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Figure 5: Block diagram from the gated inverse-bottleneck feed forward block used for the networks.

A Network Architecture

A.1 Feed-Forward Block

A custom feed-forward block, derived from the successful ConvNeXt [55] and transformer models
[59], is the foundation of the networks in this study. This block features an inverted bottleneck formed
by three linear layers, a GELU activation [60]], layer normalization [61]] for regularization, and a gated
residual connection inspired by GTRXL [62]. The block uses a GRU recurrent layer instead of a
traditional skip connection, where the regular output is the input to the GRU and the skip-connection
value is the hidden input. A complete block diagram of the feed-forward block is presented in Figure

A.2 Detector Encoder

The detector encoder network, as defined in SPANet [63}154], processes variable-length sets of detector
observations into a fixed-size D-dimensional vector. It uses the gated transformer architecture from
SPANet version 2, with Ng transformer encoder blocks. Instead of utilizing the tensor attention layers,
an event-level representation of the detector observations is extracted from the central transformer
encoder.

A.3 Parton Encoder

The encoder starts with an embedding layer, transforming the fixed-size 55 dimensional parton
representation into a D-dimensional vector via a linear layer. The encoder’s body comprises Ng
feed-forward blocks arranged in series. The input can be the embedded D-dimensional parton vector,
or its concatenation with the D-dimensional encoded detector data. Two independent networks, each
accepting identical input and sharing the same block structure, predict the mean, pg(z;2,), and
the log standard deviation, log og(x; z,), respectively. Normalizing and then scaling the mean also

helped prevent the encoder from learning very small-valued components: W% po(x; 2y)

A4 Parton Decoder

The decoder retains the encoder’s linear block structure. As a deterministic decoder, it comprises
a single stack of Np feed-forward blocks and a concluding linear layer mapping D dimensions

back to 55. Conditional decoders also append the D-dimensional detector vector to the input before
processing.
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A.5 Denoising Network

The denoising network, employing the same linear block structure, consists of NV, feed-forward blocks.
It maps the D-dimensional latent sample z; to the approximate noise that produced it, eg(z, t, 2y ).
The time, ¢ € [0, 1], is encoded with a 32-dimensional sinusoidal position encoding as detailed in
[S9]]. The latent vector, position encoding, and conditioning are concatenated and fed through the
feed-forward network to produce the noise estimate.

B Hyperparameters

We present a full table of hyperparameters used throughout the experiments. All models use the same
set of parameters, ignoring any that do not apply to particle methods. Parameters were not tuned
using rigorous search. The detector transformer parameters were extract from experiments presented
in SPANet [54]], and the other networks where tuned to contain a similar number of parameters as the
detector encoder.

Parameter Value
Latent Dimensionality (D) 96
Attention Heads 4

Inverse Bottleneck Expansion (k) 2
Detector Transformer Encoder Layers (Ng) | 8
Parton Encoder Blocks (Ng) 6
Parton Decoder Blocks (Np) 6
Denoising Network Blocks (V) 1

5

1

Primary Learning Rate -1074
Fine-tuning Learning Rate -1074
L5 Gradient Clipping Limit 1.0
Consistency Loss Scale (\¢) 0.1
Batch Size (Per GPU) 4096

Table 2: Table of complete hyperparameters used for training all generative models

C Distance Metrics

As the parton global distributions do not have a known family of distributions to describe their
components, model-free measures of distribution distance must be used to evaluate the models. Three
different families of distance measures are used. These non-parametric distances are only defined
for 1-dimensional distributions. As there is no commonly accepted way of measuring distance for
N-dimensional distributions, the 1-dimensional distances are simply summed across the components.
Although not ideal, it is enough to compare different models and rank them based on performance.

C.1 Wasserstein Distance

The Wasserstein distance, often referred to as the earth-mover distance, quantifies the amount of
work it takes to reshape one distribution into another. This concept originated from the field of
optimal transport and has found wide applications in many areas, including machine learning. An
equivalent definition defines this distance as the minimum cost to move and transform the mass of one
distribution to match another distribution. For a pair of 1-dimensional distribution samples, denoted
u and v, the Wasserstein distance can be computed in a bin-independent manner. This is achieved
by computing the integral of the absolute difference between their empirical cumulative distribution
functions (CDFs), U(x) and V(x).

DWasserstein(Uy U) = / ‘U(ZL’) - V(I)|d$
C.2 Energy Distance
Energy distance is another statistical measure used to quantify the difference between two probability

distributions based on empericial CDFs. It compares the expected distance between random variables
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drawn from the same distribution (intra-distribution) with the expected distance between random
variables drawn from different distributions (inter-distribution). The Energy distance may be defined
as the squared variant of the Wasserstein distance.

DEnergy(u’v) = \/2 /_OO (U([L‘) - V(x))z dx

C.3 Kolmogorov-Smirnov Test

The two-sample Kolmogorov-Smirnov (K-S) test is a non-parametric statistical hypothesis test used to
compare the underlying probability distributions of two independent samples. It is particularly useful
in machine learning applications where the goal is to assess whether two datasets come from the
same distribution or if they differ significantly, without making any assumptions about the underlying
distribution shape. It is also based on empirical CDFs.

C.4 KL-Divergence

An alternative approach to empirical CDF approaches is to bin the data into histograms and compute
discrete distribution distances from these histograms. The common Kullback-Leibler distance is
used with three different bin sizes. After finding the histograms with N bins for 1 < i < N, Py (%)
and Qn (4), the discrete KL divergence is computed as

& , Py (d)
i =3 e (G5 )

D Particle Distance Tables

Tables [3] to [6] present the distance metrics for each parton and model. The general trends in Table ]
remain generally consistent across partons. The neutrino reconstruction can prove difficult for Latent
diffusion models, likely due to its very peaked components.

E Component Distance Tables

Tables [7) to[10] present the distance metrics for each component and model. The mass component
seems to vary the most for for many of the distance functions, indicating that many models struggle
reconstructing the peaked mass distributions. However, the overall results remain consistent with
Table|l} We again see the clear benefit of both latent diffusion and end-to-end training.

F Global Distribution Plots

Figures [6] through [T6] present a collection of global distributions for the three primary classes of
generative models for every particle and component. The proposed method (VLD) closely matches
the truth distributions across all components, including the mass which is slightly smoothed but
peaks in the correct location. Baseline models struggle with capturing the peaks and shapes of the
distributions.

G Posterior Distribution Plots

Figures[T7]and [I8] present a collection of posterior distributions for four testing events, along with
several models and the brute-force empirical approach.

H Loss Function Derivation

We provide a derivation for the loss function presented in Equation [§] adhering to the generative
model displayed in Figure [2| Here, data is generated from a latent representation, p(x|z ); the latent
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data from the diffusion end-point, p(z,|z); a diffusion process to generate the sampled configuration
p(20|21); and a simple standard normal distribution prior at the base of the hierarchy p(z;). All these
functions are further conditioned on the (embedded) detector observations z,. We start with the full
conditional hierarchical VAE loss function over L variational layers as per [64].

L

ACELBO = Eq(zm\ac,zy) [_ logp(x|z$, Zy)] + ZDKL(Q(ZI|5E7 Zyvzi;él) || p(Zl|Z<l)) (11)
=1

Next, we substitute the layers we defined for the sum to expand the expression for our generative
model. For this step, we employ a three-stage hierarchy with the following substitutions: z; < 21,
29 + 29, and z3 < z,. We derive each of these components in the following sections.

Lego = Eq(z,|2,2,) [—log p(z|2s, 2y)] (12)
+ Drr(q(z1lz, 2y, 22) || p(21)) (13)
+ Drr(q(20]7, 2y, 21, 22) || P(20]21)) (14)
+ Drr(q(z2|, 2y, 21, 20) || P(22]21, 20)) (15)

H.1 Prior Loss

Equation[T3]establishes the prior loss and the base layer in the hierarchy. In accordance with the VP
framework, the correct prior distribution for the final latent representation is the standard normal
p(z1) ~ N(0,I). We learn the noise schedule via log SN R(t) = —v,(t), as defined in VDM [41]).
As such, we must ensure the terminal state in the forward diffusion process aligns with the prior
distribution. Substituting the VP noise schedule yields the following distribution for the posterior:
q(z1]x, 2y, 22) = N(a124, 011), where o, = /o (ammag(1)), and oy = /o (—74(1)) as obtained
from Section [2.4] We estimate this KL divergence through Monte-Carlo sampling:

Drr(q(zil|z, zy) || p(21)) = E.,~a(zelz,2,) [(ozlzgc)2 + 0’% — log(af) — 1] (16)

H.2 VAE Loss

Equation delineates our contribution to this unified variational model. We derive the base

@o
ther describe that the posterior distribution in this KL term is merely the regular VAE posterior
q(zz|z, 2y) ~ N (po(z, 2), 00(x, z,)). We define the posterior over z, given z, by adhering to the
definition of the VP diffusion process q(zq|2z) ~ N (24, ool). As all these distributions are normal,
we can provide an explicit form for this loss:

distributions for the right-hand distribution in Equation@ p(zz)20) ~ N ( L 20 Z—Z]I) We fur-

DKL(Q(Zm|$7Zy) ” p(zz|zl)) =

1 ago
EZzNQ(Zz|I7Zy)»ZONQ(Zo\ZI) [DKL(N(MQ(.’L‘,Zy),O'Q(x,Zy) H N( 20, H) ):|
Qo o7

where the KL term is the regular normal distribution KL.

Dt (W (pt0,00) [| N, 00)) =

ot (wo— p1)?
2

— + ———— +1 21 21
U%—i- a% + log o7 og o }

H.3 Diffusion Loss

Equation[T4] defines the final diffusion loss term for the denoising network. We follow the derivation
from Kingma et. al. [41] for a continuous-time diffusion process. The key insight is to interpret
the diffusion process as infinitely deep hierarchical variation model. The VP framework defines
intermediate steps as: q(z¢|x,y) ~ N (azx, o.I). Following [41]], we derive a Monte-Carlo estimate
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of the integral loss for a noise prediction network:

1 ! ;
Dk r(q(z0lm, 2y, 21, 22) || p(20]21)) = —5Eennon [/ SNR'(1) 172 = (21,2, D)l dt}
0
1 A~
- _§Et~u(0,1),5~N(0,H) [SNR/(t) lew = Za (22, Zy’t)‘lg}

1

= iEtNM(O,l),CNN(O,I[) {'Y:p(t) ||€ - ée(zt, Ry t)Hg}

H.4 Reconstruction Loss

Equation [12] is the final and simplest aspect of this model. Since we are regressing the parton
components, we use a Normal decoder on the VAE and use a simple Mean Squared Error loss as the
primary reconstruction loss.

Lirse = |DECODER(zy, 2,) — |

As we explain in the text, this MSE loss works well for most components but fails to capture the
peaked nature of the mass term. Therefore, we add the physics consistency loss described by Equation
in order to assist with this mass reconstruction.

Lo = e [M2 = (£ - 5]

The total reconstruction loss is simply the sum of these two components.

Eq(zw\ac,zy) [7 Ing(x|Zma Zy)] = Eq(zm\;c,zy) [['MSE + LC]

VLD UC-VLD C-VLD LDM VDM CVAE CINN

Leptonic b 11.96 5.23 9.08 16.74 21229 33.85 143.49
Leptonic v, /v,  10.33 7.40 36.69 29.63 11737 3695 149.22
Leptonic e/ it 2.95 2.76 3.07 11.13 155.87 872  96.89
Hadronic b 9.52 4.72 11.38  15.66 226.58 39.02 132.69
Hadronic ¢; 8.88 7.19 2426 3533 187.24 5833 180.42
Hadronic ¢ 8.56 5.93 53.15 4356  99.16 4642 123.12
Leptonic W 8.18 8.19 43.63 37.87 21351 3296 260.12
Hadronic W 7.55 6.94 39.97 50.28 215.10 53.85 308.33
Leptonic ¢ 9.57 9.12 46.56 43.27 323.00 46.51 408.39
Hadronic ¢ 15.12 6.57 36.25 48.82 34331 59.08 444.66
tt System 16.15 9.52 85.58 70.04 38493 6885 761.74

Table 3: Particle Distance: Wasserstein Distances
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Figure 6: Global Distribution: Leptonic b Quark
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VLD UC-VLD C-VLD LDM VDM CVAE CINN
Leptonic b 0.93 0.59 0.62 1.01 17.04 2.53 10.33
Leptonic v, /v,,  0.79 0.73 2.31 1.76  11.02 272 12.15
Leptonic e / i 0.24 0.29 026 0.70 13.99 0.59 7.56
Hadronic b 0.61 0.43 094 1.00 17.83 2.75 9.06
Hadronic ¢; 0.90 0.77 2.71 275 16.30 4.82 14.73
Hadronic g5 0.79 0.57 390 293 10.00 4.09 9.85
Leptonic W 0.54 0.66 294 237 1648 2.09 17.58
Hadronic W 0.49 0.45 270 299 16.18 3.38 20.81
Leptonic ¢ 0.64 0.64 261 242 21.72 2,52 23.27
Hadronic ¢ 0.86 0.44 203 243 22.16 332 24381
tt System 0.80 0.78 436 3.72 18.63 347 3498

Table 4: Particle Distance: Energy Distances

VLD UC-VLD C-VLD LDM VDM CVAE CINN
Leptonic b 0.85 0.07 0.06  0.59 1.91 1.01 1.30
Leptonic v, /v,  0.97 1.06 0.73  0.88 1.76 0.77 1.71
Leptonic e / i1 0.48 0.33 0.52 0.35 1.47 0.43 1.02
Hadronic b 0.05 0.05 0.10  1.06 1.95 0.90 1.30
Hadronic ¢; 0.40 0.40 0.60 0.63 1.63 0.81 1.50
Hadronic g5 0.90 1.00 0.83  0.76 1.64 0.95 1.59
Leptonic W 0.10 0.11 046 037 1.39 0.30 1.27
Hadronic W 0.07 0.09 042 042 1.36 0.32 1.46
Leptonic ¢ 0.09 0.10 035 0.32 1.61 0.30 1.43
Hadronic ¢ 0.10 0.09 032 0.28 1.60 0.37 1.48
tt System 0.06 0.09 026 024 0.82 0.21 1.68

Table 5: Particle Distance: Kolmogorov-Smirnov Test Statistics

VLD UC-VLD C-VLD LDM VDM CVAE CINN
Leptonic b 1.50 0.01 0.01 049 591 0.27 1.44
Leptonic v, /v,  0.14 3.45 0.87 143 0.76 0.88 2.48
Leptonic e / i1 0.14 1.35 044 093 3.66 1.04 343
Hadronic b 0.00 0.01 0.01 357 599 0.29 1.09
Hadronic ¢; 0.34 2.07 046  1.19 3.80 1.72 6.15
Hadronic g5 1.54 0.08 0.67 096 231 0.98 2.67
Leptonic W 0.02 0.03 294 259 2.39 0.69 2.13
Hadronic W 0.01 0.02 243 254 211 1.25 2.53
Leptonic ¢ 0.02 0.03 1.22 147 2.50 0.98 2.24
Hadronic ¢ 0.03 0.04 099 1.14 239 1.05 2.45
tt System 0.01 0.01 0.06 0.04 048 0.04 3.59

Table 6: Particle Distance: KL Divergence with 128 bins.
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VLD UC-VLD C-VLD LDM VDM CVAE CINN
mass 2.06 2.61 1776~ 19.12  87.24 2091 113.29
pt 7.18 7.65 39.39 3344 42970 7456  257.20
eta 0.37 0.26 0.47 0.40 0.44 0.51 4.35
phi 0.22 0.19 0.20 0.38 0.17 0.30 1.29
energy 27.33 16.26  140.80 152.24 77294 155.16 1098.99
px 13.89 10.48 25.86 2537 27243 5046  166.93
py 8.90 7.95 2648 2295 27028 4797  168.37
pz 48.80 28.16  138.66 148.42 645.15 134.69 1198.66
Table 7: Component Distance: Wasserstein Distances
VLD UC-VLD C-VLD LDM VDM CVAE CINN
mass 0.51 0.76 377 350 1530 3.00 9.70
pt 0.77 1.04 427 342 44.65 7.71 2536
eta 0.26 0.17 028 025 025 0.33 2.76
phi 0.15 0.13 0.14 025 0.11 0.21 0.86
energy 1.40 0.96 7.50  7.36 53.11 8.32 70.01
px 1.25 1.05 223 220 20.68 4.13 1249
py 0.87 0.81 223 1.88 20.54 390 13.15
pz 2.38 1.43 497 523 26.71 470  50.79
Table 8: Component Distance: Energy Distances
VLD UC-VLD C-VLD LDM VDM CVAE CINN
mass 3.39 2.78 320 454 755 4.21 4.66
pt 0.08 0.14 036 0.31 3.30 0.67 1.92
eta 0.14 0.09 0.13 0.12 0.11 0.18 1.34
phi 0.07 0.06 0.07 012 0.05 0.10 0.39
energy  0.07 0.08 036 030 294 0.45 3.81
px 0.10 0.10 0.18 0.18 1.16 0.31 0.78
py 0.08 0.08 0.17 0.16 1.14 0.29 0.92
pz 0.15 0.09 0.18 017  0.88 0.17 1.91
Table 9: Component Distance: Kolmogorov-Smirnov Test Statistics
VLD UC-VLD C-VLD LDM VDM CVAE CINN
mass 3.69 7.04 9.78 15.80 22.78 8.53 12.34
pt 0.01 0.02 0.07 0.07 3.08 0.22 1.66
eta 0.01 0.01 0.03 004 0.04 0.03 1.87
phi 0.00 0.00 0.00 001 0.00 0.01 0.07
energy  0.01 0.01 0.08 024 299 0.15 6.53
px 0.01 0.01 0.03 0.03 1.28 0.10 0.92
py 0.00 0.01 0.04 0.03 1.27 0.09 0.92
pz 0.01 0.00 0.05 0.13 0.86 0.05 5.89

Table 10: Component Distance: KL Divergence with 128 bins.
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Figure 9: Global Distribution: Hadronic b Quark
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Figure 14: Global Distribution: Leptonic Top Quark
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Figure 17: Posterior distributions for example events. Included is an empirical posterior distribution
calculated from the training dataset.
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(a) Example Event 3 (b) Example Event 4

Figure 18: Posterior distributions for example events. Included is an empirical posterior distribution
calculated from the training dataset.
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