
Appendix

A Implementation Details

Training details. We train all the networks for 500 epochs with Adam optimizer. The learning rate
is set to 0.001 for Darcy flow and 0.005 for Navier-Stokes. We use learning rate weight decay of 1e-4
for both Navier-Stokes and Darcy flow. The batch size is set to 32. In case of Darcy flow, we also
use cosine annealing for learning rate scheduling. We run all our experiments on a combination of
NVIDIA RTX A6000, NVIDIA GeForce RTX 2080 Ti and 3080 Ti. All networks can easily fit on a
single NVIDIA RTX A6000, but training time varies between the networks.

For FNO-DEQ, we use Anderson solver [Anderson, 1965] to solve for the fixed point in the forward
pass. The maximum number of Anderson solver steps is kept fixed at 32 for Dary Flow, and 16
for Navier Stokes. For the backward pass, we use phantom gradients [Geng et al., 2021] which are
computed as:

u? = ⌧G✓(u
?, a) + (1� ⌧)u? (12)

where ⌧ is a tunable damping factor and u? is the fixed point computed using Anderson solver in the
forward pass. This step can be repeated S times. We use ⌧ = 0.5 and S = 1 for Darcy Flow, and
⌧ = 0.8 and S = 3 for Navier-Stokes.

For the S-FNO-DEQ used in Table 1, we use Broyden’s method [Broyden, 1965] to solve for the
fixed point in the forward pass and use exact implicit gradients, computed through implicit function
theorem as shown in Eq. (6), for the backward pass through DEQ. The maximum number of solver
steps is fixed at 32.

For weight-tied networks, we repeatedly apply the FNO block to the input 12 times for Darcy flow,
and 6 times for Navier-Stokes.

Network architecture details. The width of an FNO layer set to 32 across all the networks.
Additionally, we retain only 12 Fourier modes in FNO layer, and truncate higher Fourier modes. We
use the code provided by Li et al. [2020a] to replicate the results for FNO, and construct rest of the
networks on top of this as described in Sec. 5.

B Datasets

B.1 Darcy Flow

As mentioned in Sec. 5 we use the dataset provided by Li et al. [2020a] for our experiments with
steady-state Darcy-Flow.

All the models are trained on 1024 data samples and tested on 500 samples. The resolution of original
images is 421⇥ 421 which we downsample to 85⇥ 85 for our experiments. For experiments with
noisy inputs/observations, the variance of Gaussian noise that we add to PDEs are [0, 1e-9, 1e-8,
1e-7, 1e-6, 1e-5, 1e-4, 1e-3].

B.2 Steady-State Incompressible Fluid Navier-Stoke

u ·r! = ⌫�! + f, x 2 ⌦

r · u = 0 x 2 ⌦

To generate the dataset for steady-state Navier-Stokes, instead of solving the steady state PDE using
steady-state solvers like the SIMPLE algorithm Patankar and Spalding [1983], we first choose the
solution !? := r⇥ u? of the PDE and then generate the corresponding equation, i.e. calculate the
corresponding force term f = u?

·r!?
� ⌫�!?.

To generate the solutions !?, we forward propagate a relatively simple initial distribution of !0

(sampled from a Gaussian random field) through a time-dependent Navier-Stokes equation in the
vorticity form for a short period of time. This ensures our dataset contains solutions !⇤ that are rich

13

Figure 1: Samples from Darcy Flow

and complex. Precisely, recall the Navier-Stokes equations in their vorticity form:
@t!(x, t) + u(x, t) ·r!(x, t) = ⌫�!(x, t) + g(x) x 2 (0, 2⇡)2, t 2 [0, T]

r · u(x, t) = 0 x 2 (0, 2⇡)2, t 2 [0, T]

!(x, 0) = !0(x) x 2 (0, 2⇡)2
(13)

where g(x) = r⇥ g̃(x) and g̃(x) = sin(5x1)x̂2 is a divergence free forcing term and x = (x1, x2)
are the two coordinates of the input vector. We forward propagate the equations Equation 13
using a pseudo-spectral method using the functions provided in JAX-CFD [Kochkov et al., 2021,
Dresdner et al., 2022] package. The initial vorticity !0 is sampled from a Gaussian random field
N (0, (53/2(I + 25�)�2.5)), which is then made divergence free. We forward propagate the Navier-
Stokes equation in Equation 13 for time T = 0.5 with dt = 0.002 to get !(1, x), which we choose
as the solution to the steady-state PDE in Equation 10, i.e, !? for Equation 10.

Subsequently, we use the stream function [Batchelor and Batchelor, 1967] to calculate u =
(@ /@x1, @ /@x2) by solving the Poisson equation � = ! in the Fourier domain. Furthermore,
since f = u?

· r!?
� ⌫�!? we use the stream function to calculate (f1, f2), i.e., the different

components of the force term.

We use 4500 training samples and 500 testing samples. The input to the network is the vector
field f̃ = (f1, f2) and we learn a map that outputs the vorticity !?. The resolution of grid used to

14

generate the dataset is 256 ⇥ 256 which we downsample to 128 ⇥ 128 while training the models.
For experiments with noisy inputs/observations, we consider two values of maximum variance of
Gaussian noise: 1e-3 and 4e-3. The variances of the Gaussian noise that we add to the PDEs for the
latter case are [0, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 2e-3, 4e-3]. However, when conducting
experiments with a variance of 1e-3, we exclude the last two values of variance from this list.

Figure 2: Samples from Steady-state Navier-Stokes dataset with viscosity 0.001. Each triplet
visualizes the inputs f1, f2 and the ground truth output i.e. !?.

C Proof of Universal Approximation

The proof of the universal approximation essentially follows from the result on the universal approxi-
mation capabilities of FNO layers in Kovachki et al. [2021a], applied to G(v, f) = v � (Lv � f).
For the sake of completeness, we reitarate the key steps.

For simplicity, we will assume that du = dv = df = 1. (The results straightforwardly generalize.)
We will first establish some key technical lemmas and introduce some notation and definitions useful
for the proof for Theorem 1.
Definition 7. An operator T : L2(⌦;R) ! L2(⌦;R) is continuous at u 2 L2(⌦;R) if for every
✏ > 0, there exists a � > 0, such that for all v 2 L2(⌦) with ku � vkL2(⌦)  �, we have
kL(u)� L(v)kL2(⌦)  ✏.

15

Figure 3: Samples from Steady-state Navier-Stokes dataset with viscosity 0.01. Each triplet visualizes
the inputs f1, f2 and the ground truth output i.e. !?.

First, we approximate the infinite dimensional operator G : L2(⌦)⇥ L2(⌦)! L2(⌦) by projecting
the functions in L2(⌦) to a finite-dimensional approximation L2

N (⌦), and considering the action of
the operator on this subspace. The linear projection we use is the one introduced in Equation 11.
More precisely we show the following result,

Lemma 2. Given a continuous operator L : L2(⌦) ! L2(⌦) as defined in Equation 1, let us
define an operator G : L2(⌦) ⇥ L2(⌦) ! L2(⌦) as G(v, f) := v � (L(v) � f). Then, for every
✏ > 0 there exists an N 2 N such that for all v, f in any compact set K ⇢ L2(⌦), the operator
GN = ⇧NG(⇧Nv,⇧Nf) is an ✏-approximation of G(v, f), i.e., we have,

sup
v,f2K

kG(v, f)� GN (v, f)kL2(⌦)  ✏.

Proof. Note that for an ✏ > 0 there exists an N = N(✏, d) such that for all v 2 K we have

sup
v2K
kv �⇧NvkL2(⌦)  ✏.

16

Therefore, using the definition of GN we can bound the L2(⌦) norm of the difference between G and
GN as follows,

kG(v, f)�⇧NG(vn, fn)kL2(⌦)

 kG(v, f)�⇧NG(v, f)kL2(⌦) + k⇧NG(v, f)�⇧NG(⇧Nv,⇧Nf)kL2(⌦)

 kG(v, f)�⇧NG(v, f)kL2(⌦)| {z }
I

+ kG(v, f)� G(⇧Nv,⇧Nf)kL2(⌦)| {z }
II

We first bound the term I as follows:

kG(v, f)�⇧NG(v, f)kL2(⌦)

= kv � (L(v)� f)�⇧N (v � (L(v)� f))kL2(⌦)

= kv �⇧NvkL2(⌦) + kf �⇧NfkL2(⌦) + kL(v)�⇧NL(v)kL2(⌦)

= ✏+ ✏+ kL(v)�⇧NL(v)kL2(⌦) (14)

Since L is continuous, for all compact sets K ⇢ L2(⌦), L(K) is compact as well. This is because:
(1) for any u 2 K, kL(u)kL2(⌦) is finite; (2) for any v 2 K, kL(v)kL2(⌦)  kL(u)kL2(⌦) +Cku�
vkL2(⌦). Therefore, for every ✏ > 0, there exists an N 2 N such that

sup
v2K
kL(v)�⇧NL(v)kL2(⌦)  ✏.

Substituting the above result in Equation 14, we have

kG(v, f)�⇧NG(v, f)kL2(⌦)  3✏. (15)

Similarly, for all v 2 K where K is compact, we can bound Term II as following,

kG(v, f)� G(⇧Nv,⇧Nf)kL2(⌦)

 kv � (L(v)� f)�⇧Nv � (L(⇧Nv)�⇧Nf)kL2(⌦)

 kv �⇧NvkL2(⌦) + kf �⇧NfkL2(⌦) + kL(v)� L(⇧Nv)kL2(⌦)

 ✏+ ✏+ kL(v)� L(⇧Nv)kL2(⌦). (16)

Now, since v 2 K and L : L2(⌦) ! L2(⌦) is a continuous operator, there exists a modulus of
continuity (an increasing real valued function) ↵ 2 [0,1), such that for all v 2 K, we have

kL(v)� L(⇧Nv)kL2(⌦)  ↵
�
kv �⇧NvkL2(⌦)

�

Hence for every ✏ > 0 there exists an N 2 N such that,

↵(kv �⇧NvkL2(⌦))  ✏.

Plugging these bounds in Equation 16, we get,

kG(v, f)� G(⇧Nv,⇧Nf)kL2(⌦)  3✏. (17)

Therefore, combining Equation 15 and Equation 17 then for ✏ > 0, there exists an N 2 N, such that
for all v, f 2 K we have

sup
v,f2K

kG(v, f)�⇧NG(vn, fn)kL2(⌦)  6✏. (18)

Taking ✏0 = 6✏ proves the claim.

Proof of Theorem 1. For Lemma 2 we know that there exists a finite dimensional projection for the
operator G, defined as GN (v, f) such that for all v, f 2 L2(⌦) we have

kG(v, f)� GN (v, f)kL2(⌦)  ✏.

Now using the definition of GN (v, f) we have

GN (v, f) = ⇧NG(⇧Nv,⇧Nf)

= ⇧Nv � (⇧NL(⇧Nv)�⇧Nf)

17

From Kovachki et al. [2021a], Theorem 2.4 we know that there exists an FNO network G✓L of the form
defined in Equation 2 such that for all v 2 K, where K is a compact set, there exists an ✏L we have

sup
v2K
k⇧NL(⇧Nv)�G✓LkL2(⌦)  ✏L (19)

Finally, note that from Lemma D.1 in Kovachki et al. [2021a], we have that for any v 2 K, there
exists an FNO layers G✓f 2 L2(⌦) and G✓v 2 L2(⌦) defined in Equation 3 such that

sup
v2K
k⇧Nv �G✓vkL2(⌦)  ✏v (20)

and
sup
f2K
k⇧Nf �G✓f kL2(⌦)  ✏f (21)

for ✏v > 0 and ✏f > 0.

Therefore there exists an ✏̃ > such that there is an FNO network G✓ : L2(⌦) ⇥ L2(⌦) ! L2(⌦)
where ✓ := {✓L, ✓v, ✓f} such that

sup
v2K,f2L2(⌦)

kGN (v, f)�G✓(v, f)kL2(⌦)  ✏̃ (22)

Now, since we know that u? is the fixed point of the operator G we have from Lemma 2 and
Equation 22,

kG(u?, f)�G✓(u
?, f)kL2(⌦)  ku

?
� GN (u?, f)kL2(⌦) + kGN (u?, f)�G✓(u

?, f)kL2(⌦)

 ✏̃+ ✏.

D Fast Convergence for Newton Method

Definition 8 (Frechet Derivative in L2(⌦)). For a continuous operator F : L2(⌦) ! L2(⌦), the
Frechet derivative at u 2 L2(⌦) is a linear operator F 0(u) : L2(⌦) ! L2(⌦) such that for all
v 2 L2(⌦) we have

lim
kvkL2(⌦)!0

kF (u+ v)� F (u)� F 0(u)(v)kL2(⌦)

kvkL2(⌦)
= 0.

Lemma 3. Given the operator L : L2(⌦) ! L2(⌦) with Frechet derivative L0, such that for all
u, v 2 L2(⌦), we have kL0(u)(v)kL2(⌦) � �kvkL2(⌦), then L0(u)�1 exists and we have, for all
v1, v2 2 L2(⌦):

1. kL0(u)�1(v1)kL2(⌦) 
1
�kv1kL2(⌦).

2. kv1 � v2kL2(⌦) 
1
�kL(v1)� L(v2)kL2(⌦)

Proof. Note that for all u, v0 2 L2(⌦) we have,

kL0(u)v0kL2(⌦) � �kv0kL2(⌦)

Taking v = L0(u)�1(v0), we have

kL0(u)
�
L0(u)�1(v)

�
kL2(⌦) � �kL�1(u)(v)kL2(⌦)

=)
1

�
kvkL2(⌦) � kL

�1(u)(v)kL2(⌦).

For part 2, note that there exists a c 2 [0, 1] such that

kL(v1)� L(v2)kL2(⌦) � inf
c2[0,1]

kL0(cv1 + (1� c)v2)k2kv1 � v2kL2(⌦) � �kv1 � v2kL2(⌦).

18

We now show the proof for Lemma 4. The proof is standard and can be found in Faragó and Karátson
[2002], however we include the complete proof here for the sake of completeness.

We restate the Lemma here for the convenience of the reader.
Lemma 4 (Faragó and Karátson [2002], Chapter 5). Consider the PDE defined Definition 2, such
that du = dv = df = 1. such that L0(u) defines the Frechet derivative of the operator L. If for
all u, v 2 L2(⌦;R) we have kL0(u)vkL2(⌦) � �kvkL2(⌦)

7 and kL0(u) � L0(v)kL2(⌦)  ⇤ku �
vkL2(⌦) for 0 < �  ⇤ < 1, then for the Newton update, ut+1 ut � L0(ut)�1 (L(ut)� f) ,
with u0 2 L2(⌦;R), there exists an ✏ > 0, such that kuT � u?

kL2(⌦)  ✏ if 8 T �

log
⇣
log

�
1
✏

�
/ log

⇣
2�2

⇤kL(u0)�fkL2(⌦)

⌘⌘
.

Proof of Lemma 4. Re-writing the updates in Lemma 4 as,
ut+1 = ut + pt (23)

L0(ut)pt = �(L(ut)� f) (24)
Now, upper bounding L(ut+1)� f for all x 2 ⌦ we have,
L(ut+1(x))� f(x)

= L(ut(x))� f(x) +

Z 1

0
(L0(ut(x) + t(ut+1(x)� ut(x)))) (ut+1(x)� ut(x))dt

= L(ut(x))� f(x) + L0(ut(x))pt(x) +

Z 1

0
(L0(ut(x) + t(ut+1(x)� ut(x)))� L0(ut(x))) pt(x)dt

=

Z 1

0
(L0(ut(x) + t(ut+1(x)� ut(x)))� L0(ut(x))) pt(x)dt

where we use Equation 24 in the final step.

Taking L2(⌦) norm on both sides and using the fact that kL0(u)� L0(v)kL2(⌦)  ⇤ku� vkL2(⌦),
we have

kL(ut+1)� fkL2(⌦) 

Z 1

0
⇤tkut+1 � utkL2(⌦)kptkL2(⌦)dt

Noting that for all x 2 ⌦, we have ut+1 � ut = pt, and using the fact that for all u, v
kL0(u)�1vkL2(⌦) 

1
�kvkL2(⌦) we have, kL0(ut)ptkL2(⌦) 

1
�kptkL2(⌦)

kL(ut+1)� fkL2(⌦) 

Z 1

0
⇤tkut+1 � ukL2(⌦)kptkL2(⌦)dt

 ⇤/2kptk
2
L2(⌦)

 ⇤/2k � L0(ut)
�1(L(ut)� f)k2L2(⌦)


⇤

2�2
kL(ut)� f)k2L2(⌦)

where we use the result from Lemma 3 in the last step.

Therefore we have

kL(ut+1)� fkL2(⌦) 

✓
⇤

2�2

◆2t�1

(L(u0)� f)2
t

=) kL(ut+1)� fkL2(⌦) 

✓
⇤

2�2

◆2t�1

(L(u0)� L(u?))2
t

=) kut+1 � u?
kL2(⌦) 

1

�

✓
⇤

2�2

◆2t�1

kL(u0)� L(u?)k2
t

L2(⌦) .

7We note that this condition is different from the condition on the inner-product in the submitted version of
the paper, which had. hL0(u), viL2(⌦) � �kvkL2(⌦).

8We note that this rate is different from the one in the submitted version of the paper.

19

Therefore, if
⇤

2�2
kL(u0)� L(u?)kL2(⌦)  1,

then we have

kut+1 � u?
kL2(⌦)  ✏,

for

T � log

✓
log

✓
1

✏

◆
/ log

✓
2�2

⇤kL(u0)� fkL2(⌦)

◆◆
.

E Additional experimental results

We provide additional results for Navier-Stokes equation for noisy inputs and observations in Table 4
and Table 5. For these experiments, the maximum variance of Gaussian noise added to inputs and
observations is 0.004. We observe that weight-tied FNO and FNO-DEQ outperform non-weight-tied
architectures.

Architecture Parameters #Blocks
Test error #

�2
max = 0 (�2

max)
i = 0.004 (�2

max)
t = 0.004

FNO 2.37M 1 0.184 ± 0.002 0.238 ± 0.008 0.179 ± 0.004
FNO 4.15M 2 0.162 ± 0.024 0.196 ± 0.011 0.151 ± 0.010
FNO 7.71M 4 0.157 ± 0.012 0.216 ± 0.002 0.158 ± 0.009

FNO++ 2.37M 1 0.199 ± 0.001 0.255 ± 0.002 0.197 ± 0.004
FNO++ 4.15M 2 0.154 ± 0.005 0.188 ± 0.006 0.157 ± 0.006
FNO++ 7.71M 4 0.151 ± 0.003 0.184 ± 0.008 0.147 ± 0.004

FNO-WT 2.37M 1 0.151 ± 0.007 0.183 ± 0.026 0.129 ± 0.018
FNO-DEQ 2.37M 1 0.128 ± 0.004 0.159 ± 0.005 0.121 ± 0.015

Table 4: Results on incompressible Steady-State Navier-Stokes (viscosity=0.001): clean data
(Col 4), noisy inputs (Col 5) and noisy observations (Col 6) with max variance of added noise being
(�2

max)
i and (�2

max)
t, respectively. Reported test error has been averaged on three different runs with

seeds 0, 1, and 2.
‡ indicates that the network diverges during training for one of the seeds.

Architecture Parameters #Blocks
Test error #

�2
max = 0 (�2

max)
i = 0.004 (�2

max)
t = 0.004

FNO 2.37M 1 0.181 ± 0.005 0.207 ± 0.003 0.178 ± 0.008
FNO 4.15M 2 0.138 ± 0.007 0.163 ± 0.003 0.137 ± 0.006
FNO 7.71M 4 0.152 ± 0.006 0.203 ± 0.055 0.151 ± 0.008

FNO++ 2.37M 1 0.188 ± 0.002 0.217 ± 0.001 0.187 ± 0.005
FNO++ 4.15M 2 0.139 ± 0.004 0.170 ± 0.005 0.138 ± 0.005
FNO++ 7.71M 4 0.130 ± 0.005 0.168 ± 0.007 0.126 ± 0.007

FNO-WT 2.37M 1 0.099 ± 0.007 0.159 ± 0.029 0.123 ± 0.023
FNO-DEQ 2.37M 1 0.088 ± 0.006 0.104 ± 0.001 0.116 ± 0.005

Table 5: Results on incompressible Steady-State Navier-Stokes (viscosity=0.01): clean data (Col
4), noisy inputs (Col 5) and noisy observations (Col 6) with max variance of added noise being
(�2

max)
i and (�2

max)
t, respectively. Reported test error has been averaged on three different runs with

seeds 0, 1, and 2.
‡ indicates that the network diverges during training for one of the seeds.

20

Convergence analysis of fixed point. We report variations in test error, absolute residual kG✓(zt)�

ztk2, and relative residual kG✓(zt)�ztk2

kztk2
with an increase in the number of solver steps while solving

for the fixed point in FNO-DEQ, for both Darcy Flow (See Table 6) and Steady-State Navier Stokes
(See Table 7). We observe that all these values decrease with increase in the number of fixed point
solver iterations and eventually saturate once we have a reasonable estimate of the fixed point. We
observe that increasing the number of fixed point solver iterations results in a better estimation of the
fixed point. For steady state PDEs, we expect the test error to reduce as the estimation of the fixed
point improves. Furthermore, at inference time we observe that the test error improves (i.e. reduces)
with increase in the number of fixed point solver iterations even though the FNO-DEQ is trained with
fewer solver steps. For Navier-Stokes with viscosity 0.01, at inference time we get a test MSE loss of
0.0744 with 48 solver steps from 0.0847 when used with 24 solver steps.

This further bolsters the benefits of DEQs (and weight-tied architectures in general) for training
neural operators for steady-state PDEs. Moreover, performance saturates after a certain point once
we have a reasonable estimate of the fixed point, hence showing that more solver steps stabilize to the
same solution.

Solver steps Absolute residual # Relative residual # Test Error #

2 212.86 0.8533 0.0777
4 18.166 0.0878 0.0269
8 0.3530 0.00166 0.00567
16 0.00239 1.13e-5 0.00566
32 0.000234 1.1e-6 0.00566

Table 6: Convergence analysis of fixed point for noiseless Darcy Flow: The test error, absolute residual
kG✓(zt)�ztk2 and relative residual kG✓(zt)�ztk2

kztk2
decrease with increase in the number of fixed point

solver iterations. The performance saturates after a certain point once we have a reasonable estimate
of the fixed point. We consider the noiseless case, where we do not add any noise to inputs or targets.

Solver steps Absolute residual # Relative residual # Test Error #

4 544.16 0.542 0.926
8 397.75 0.408 0.515
16 150.33 0.157 0.147
24 37.671 0.0396 0.0847
48 5.625 0.0059 0.0744
64 3.3 0.0034 0.0746

Table 7: Convergence analysis of fixed point for noiseless incompressible Steady-State Navier-
Stokes with viscosity=0.01: The test error, absolute residual kG✓(zt)� ztk2 and relative residual
kG✓(zt)�ztk2

kztk2
decrease with increase in the number of fixed point solver iterations. The performance

saturates after a certain point once we have a reasonable estimate of the fixed point. We consider the
noiseless case, where we do not add any noise to inputs or targets.

21

(a) Training Loss Curve

(b) Test Loss Curve

Figure 4: Training and Test Loss Curves for Steady-State Navier-Stokes with viscosity 0.01. The x
axis is the number of epochs and y axis is the MSE loss in log scale. Note that while all the models
converge to approximately the same MSE loss value while training, DEQs and weight-tied networks
get a better test loss in fewer epochs.

22

	Introduction
	Related Work
	Preliminaries
	Neural Operators
	Equilibrium Models

	Problem setting
	Experiments
	Darcy Flow
	Steady-state Navier-Stokes Equations for Incompressible Flow

	Universal Approximation and Fast Convergence of FNO-DEQ
	Conclusion
	Acknowledgements
	Implementation Details
	Datasets
	Darcy Flow
	Steady-State Incompressible Fluid Navier-Stoke

	Proof of Universal Approximation
	Fast Convergence for Newton Method
	Additional experimental results

