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A APPENDIX

A.1 OVERVIEW

This material provides additional details about the proposed EMind and EMdata-81M, as well as
experimental settings and results not included in the main text due to page limit. Its organization is
as follows:

Sec. [AZ2] visualizes the samples of EMdata-81M and category and annotation details.
Sec. [A3] provides model architecture details of EMind.
Sec. [A4]provides the full experiment configurations of pretraining and downstream tasks.

Sec. [A.5]provides more visualizationresults and implentment details of BSS and SD.

A.2 MORE DETAILS ON EMDATA-81M

A.2.1 SAMPLE VISUALIZATIONS
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Figure 1: Visualization of signal samples of EMdata-81M, four samples are randomly drawn from each dataset.
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A.2.2 CATEGORY DETAILS

EMdata-81M stands out in terms of scene types, signal lengths, and dataset scale, as shown in
Figure[2]

Specifically, EMdata-81M encompasses four scene types: communication, radar, RF, and interfer-
ence.

Eight signal types are included: airborne detection radar, airborne range radar, air-ground MTI
radar, ground mapping radar, radar altimeter, SATCOM, AM radio, and short-range wireless.

Twenty-nine modulation schemes are covered: BPSK, QPSK, 8PSK, 16PSK, 32PSK, 64PSK,
4QAM, 8QAM, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, 2FSK, 4FSK, 8FSK, 16FSK,
4PAM, 8PAM, 16PAM, AM-DSB, AM-DSB-SC, AM-USB, AM-LSB, FM, PM, MORSE, PSK31,
and PSK63.

Nine radar waveforms are included: coherent pulse train, barker code, polyphase barker code,
frank code, linear frequency modulated (LFM), rectangular, phase coded, stepped FM, and custom
FM.

Twelve interference types are also included: pure noise, intermittent sampling forwarding inter-
ference, spot-jamming interference, blocking interference, frequency-sweeping interference, range-
fooling interference, dense false target interference, smart noise interference, chaff interference,
chaff interference combined with intermittent sampling forwarding interference, dense false target
interference combined with smart noise interference, and range-fooling interference combined with
FM-sweeping interference.

SCENE TYPE communication radar radio frequency interference

airborne detection radar air-ground MTI radar radar altimeter AM radio
SIGNAL TYPE
airborne range radar ground mapping radar SATCOM  short-range wireless

BPSK QPSK SPSK 16PSK  32PSK  64PSK  4QAM 8QAM
16QAM 32QAM  64QAM 128QAM 256QAM 2FSK 4FSK

MODULATION SCHEME
8FSK 16FSK 4PAM 8PAM  16PAM AM-DSB AM-DSB-5C
AM-USB AM-LSB FM PM MORSE PSK31 PSK63
coherent pulse train barker code polyphase barker code frank code
RADAR WAVEFORM

LFM rectangular phase coded stepped FM custom FM
pure noise intermittent sampling forwarding interference spot-jamming interference
blocking interference frequency-sweeping interference range-fooling interference
dense false target interference smart noise interference chaff interference

INTERFERENCE TYPE . : o _ : o
chaff mterference combined with intermittent sampling forwarding interference

dense false target interference combined with smart noise interference

range-fooling interference combmed with FM-sweeping interference

Figure 2: Category Details of EMdata-81M.

A.2.3 ANNOTATION DETAILS

We standardize the annotations for signal attributes and extract the following 17 key attributes:

ig_data, dataset_name, sampling_rate, device_id, transmission_id,
infer_class, snr, 1isr, modulation_type, radar_waveform_type,
pri, pulse_time_delay, number_of_pulses, pulse_width, bandwidth,
amplitude, radar_segmentation_type

The attribute is set to None if any of these fields are missing in a specific dataset.
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A.3 MORE DETAILS OF EMIND ARCHITECTURE

The sampling rate is a special attribute of electromagnetic signals, varying widely across different
datasets with a dynamic range from kilohertz to megahertz. We dynamically insert a “sampling
rate token” for each signal sample. We modify the network architecture so that the sampling rate
token is excluded from random masking but always participates in training, enabling the model to
naturally acquire the sampling rate information corresponding to the current signal and allowing
tasks sensitive to sampling rate, such as pulse width, pulse repetition interval (PRI), and bandwidth,
to be properly aligned.

A.4 CONFIGURATIONS OF PRE-TRAINING AND FINE-TUNING

A.4.1 PRE-TRAINING SETUP

Two versions of the foundation model, EMind-Base and EMind-Large are released, using data with a
signal-to-noise ratio (SNR) greater than 6 for pretraining whenever available. EMind-Base consists
of a 12-layer encoder and an 8-layer decoder, with a mask ratio of 75%, a patch size of 8, a maximum
sequence length of 6,000, and employs the eager attention mechanism. It is trained for 10 epochs
with a batch size of 40, using the AdamW optimizer with a base learning rate of 1e~* and a warm-up
ratio of 10%, resulting in a total of 85.88 million parameters. EMind-Large increases the encoder
depth to 24 layers, resulting in a total of 303.67 million parameters.

A.4.2 DATASET SAMPLING WEIGHTS

To enhance the model’s adaptability across different datasets, we propose an adjustable dataset
weighting sampling mechanism. This mechanism reduces the sampling ratio for datasets prone to
overfitting and increases it for datasets that are difficult to learn, thereby improving the model’s abil-
ity to capture features from challenging subsets during training and enhancing overall generalization
performance. Ultimately, the sampling ratios for our pretraining datasets are set as follows:

EM-Comm 1  HisarMod2019.1 0.5
Panoradio HF 1 RadarCommDataset 1
EM-RadarParalQSim 0.5 EM-Radar 0.5
WiSig 1 Northeastern RF 1
POWDER 1  Transmitter Classification 1
LoRa RF Datasets 1  Mono Receiver 1
DroneRFa 0.5 EM-Infer-Radar-v2 0.5

The final pretrained weight is taken from the last iteration of epoch 3.6.

A.4.3 SIGNAL DATA PREPROCESSING

The 1Q data are normalized using absolute magnitude normalization. Considering the physical char-
acteristics of EM signals, the magnitude often directly reflects the signal’s strength and energy dis-
tribution. Applying absolute magnitude normalization helps preserve this critical feature, to enhance
the model’s ability to perceive the physical properties of the signal, which is

IQ = IQ/(max(|IQ)). (1)

The regression parameters are also normalized, particularly when dealing with small time values
(such as radar parameters in us), to improve the training performance and convergence of regression
tasks. For radar parameters, min-max normalization is applied.

A.4.4 MORE DETAILS OF DOWNSTREAM TASK SETUPS

For the few-shot experiments on RML2016.10A, we followed the few-shot experiment settings by
randomly selecting 50 or 100 samples per modulation class and SNR level from the training set
to form the support set, with the remaining samples used for validation and testing. Similarly, for
RadChar, experiments are conducted under 10-shot, 50-shot, and 100-shot settings, as shown in
Table (1| The table also provides configuration details of fine-tuning experiments.
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Table 1: Downstream Dataset Setting and Splitting Strategy.

SIGNAL
TASK DATASET ATTRIBUTE LENGTH FINE-TUNE SETTING FEW-SHOT SETTING

RML2016.10A modulation 128 1:9 50 or 100 samples/class/SNR
RML2016.10B modulation 128 1:9
RML2016.10C modulation 128 1:9
RML2018.01A modulation 1,024 1:9
CLASSIFICATION ADS-B device id 3,000 1:9
EM-AIS device id 3,840 55
EM-Infer-Comm infer class 1,024 1:9
EM-Infer-Radar infer class 1,024 1:9

radar waveform type 10 or 50 or 100 samples/class/SNR
pulse repetition interval (PRI)
REGRESSION RadChar pluse time delay 512 70:15
number of pulses
pluse width

EM-Radar-Mix iq data 1,024 8:1
RECONSTRUCTION EM-Signal-Denoise iq data 1,024 8:1

A.4.5 MORE DETAILS OF DOWNSTREAM DATASETS

This section provides an overview of the self-curated downstream datasets.

EM-AIS dataset is collected using a high-frequency receiver. This dataset uses the Maritime Mobile
Service Identity (MMSI) as a unique device identifier (device_id) for vessel identification. MMSI
consists of 9 digits and can uniquely identify ships, offshore facilities, and shore-based radio stations.
A total of 12,531 samples are collected. Since the original EM-AIS signal sequences are relatively
long (11,520), we applied threefold downsampling based on their bandwidth characteristics and the
Nyquist sampling criterion, resulting in a final signal length of 3,840.

The interference dataset is synthetically generated and consists of two parts: the communication in-
terference dataset EM-Infer-Comm and the radar interference dataset EM-Infer-Radar. It is designed
to provide diverse training data for evaluating the performance of communication and radar systems
in interference environments. EM-Infer-Comm includes five types of communication signals, with
different modulation schemes set for each signal type. In addition, the dataset covers nine types
of interference, which are simulated under various real-world complex conditions using different
parameters such as interference duration, frequency, and bandwidth. EM-Infer-Radar includes five
types of radar signal schemes, simulating the various signal forms that a radar system may encounter
in real-world applications. To ensure data diversity, the dataset also incorporates twelve types of in-
terference, enabling a comprehensive evaluation of radar system performance under interference
conditions.

EM-Radar-Mix is a simulated blind source separation dataset, consisting of eight types of radar
signals with a SNR of 12 dB as source signals. When constructing samples, these signals are com-
bined in groups of two or fewer, and the specific signal types mixed in each sample are unknown to
the model, thus forming a typical blind source separation scenario. In this task, the model is required
to recover the original components from the mixed signals without prior knowledge of the number
of sources, signal constituents, or their structure.

EM-Denoise-Signal is a high-fidelity simulated dataset specifically constructed for electromagnetic
signal denoising tasks. It covers typical protocols in both communication and radar domains, with
20 modulation schemes. All samples are corrupted with additive white Gaussian noise (AWGN),
with a signal-to-noise ratio (SNR) ranging from —3 dB to 20 dB, and additionally incorporate system
frequency offsets (50 kHz) as well as IQ amplitude and phase imbalance modeling.

A.4.6 METRICS

To systematically and comprehensively evaluate the model’s performance, we introduce multiple
evaluation metrics covering quantitative analysis across different task dimensions, including classi-
fication, regression, blind source separation and signal denoise.

In classification tasks, Overall Accuracy (OA) is used to measure the overall classification perfor-
mance. OA represents the proportion of correctly predicted samples to the total number of samples,
reflecting the model’s average classification accuracy across all test samples, which is,

k

OA = LT”L @)
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where n;; denotes the number of samples correctly classified for class ¢, k is the total number of
classes, N is the total number of samples. OA ranges from 0O to 1, with higher values indicating
better classification performance.

In regression tasks, Mean Absolute Error (MAE) is used as a evluation metric. MAE is defined as
the average of the absolute differences between the predicted values and the true values, effectively
measuring the deviation of the model’s predictions from the ground truth, which is,

N
1
MAE = — il 3
N;:lly ¥il (3)

where y; is the true value, ¥; is the predicted value, and NV is the total number of samples.

In the blind source separation task, we evaluate performance on 100 randomly selected test samples.
The metrics include signal-to-distortion ratio (SDR), signal-to-interference ratio (SIR), signal-to-
artifact ratio (SAR), and scale-invariant SDR (SI-SDR), and mean squared error (MSE). Specifically,
SDR quantifies the ratio of the target signal power to all distortion components (including noise,
interference, and artifacts), representing the overall separation quality, which is,

2
SDR = 10log, M )
||etolal ”
SIR reflects the model’s ability to suppress interference from other sources:
2
SIR = 10logy, M )
||eimerf ||

SAR quantifies the amount of artifacts introduced during separation, indicating the proportion of
spurious components:

||5target + Cinterf ||2

SAR = 10log;, 5
| €arit ||

(6)

SI-SDR removes the influence of gain in SDR to provide a more robust evaluation of signal quality:
2 a7
SI— SDR = 10log,, |a3| a=>2 %

as—3[27 7 Il

MSE measures the overall reconstruction accuracy of the separated signal relative to the reference
signal in the time domain, which is,

N
1 A2
MSE = N ; (si —8i)7, (3)
where s; is the reference signal and §; is the estimated signal. For the denoising task, we adopt MSE
as the evaluation metric, as well.

In few-shot classification tasks, Cohen’s Kappa coefficient (Kappa) is further introduced. It is a sta-
tistical measure used to assess inter-rater agreement or classification reliability, taking into account
the possibility of agreement occurring by chance, serving as a more stringent metric for evaluating
overall classification consistency. Kappa is defined as:

OA — Pg
K = — 9
appa = - ©)
where OA is the observed accuracy, and Py is the expected agreement by chance, calculated as:
k k
k (Zj:l LT ED I ”ji)
Pp=Y" =2 : (10)

i=1

where n;; denotes the number of samples whose true class is 7 but are classified as class j. The value
of Kappa ranges from -1 to 1, where Kappa = 1 indicates perfect agreement, Kappa = 0 indicates
agreement equivalent to chance, and Kappa ; O indicates agreement worse than chance.Together
with other metrics, it provides a comprehensive quantitative basis for evaluating model performance
across multi-task and multi-dimensional scenarios.



Under review as a conference paper at ICLR 2026

A.5 MORE EXPERIMENTS

A.5.1 MORE DETAILS OF BLIND SOURCE SEPARATION

To acieve blind source separation, a fine-tuning framework based on an autoencoder (AE) is de-
signed. The AE architecture is first initialized with the identifiable latent variables obtained from the
pre-trained masked autoencoder (MAE) reconstruction task model, thereby preserving high-level se-
mantic information. Multiple linear compression layers are then introduced on top of the pre-trained
model, and the decoder capacity is restricted to map the mixed signal into a low-dimensional latent
space, forcing the model to extract concise and discriminative latent features. As shown in Table 2]
the linear compression layers are applied layer-by-layer according to the preset hidden dimensions,
and a final linear projection compresses the features into a fixed number of K channels (K = 2
in our setting), each represented by a 16-dimensional vector, to reduce the signal representation
complexity. During training, the loss function comprises a reconstruction loss and an /5 regulariza-
tion term on the latent representation. The reconstruction loss can be applied to either the mixed
signals or to each individual separated prediction, with individual reconstruction loss resolved by
a permutation-invariant training strategy to handle signal order ambiguity. The /5 regularization
encourages the prediction to remain stable, sparse, and discriminative. This MAE semantic initial-
ization and AE fine-tuning framework retains the semantics learned by MAE and enables effective
separation of latent source signals under unsupervised conditions.

Table 2: Model layers architecture for the downstream task of blind source separation. Note: K = 2.

INPUT Layer 1 Layer2 Layer3 Layer4 OUTPUT
DEne X numpaien, 4096 2048 1536 1024 16K

Figure 3| shows the visualization results of the blind source separation task. Figure 3] (a) is the input
mixed IQ signals, Figure 3| (b) shows the separation results from training from scratch, Figure 3] (c)
shows the separation results after fine-tuning by loading the pre-trained model, and (d) is the ground
truth. From these visualizations, we can intuitively observe the profound impact of pre-trained
model on performance. After loading the pre-trained model, the model quickly converges to the
ideal separation results, successfully distinguishing signals from different sources, and performing
excellently in terms of signal integrity and accuracy. In contrast, without pre-trained weights, the
solution to this ill-posed problem tends to be infinitely many, and unsupervised training struggles to
obtain a sufficiently general representation of 1Q signals. The model faces significant difficulties in
signal separation, unable to effectively extract the key features of the signals, ultimately leading to
separation failure.

Signal channal Signal channal Signal 1

— — —
05 — 05 —0 05 —
£ 00 £ 00 20
Signal (Original) £
05 05 05

0 -10 -1,
000000 000005 000010 000015 000020 000000 000005 000010 000015 000020 000000 000005 000010 000015 000020
00 Time (s) Time (s) Time (s)

Amplitud:

Amplitud

sl Signal channal Signal channal Signal 2

—a — — —

- —a —a —a
oo oodos oo ooools  oosow 05 05 05
wwwwwww $

Amplitude
A

Amplitud

-10 -10 -1
000000 000005 000010 000015 000020 000000 000005 000010 000015 000020 000000 000005 000010 000015 000020
Time (5) Time (s) Time (5)

(a) Input: Mixed 1Q Samples (b) Prediction of Training from Scratch (¢) Prediction of Fine-tuning (d) Ground Truth
Figure 3: Visualization of signal blind source separation (BSS) results. (a) mixed signal input, (b) prediction of
training from scratch, (c) prediction of fine-tuning, (d) ground truth. The comparative results demonstrate that
the model is effective in the blind source separation task, achieving good consistency in both amplitude and
phase alignment.

A.5.2 VISUALIZATION OF SIGNAL DENOISE

For our model framework, the input consists of noisy signals, with no denoised signals available as
supervision. Using an autoencoder, the model is able to separate the true signal from the noisy input.

Further visualization results are shown in Fig[d] Under noisy input (Noise IQ) conditions, the model
initialized with pre-trained weights significantly outperforms training from scratch, with its denoised
predictions being more consistent with the ground truth in terms of both amplitude and phase.
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Figure 4: Visualization of IQ signal denoising. (a) noise 1Q input, (b) prediction of training from scratch, (c)
prediction of fine-tuning, (d) ground truth. The comparison illustrates the model’s effectiveness in denoising,
achieving consistency in amplitude and phase alignment.
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