
Published as a conference paper at ICLR 2021

A PROOFS

A.1 COUNTEREXAMPLE AGAINST UNRESTRICTED q.

Pick some x⇤ ⇠ p(x) and take f to be a continuous function whose range spans [0, 1]. For any ✏ > 0,
pick q(x|x⇤) to be a distribution such that for every x ⇠ q(x|x⇤) with non-zero probability, we have
f(x, x⇤) < ✏. Then, by varying ✏ closer to 0, we can bring our bound on mutual information
to infinity, regardless of the true value, thus ceasing to be a bound. As such, we cannot use an
unrestricted family of conditional distributions and preserve a bound.

A.2 PROOF OF THEOREM 3.2

Proof. We separately show the statements regarding bias and variance.

Fix some x ⇠ p(x). Let p(y1, . . . , yk) =
Qk

j=1 p(yj). First, as Z(y1, . . . , yk) with
y1, . . . , yk ⇠ p(y1, . . . , yk) iid (or NCE) is unbiased, and Eq(y1,...,yk|x)[Z] (or CNCE) lower bounds
Ep(y1,...,yk)[Z] (using Thm. 3.1), the first statement follows immediately for any choice of k.

Second, by the law of total variance,
Ep[Varp(y1,...,yk)[Z|1SB]] + Varp(y1,...,yk)(Ep(y1,...,yk)[Z|1SB]) = Varp(y1,...,yk)[Z]

Since both summands are non-negative and the variance on the right is the desired upper-bound, it
suffices to show that

p(SB) · Varq(y1,...,yk|x)[Z]  Ep(y1,...,yk)[Varp(y1,...,yk)[Z|1SB]].

This follows immediately from the observation that by definition of q(y1, . . . , yk|x) as the condi-
tional distribution p(y1, . . . , yk|SB), the expectation on the right is precisely

p(SB) · Varq(y1,...,yk|x)[Z] + (1� p(SB)) · Varq̃(y1,...,yk|x)[Z],

where q̃(y1, . . . , yk|x) is the conditional distribution p(y1, . . . , yk|Sc
B), and Sc

B represents the com-
plement set of SB .

B A TOY EXAMPLE

Interestingly, Thm. 3.1 shows CNCE to lower bound NCE. To confirm this experimentally, we re-
purpose the toy setting from Tschannen et al. (2019). Pick two random variables Z and ✏ distributed

such that zi ⇠ N (0,⌃Z) and ✏i ⇠ N (0,⌃✏) where ⌃Z =

✓
1 �0.5

�0.5 1

◆
and ⌃✏ =

✓
1 0.9
0.9 1

◆

Then, let (X,Y) = Z + ✏. That is, let X be the first dimension of the sum and Y the second.
The mutual information between X and Y can be analytically computed as � 1

2 log(1�
⌃[1,2]⌃[2,1]
⌃[1,1]⌃[2,2])

since (X,Y) is jointly Gaussian with covariance ⌃ = ⌃Z + ⌃✏. For this toy experiment, let w`

True NCE CNCE

! 10 25 50 75 90 95

Mean 0.02041 0.01345 0.01241 0.00220 7.29e-5 1.67e-5 5.87e-6 1.97e-6
Stdev – 0.001 3e-4 1e-4 9e-6 2e-6 1e-6 4e-6

Table 6: Looseness of CNCE as w` increases.

be a percentage from 0 to 100. Now, we define SB as all examples whose dot product with the
embedding of the current transformed instance is in the top w` percentage of all examples in the
dataset. We can tractably compute this using a memory bank. As w` increases from 10 to 95,
q(x|t(xi)) has smaller support meaning that negative samples are more difficult to separate from
the current instance xi. Table 6 compares the estimated mutual information between X and Y from
each estimator to the ground truth over 5 runs. The encoders are 5-layer MLPs with 10 hidden
dimensions and ReLU nonlinearities. To build the dataset, we sample 2000 points and optimize
the NCE objective with Adam with a learning rate of 0.03, batch size 128, and no weight decay
for 100 epochs. Given a percentage for CNCE, we compute distances between all elements in the
memory bank and the representation the current image — we only sample 100 negatives from the
top p percent. We conduct the experiment with 5 different random seeds.

13

Published as a conference paper at ICLR 2021

C BIAS AND VARIANCE EXPERIMENT DETAILS

For IR, we explore k = 16, 32, 64, 128, 256, 512, 1024, 4096. For MoCo, we only evaluate k =
256, 512, 1024, 4096 as the queue cannot be smaller than the batch size. All hyperparameter choices
are as detailed in the main experiments. To find the nearest neighbor of the training example, we
store all embeddings in a memory bank (separate from the one possibly used in training).

D DETECTRON2 EXPERIMENTS

We make heavy usage of the Detectron2 code found at https://github.
com/facebookresearch/detectron2. In particular, the script https:
//github.com/facebookresearch/detectron2/blob/master/tools/
convert-torchvision-to-d2.py allows us to convert a trained ResNet18 model
from torchvision to the format needed for Detectron2. The repository has default configuration
files for all experiments. We change the following fields to support using a frozen ResNet18:

INPUT :
FORMAT: RGB

MODEL:
BACKBONE:

FREEZE AT : 5
PIXEL MEAN :

� 123 .675
� 103 .53
� 116 .28

PIXEL STD :
� 58 .395
� 57 .12
� 57 .375
RESNETS :

DEPTH: 18
RES2 OUT CHANNELS : 64
STRIDE IN 1X1 : f a l s e

WEIGHTS: <PATH TO CONVERTED TORCHVISION WEIGHTS>

We acknowledge that ResNet50 and larger are the commonly used backbones, so our results will
not be state-of-the-art. However, the ordering in performance between algorithms is still meaningful
and our primary interest. Future work can explore larger architectures.

E SPEECH EXPERIMENTS

We adapt the experimental setup from Tamkin et al. (2020): a contrastive representation is trained
with the LibriSpeech 100 hour corpus (Panayotov et al., 2015) in which waveforms are truncated to
150,526 timesteps and processed to log Mel spectrograms with hop length 2,360 to output a matrix
of size 64 by 64. Spectrograms are z-scored using training statistics. We use masking of time
and frequency features as augmentations on training examples. Spectrograms are encoded with a
ResNet18 to a 128-dim. embedding. In transfer, we also preprocess waveforms to a 64 by 64 matrix.
Spectral augmentations are used in training the Logistic regression model but no augmentations are
used when evaluating the test split. The input to the logistic regression model is the ResNet18
pre-pool features prior to the final linear layer.

F STATE-OF-THE-ART EXPERIMENTS

In Sec. 7, we reported results comparing MoCo-v2 and MoCoRing-v2 on CIFAR10, CIFAR100, and
STL10 using state-of-the-art hyperparameters. We point out several differences from the training
details presented in Sec. 5. First, for CIFAR10 and CIFAR100, we work directly 32x32 pixel images
(instead of resizing to 224x224 pixels); for STL10, we work with the 96x96 pixel raw images.

14

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2/blob/master/tools/convert-torchvision-to-d2.py
https://github.com/facebookresearch/detectron2/blob/master/tools/convert-torchvision-to-d2.py
https://github.com/facebookresearch/detectron2/blob/master/tools/convert-torchvision-to-d2.py

Published as a conference paper at ICLR 2021

Second, in ResNet encoder, we remove the max pooling layer and replace the first 7x7 convolutional
layer with a 3x3 convolutional layer. Third, we used post-pooling features (instead of pre-pooling
features) for linear evaluation. Fourth, we used a much larger learning rate in linear evaluation (0.1
vs 0.01). Fourth, for STL10, including the unlabeled data made a large impact in performance. All
models were trained for 200 epochs (depite prior work optimizing for 800 epochs). The MoCo-
v2 baseline implementation was adapted from the PyTorch Lightning Bolts repository: https:
//github.com/PyTorchLightning/lightning-bolts.

G ADDITIONAL EXPERIMENTS

We discuss a few observations surrounding Ring Discrimination and in particular, annealing.

Hard negative mining is not always productive. We can attribute this to the poor quality of em-
beddings early in training: using hard negatives can (1) simply be too difficult for the encoder to
discriminate, or (2) focus the embedding on smaller, perhaps spurious, differences between the in-
stance and the hard negatives, rather than prioritizing higher level semantic information (e.g. object
identity). As a demonstration of this phenomena, Fig. 3a shows several training runs of IRing on
CIFAR10 with varying thresholds !` initialized at every 50 epochs of an IR model for a total of 200
epochs. In the legend, a smaller percentage indicates drawing negatives more similar to the embed-
ding of the current instance as measured by dot products. (IRing (100%) and IR are identical.) The
y-axis plots the accuracy of classification where for each test example, we predict the label of its
L2 nearest neighbor in the training split (Wu et al., 2018; Zhuang et al., 2019). Fig. 3 shows that
(1) using smaller thresholds at the beginning of training results in lower test accuracies; (2) in the
middle of training (epoch 50), the performance is equivalent for all models; and (3) in later training
stages (epoch 100), using more difficult negatives is better. Notice the ordering of the lines in Fig. 3:
10% < 25% < 50% < 100% early in training while the inequalities are flipped at epoch 100.

(a) Effect of Hard Negatives (b) Annealing Policies (c) Annealing Thresholds wu

Figure 3: (a) Embedding quality as a function of how similar negative samples are to the current
instance in Ring Discrimination (the percentage represents the percentile u). (b,c) An exploration of
difficult four policies for annealing Ring percentiles u.

Exploring annealing policies. Given that our experiments show annealing is important, there is
a question of “how to anneal”. In our experiments, we opted for a simple linear policy: slowly
reducing u from 100% to 10% in 100 epochs and maintaining it constant at 10% for the remaining
epochs. Here, we briefly compare this to three other policies: a step function; an adaptive policy
that lowers the percentile every epoch if the performance on a validation set increases, otherwise
decreasing the percentile; and a similar adaptive policy that updates every step based on negative
training loss. Fig. 3b compares the nearest neighbor test accuracies over 200 epochs of training
IRing on CIFAR10 whereas Fig. 3b plots the percentile u. We find that all the policies converge to
roughly the same test accuracy, although linear and step policies appear to converge more quickly.
From Fig. 3c, we observe that the adaptive methods naturally push the percentile down to 10% (the
lowest allowed percentile) around step 150, confirming our intuition that a smaller percentile later
in training is desirable. Future work could explore more sophisticated policies.

Additional experiments measuring cost. Table 7 shows additional experiments comparing the
computational cost of Ring and standard negative sampling on CIFAR100 and STL10. The costs
remain negligible with Ring having a 1.0 to 1.4x cost on compute time.

15

https://github.com/PyTorchLightning/lightning-bolts
https://github.com/PyTorchLightning/lightning-bolts

Published as a conference paper at ICLR 2021

Model Cost (sec.)

IR 136.0 ± 4
IRing 141.1 ± 5 (1.1x)

MoCo 318.4 ± 16
MoCoRing 383.4 ± 12 (1.2x)

(a) CIFAR10

Model Cost (sec.)

IR 105.2 ± 3
IRing 154.0 ± 3 (1.4x)

MoCo 346.6 ± 3
MoCoRing 371.8 ± 3 (1.1x)

(b) CIFAR100

Model Cost (sec.)

IR 13.5 ± 1
IRing 14.2 ± 1 (1.0x)

MoCo 25.9 ± 3
MoCoRing 34.1 ± 4 (1.3x)

(c) STL10

Model Cost (min.)

IR 43.9 ± 1
IRing 51.0 ± 1 (1.2x)

MoCo 61.1 ± 1
MoCoRing 64.9 ± 1 (1.1x)

(d) ImageNet

Table 7: Cost of one training epoch in seconds, averaged over 200 epochs.

H RELATED WORK: RING AND LOCAL AGGREGATION

Of the many algorithms listed above, we focus on Local Aggregation (Zhuang et al., 2019), or LA,
which we conjecture to already be (implicitly) mining hard negatives. While IR seeks to uniformly
distribute embeddings, uniformity may not be optimal in all cases. For instance, images of the
same class should intuitively be closer together than other images. The LA objective captures this
intuition using a “close neighbor set” Ci and “background neighbor set” Bi conditioned on the
current transformed instance t(xi). The background neighbor set contains the indices of elements
in the dataset whose embeddings are closest to g✓(t(xi)) in L2 distance. The close neighbor set
contains elements are same cluster as t(xi) using Kmeans assignments. Although not originally
formulated in this manner, we can view the background neighbor set as being sampled from a CNCE
distribution q(Bi|t(xi)) with the lower percentile ` set to 0 i.e. the ring is fully enclosed. Now,
writing LA in the notation of Eq. 2, its objective is

LLA(xi;M) = Et⇠p(t)EBi⇠q(Bi|t(xi))

2

4log
1

|Ci|
P

j2Ci
eg✓(t(xi))

TM [j]/⌧

1
|Bi|

P
j02Bi

eg✓(t(xi))TM [j0]/⌧

3

5 . (3)

Although Ring Discrimination and LA both mine hard negatives, LA additionally uses instances in
the same KMeans cluster as positive views of xi. Borrowing ideas from LA, we can explore several
extensions of Ring Discrimination. First, by “Cave” Discrimination (including IRCave ad CMC-

Model Top1

LA 83.9
IRCave 84.0
CMCCave 87.2
IRing (+Ci) 84.3
CMCRing (+Ci) 87.8

Table 8: Variants of Ring

Cave), we denote drawing negative samples from a CNCE distribution q with a support restricted
to the examples in the same KMeans clustering as the current instance (Note that such a definition
falls under Theorem 3.1 as a particular choice for the restricted set SB). Second, Ring (+Ci) instead,
includes members of the KMeans clustering as positive views of xi, like in LA — here, negative
samples are drawn as in regular Ring. Note that LA and IRing (+Ci) differ only by the lower per-
centile `, which is zero in the former and nonzero in the latter. Table 8 shows promising results
on CIFAR10 as these variations produce strong representations. This suggests that choosing good
views and good negatives together can build even better contrastive algorithms.

16

	Introduction
	Background
	Conditional Noise Contrastive Estimation
	Ring Discrimination
	Experiments
	Related Work
	Discussion
	Concluding Remarks
	Proofs
	Counterexample Against Unrestricted q.
	Proof of Theorem 3.2

	A Toy Example
	Bias and Variance Experiment Details
	Detectron2 Experiments
	Speech Experiments
	State-of-the-art Experiments
	Additional Experiments
	Related Work: Ring and Local Aggregation

