face
when navigating in a 2D grid environment. This environment provides both a quantitative metric
and a qualitative visualization to understand an agent’s capacity to generalize its policy. Specifically,
this task involves a 20× 20 grid with a central hall. At the beginning of each episode, the robot is
positioned at a random point within this central hall. Simultaneously, a goal position is sampled
randomly at a location outside the hall, challenging the robot to find its way out and reach this target.
There are two variations of this task. The first provides the robot with a single exit from the central
hall, while the second offers two exits. The single-exit hall scenario is similar to the two-exit scenario
but requires a longer-horizon planning to successfully evade the walls to exit the hall and reach the
goal.

19

Published as a conference paper at ICLR 2025

Figure 3: A sample visualization of Procgen games (left) and Grid Navigation (right).

Figure 4: An illustration of the learnable submodules in Differentiable Tree Search Network

D.1.2 PROCGEN

Procgen is a unique suite consisting of 16 game-like environments, each of which is procedurally
generated. This means that they are designed to present slightly altered levels every time they
are played. Such design intricacy makes Procgen an ideal choice to test an agent’s generalization
capabilities. It stands in contrast to other commonly used testing suites, like the renowned Atari
2600 games (Mnih et al., 2013; 2016; Badia et al., 2020). The diverse array of environments within
Procgen emphasizes the pivotal role of robust policy learning. The environmental diversity in Procgen

20

Published as a conference paper at ICLR 2025

Figure 5: An illustration of the Expansion Phase in Differentiable Tree Search Network

Figure 6: An illustration of the Backup Phase in Differentiable Tree Search Network

underlines the importance of robust policy learning for successful generalization. The open-source
code for the environments is publicly accessible at https://github.com/openai/procgen.

21

https://github.com/openai/procgen

Published as a conference paper at ICLR 2025

Figure 7: An illustration of the computation graph construction in Differentiable Tree Search
Network

D.2 LEARNING SETUP

D-TSN can serve as a drop-in replacement for popular model-free predictors. It can be trained
using both online and offline reinforcement learning algorithms. In this work, we employ the offline
reinforcement learning (Offline-RL) framework to focus on the sample complexity and generalization
capabilities of D-TSN when compared with the baselines.

Offline-RL, often referred to as batch-RL, is the scenario wherein an agent learns its policy solely from
a fixed offline dataset of experiences, without further interactions with the environment. Offline-RL
framework poses significant challenges, especially when it comes to the generalization capabilities
of methods, even for seemingly straightforward tasks like navigation. Consider, for instance, that
the optimal policy is employed to collect experiences from an environment. It would predominantly
select the optimal actions at every state. This means that only a fraction of the vast state-action space
would be covered in the dataset. As a result, the model might not learn about many interactions, such
as what happens when it collides with a wall, due to the limited training data on such environment
interactions. When this world model is employed in an online search scenario, the search process
might unknowingly venture into out-of-distribution state space. These explorations, stemming
from the model’s limited generalization capabilities, can lead to overly optimistic value predictions,
subsequently affecting the Q-values computation at the root node. In practical terms, the online
search might mistakenly believe it can travel through a wall to reach its goal more quickly and would
then run into it.

However, the D-TSN design offers a solution to this problem by jointly optimizing both the world
model and the online search. During the training phase, when the online search strays into the
out-of-distribution states, it might overestimate the value of these states. This overestimation would
then influence the final output after the search. When such a mismatch between the post-search output
and the expert action is detected, the gradient descent algorithm adjusts these overestimated values,
effectively lowering them to align the final Q-values more closely with the expert action. As a direct
consequence of this, by the end of the training phase, the search process will have effectively learned
to ignore these the out-of-distribution states. Even if such expansion does occur due to ϵ-greedy

22

Published as a conference paper at ICLR 2025

exploration during inference, the predicted value for the out-of-distribution state will be small and
thus will have negligible impact on the Q-values of the root node due to the max operation during
backup.

D.3 TRAINING DATASETS

We employ a separate behavior policy to collect the offline training dataset. Here, the behavior policy
can be optimal or sub-optimal. An optimal policy generates a dataset with lower noise and a cleaner
training signal, leading to a stable learning process. In contrast, a sub-optimal policy produces a
noisier dataset, which consequently restricts the quality of the policy that the agent can learn. The
selection of the behavior policy depends on domain-specific requirements and the resources available
for data collection. This work explores datasets generated using both optimal (in the Navigation
domain) and sub-optimal (in the Procgen domain) behavior policies.

The training dataset, D, consists of trajectories generated using the behavior policy πB , where each
trajectory, τi, is defined as a series of T tuples, each comprising the state observed, action taken,
reward observed, and the corresponding Q-value of the observed state, denoted as:

τi =
{
(st,i, at,i, rt,i, Qt,i)

}T

t=0

The Q-value for state st,i can be computed by adding the rewards obtained in the trajectory from
timestep t onwards, i.e.

Qt,i = QπB (st,i)

= rt,i + rt+1,i + rt+2,i + ...rT,i

=

T∑
k=t

rk,i

In order to evaluate the sample complexity and generalization capabilities of each method, we
collected a small number of 1000 trajectories for each test domain for our experiments.

D.3.1 NAVIGATION

For our navigation task, which is relatively small in size, we are able to compute the optimal policy
for any given state and configuration. We employ the value iteration algorithm for this purpose, as
detailed by Sutton & Barto (2018). At the beginning of each episode, we formulate a random passage
through the central hall. Subsequently, we also randomly determine the starting position of the robot
within the hall and its goal position outside of it. We collect a total of 1000 expert trajectories for
training. Each of these trajectories incorporates a sequence comprising states, actions, rewards, and
Q-values observed throughout the episode.

D.3.2 PROCGEN

When it comes to Procgen, even though there isn’t a public repository of pre-trained models, there
exists an open-source code base for Phasic Policy Gradient (PPG) (Cobbe et al., 2021). With this in
hand, we could effectively train a decent, but sub-optimal, policy for every individual Procgen game
starting from the ground up. We rely on the default set of hyperparameters for training a specific
policy for each game. Using these policies, we gather sample trajectories for 1000 successful episodes.
Just like in the case of Navigation, each of these trajectories represents a sequence comprising states,
actions, rewards, and Q-values observed throughout the episode.

D.4 LOSS FUNCTIONS

As mentioned in the previous section, D-TSN can be trained using various online and offline RL
methods. In this work, we are focusing on offline-RL framework and use Behavior Cloning to train
the parameters of D-TSN. Behavior Cloning is a type of supervised learning where the objective is to
make the agent’s prediction closely approximate the actions taken by the behavior policy in the states
collected in the training dataset. To achieve this, we minimize the mean squared error between the
predicted and target Q-values. This loss, denoted as LQ, is expressed as:

LQ = E(si, ai, Qi)∼D

(
Qθ(si, ai)−Qi

)2

(29)

Moreover, during the online search, the transition, reward, and value networks operate on the latent
states. Consequently, it is important to ensure that the input to these networks is of a consistent scale,

23

Published as a conference paper at ICLR 2025

as suggested in (Schwarzer et al., 2021; Ye et al., 2021). To achieve this, we apply hyperbolic tangent
(Tanh) normalization on the latent states, thereby adjusting their scale to fall within the range (−1, 1).

h = tanh(x)

=
ex − e−x

ex + e−x
∈ (−1, 1)

D.4.1 AUXILIARY LOSS FOR OUT-OF-DISTRIBUTION ACTIONS

In the offline-RL setting, there’s a risk that Q-values for out-of-distribution actions might be overesti-
mated (Kumar et al., 2020) as the behavior policy can only cover a limited part of the state-action
distribution. To address this, we incorporate an additional CQL (Kumar et al., 2020) loss which
encourages the agent to adhere to actions observed within the training data distribution. This loss,
LD, is defined as:

LD = E(si, ai)∼D

(
log

∑
a′

exp
(
Qθ(si, a

′)
)
−Qθ(si, ai)

)
(30)

D.4.2 AUXILIARY LOSS FOR CONSISTENCY IN THE WORLD MODEL

In order to avoid overburdening the latent states with extraneous information required to reconstruct
the original input states, like in Model-based RL methods, we utilize self-supervised consistency loss
functions as described in (Schwarzer et al., 2021; Ye et al., 2021). These functions aid in maintaining
consistency within the transition and reward networks. For example, let us assume a state si and the
subsequent state si+1 resulting from action ai. The latent state representations for the environment
states si and si+1 can be computed as hi and hi+1 respectively. The latent state encoding ĥi+1 can
be predicted using the transition module, ĥi+1 = Tθ(hi, ai). We minimize the squared error between
the latent representation hi+1 and ĥi+1, to ensure that the transition function Tθ provides consistent
predictions for the transitions in the latent space. In accordance with the approach detailed in (Ye
et al., 2021), we use a separate encoding network, referred to as the target encoder, to compute target
representations.

LTθ
= E(si, ai, si+1)∼D

[(
ĥi+1 − hi+1

)2
]

(31)

where

ĥi+1 = Tθ(hi, ai)

hi = Eθ(si)
hi+1 = Eθ′(si+1)

The parameters of the target encoder, θ′, are updated using an exponential moving average of the
parameters of the base encoder, θ, as follows.

θ′ ← α θ′ + (1− α) θ

Notably, we refrain from adding projection or prediction networks, as done in Schwarzer et al.
(2021) and Ye et al. (2021), prior to calculating the squared difference as we did not observe any
improvement by doing so.

Further, we also seek to minimize the mean squared error between the predicted rewardRθ(h, a) and
the actual reward observed r in the training dataset D.

LRθ
= E(si, ai, ri)∼D

[(
Rθ(hi, ai)− ri

)2
]

(32)

24

Published as a conference paper at ICLR 2025

D.4.3 FINAL LOSS FUNCTION

The final loss function to train D-TSN is a combination of Behavior Cloning loss and all the auxiliary
losses defined above. It is given by:

L = Eτ

[
λ1LQ + λ2LD

]
+ λ3LTθ

+ λ4LRθ
(33)

where λ1, λ2, λ3 and λ4 serve as weighting hyperparameters.

D.5 BASELINES

To evaluate the efficacy of Tree Search Network, we benchmark it against the following prominent
baselines:

• Model-free Q-network: This allows us to assess the significance of integrating the inductive
biases into the neural network architecture.

• Model-based Search: In this baseline, we assess the benefits derived from the joint opti-
mization of the world model and the search algorithm by training the world models and
value module independently of each other and utilizing them for online search.

• TreeQN: This comparison helps in highlighting the advantages of using a more advanced
search algorithm that can execute a deeper search while maintaining similar computational
constraints.

D.6 IMPLEMENTATION DETAILS

In an effort to assess the distinctive elements of each method’s design, we ensure uniformity in
the number of parameters across all agents. This is achieved by integrating the submodules from
D-TSN into the network architecture of each baseline. However, while the number of parameters are
consistent, the way in which these submodules are utilized to construct the computation graph varies
among the baselines. We provide their implementation details below:

D.6.1 DIFFERENTIABLE TREE SEARCH NETWORK

D-TSN utilizes its submodules in alignment with the best-first search algorithm presented in Sec-
tion 3.2. For our empirical evaluations, we set the maximum limit for search iterations at 10.
Throughout the training process, the computation graph, formulated via online search, is optimized
to accurately predict the Q-values. This optimization serves a dual purpose: it not only refines the
Q-value predictions but also facilitates robust learning for the submodules when they are employed in
context of online search. The loss function utilized for training is:

LD−TSN = Eτ

[
λ1LQ + λ2LD

]
+ λ3LTθ

+ λ4LRθ
(34)

We compute the gradient for this loss as described in Equation (11).

D.6.2 MODEL-FREE Q-NETWORK

In this baseline, the submodules are utilized to perform a one-step look-ahead search. The input
state at the root node undergoes an expansion using the world model, and Q-values are computed
using the Bellman equation represented as Q(s, a) = Rew(h, a) + V al(h′), where h = Enc(s) and
h′ = Tr(h, a). Intriguingly, this structure does encapsulate a basic inductive bias via the 1-step
look-ahead search. However, in keeping with its model-free characteristic, auxiliary losses aren’t
employed for training the transition and reward model. The loss function for this model is:

LQNet = λ1LQ + λ2LD

D.6.3 MODEL-BASED SEARCH

For this approach, we employ the best-first algorithm showcased in Algorithm 1. However, there’s a
difference: the world model and the value module are trained independently, each focusing on their
specific objectives. As outlined in Ye et al. (2021), we incorporate self-supervised consistency losses
defined in Equations (31) and (32) as they improve the online search, even in cases where the world
model is not jointly trained with the online search. The Q-values used for training are computed
directly using the value module without performing online search during training. The loss function
used for this approach is:

LSearch = λ1LQ + λ2LD + λ3LTθ
+ λ4LRθ

25

Published as a conference paper at ICLR 2025

D.6.4 TREEQN

In this baseline, the starting step is encoding the input state to its latent counterpart with the Encoder
module. Following this, a full-tree expansion, based on a predefined depth d, is performed using
both Transition and Reward modules. The values at the leaf nodes are then backpropagated to the
root node via the Bellman equation, as discussed in the Backup phase in Section 3.2. The root node
Q-values serve as the final output, that is utilized for training. Given the exponential growth of
TreeQN’s computation graph with an increase in depth d, we choose a depth of 2 for both Procgen
and navigation domains in our analysis, as used in TreeQN’s original code base (Farquhar et al.,
2018). Notably, greater depths, such as 3 or more, are infeasible since the resulting computation graph
exceeds the memory capacity (roughly 11GB) of a typical consumer-grade GPU. The associated loss
function, as adapted from the original paper, is:

LTreeQN = λ1LQ + λ2LD + λ3LRθ

It is important to note that every method is trained with same datasets using their respective loss
functions. We fine-tune the hyperparameters, λ1, λ2, λ3 and λ4, using grid search on a log scale.

D.7 ISSUE WITH BASELINE NORMALIZED SCORE

Within the context of Atari games, the Baseline Normalized Score (BNS) is frequently utilized to
evaluate the performance of agents. When human players are used as the baseline, it is often termed
Human Normalized Score. The primary allure of BNS lies in its capacity to offer a relative assessment
of an agent’s performance, comparing it against a standard benchmark—this could be human players
or even another agent.

One of the primary benefits of the BNS is its ability to provide a consistent metric across different
games, addressing the difference in scale inherent in raw scores. By enabling the calculation of the
average BNS across multiple games, we gain insight into the overall efficacy of an agent. This not
only facilitates direct performance comparisons between diverse agents and methodologies but also
paints a picture of how the agent’s abilities stack up against human standards.

To derive the BNS, we start by logging the agent’s raw score in an Atari game. This raw score is
then normalized against a baseline score, derived from baseline agent’s performance on the same
game. By dividing the agent’s score by the baseline’s score (and sometimes subtracting the score of a
random agent), we get a relative metric. Mathematically, this can be represented as:

BNS(π) =
Sπ − SR

SB − SR
(35)

Here, Sπ, SB and SR denote the raw scores of the agent, the baseline policy, and a random policy,
respectively. Interpretation-wise, a BNS of 1 indicates parity with the baseline. Values exceeding 1
signify that the method outperforms, while those below 1 indicate that the method underperforms
relative to the baseline.

Nevertheless, the BNS has its frailties. It inherently presumes the baseline policy will always
surpass the performance of the random policy. But there can be instances, contingent on the
environment or the specific baseline policy, where this isn’t the case. In scenarios where the baseline
policy underperforms the random policy, the BNS results in a negative denominator. This poses a
predicament: even if our agent’s policy performs better than the random policy, the BNS unfairly
penalizes it. In our experiments with Procgen, we observed that for 2 out of the 16 games, namely
heist and maze, the baseline policy underperformed compared to the random policy. Given these
pitfalls, our evaluations pivot towards a more robust metric: the Z-score. The Z-score, often termed
as the “standard score", provides a statistical measurement that describes a value’s relationship to the
mean of a group of values. It is measured in terms of standard deviations from the mean. If a Z-score
is 0, it indicates that the data point’s score is identical to the mean score. Z-scores may be positive or
negative, with a positive value indicating the score is above the mean and a negative score indicating
it is below the mean.

26

	Introduction
	Related Works
	 Differentiable Tree Search Network
	Learnable Submodules
	Tree Search in Latent Space
	Construction of Computation Graph
	Discontinuity of the Loss Function
	Enabling Continuity in the Loss Function
	Stochastic Tree Expansion Policy
	Reducing Variance using Telescopic Sum
	Loss Functions

	Experiments
	D-TSN with Known World Model
	Baseline
	Training Dataset
	Results

	D-TSN with Jointly Learned World Model
	Training Datasets
	Baselines
	Results

	Ablation Studies
	The Impact of the REINFORCE Term and the Telescoping Sum Trick
	The Contribution of Auxiliary Losses
	Enhancing Performance through Deeper Search
	Robustness of the World Model

	Conclusion
	 Differentiable Tree Search Network Algorithm
	 Differentiable Tree Search Network Pseudo-code
	Pseudo-code Explanation
	Initialization
	Expansion Phase
	Backup Phase
	Output

	Continuity of the Loss Function
	Derivation of the Gradient of the Expected Loss Function
	Experiments
	Test Domains
	Navigation
	Procgen

	Learning Setup
	Training Datasets
	Navigation
	Procgen

	Loss Functions
	Auxiliary Loss for Out-of-Distribution Actions
	Auxiliary Loss for Consistency in the World Model
	Final Loss Function

	Baselines
	Implementation Details
	 Differentiable Tree Search Network
	Model-free Q-network
	Model-based Search
	TreeQN

	Issue with Baseline Normalized Score

