
A Low-rank perturbations of rotationally invariant matrices

In this appendix, we recall some known results concerning low-rank perturbations of rotationally
invariant matrices [21, 22]. We present them in a form which is more convenient for our discussion,
and we specialize them for rank-1 perturbations. The notations are the same as in Section 3.
The first result characterizes the asymptotic value of the largest eigenvalue of the perturbed symmetric
matrix Y ∈ RN×N .
Theorem 3 (Theorem 2.1 of [21]). Under Assumption 1, as N → +∞, the largest eigenvalue νN of
Y converges almost surely to

ν ∶=Kρ(
1√
λ∗

)1(h
√
λ∗ ≥ 1) + γ 1(h

√
λ∗ < 1).

This theorem thus implies that, below the phase transition, the presence of the perturbation does
not modify the largest eigenvalue of the noise matrix. For the inner product between X and the
eigenvector of Y corresponding to the largest eigenvalue, the following result holds.
Theorem 4 (Theorem 2.2 of [21]). Under Assumption 1, as N → +∞, the eigenvector vN corre-
sponding to the largest eigenvalue νN of Y is such that, almost surely,

C(ρ, λ∗) ∶= lim
N→+∞

⟨X,vN ⟩2

N
= (1 − 1

λ∗
R′
ρ(

1√
λ∗

))1(h
√
λ∗ ≥ 1).

Below the phase transition the spectral estimators are thus asymptotically uncorrelated with the signal
while above the transition the leading eigenvector starts to align in its direction.

B Proofs for the Bayes estimator

It is useful to define a slight generalization of the model (1) that includes a “Wigner regularization”
of the rotationally-invariant noise. Namely, in this section, we consider the following generalized
model for the data:

Yε =
√
λ∗
N

XX⊺ +Z +
√
εW , (19)

where, as before,W is a standard Wigner matrix and ε > 0 is some constant. We denote by ⟨ ⋅ ⟩ε the
mean w.r.t. the associated mismatched posterior obtained by replacing Y with Yε in equation (2):

⟨g(x)⟩ε ∶=
1

ZN(Yε) ∫
g(x) exp (

√
λ

2
⟨x,Yεx⟩)µN(dx). (20)

At ε = 0, the operator ⟨ ⋅ ⟩0 corresponds to the expectation w.r.t. to the original mismatched measure
(2). The other notations are analogous to those for the non-regularized model, though we will add a
subscript ε when it is useful to remark the dependence of a given quantity over ε. For example, we
denote ρε the weak limit of the empirical spectral density of Yε, Rε its associated R-transform, νε the
limit of the maximum eigenvalue of Yε, γε the limit of the maximum eigenvalue of the noise matrix
Z +

√
εW and hε ∶= limz↓γεHρε(z).

Our first intermediate result, Proposition 1, characterizes the log-spherical integral (which plays the
role of log-moment generating function) for the regularized data matrix:

IN(
√
λ

2
,Yε) ∶= ∫ exp (

√
λ

2
⟨x,Yεx⟩)µN(dx). (21)

Although this proposition may be interesting in itself, its main purpose is to allow us to derive the
MSE of the mismatched Bayes estimator in terms of its derivatives w.r.t. ε and λ∗. This is in fact the
reason for introducing the regularization in the first place.
Like in the analysis of mismatched inference with Gaussian noise of [71], we will make use of the
following result for the asymptotic value of the rank-1 spherical integral.

Theorem 5 (Theorem 6 of [45]). Define hε ∶= limz↓νεHρε(z). Assume that Assumption 1 holds.
Recall that νε is the limit of the maximum eigenvalue of Yε and must be finite. Then,

lim
N→+∞

1

N
ln IN(

√
λ

2
,Yε) =

1

2
∫

√
λ

0
Rρε(t)dt1(

√
λ ≤ hε) + gλ,ε(νε)1(

√
λ > hε).
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We can now state our first intermediate proposition.
Proposition 1 (Spherical integral). For every λ, ε > 0, define the function gλ,ε ∶ (γε,+∞) ↦ R as

gλ,ε(x) ∶=
√
λ

2
x − 1

2
∫ dρε(γ) ln(x − γ) − 1

2
− 1

4
lnλ.

Then, under Assumption 1, for every λ,λ∗ > 0 we almost surely have that

lim
N→+∞

1

N
ln IN(

√
λ

2
,Yε) = fε(λ,λ∗) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

gλ,ε(Kρε( 1√
λ∗

)) if hε
√
λ∗ ≥ 1 and λλ∗ > 1,

gλ,ε(γε) if hε
√
λ∗ < 1 and

√
λ > hε,

1
2 ∫
√
λ

0 Rρε(t)dt otherwise.

Moreover we also have that

lim
N→+∞

1

N
E ln IN(

√
λ

2
,Yε) = fε(λ,λ∗).

Proof of Proposition 1. By Theorem 3 applied to the generalized model (19), we are almost surely
under the hypothesis of Theorem 5. Combining these two results proves the first claim.
To get the result in expectation, it suffices to notice that by Assumption 1 the sequence of values of
the largest eigenvalue of Z is a.s. convergent. The same is a.s. true for the Wigner matrixW . There
thus almost surely exists some bounded C > 0 such that

√
λ

2
⟨x,Yεx⟩ ≤

√
λ

2
(C +

√
λ∗)N.

Then, the last result follows by dominated convergence.

B.1 Proof of Theorem 1

To establish this result, define the (matrix) magnetization and the (matrix) overlap according to

MN ∶= (⟨X,x⟩
N

)
2

, QN ∶= (⟨x
(1),x(2)⟩
N

)
2

.

respectively. Here, the supra-indices indicate two conditionally (on Yε) independent samples from
the mismatched posterior Pmis(⋅ ∣ Yε) of the generalized model (19) (with mean (20)). Theorem 1
is the consequence of the asymptotic formulas for the mean magnetization and overlap given in the
lemmas below.
Lemma 1. In the setting considered, for all λ,λ∗ > 0 fixed and letting M(⋅, ⋅) be given by (9), we
almost surely have

lim
N→+∞

⟨MN ⟩0 =M(λ,λ∗).

Proof. For this proof we can set ε = 0 all along. Note that, in the exponent of the spherical integral
(21), the only term in which λ∗ appears (when writing Y0 explicitly in terms ofXX⊺) is

√
λλ∗

2N
⟨X,x⟩2 = N

√
λλ∗
2

MN .

Then, we have that for all N ≥ 1

d

d
√
λ∗

1

N
ln IN(

√
λ

2
,Y0) =

√
λ

2
⟨MN ⟩0 .

We also have
d2

(d
√
λ∗)2

1

N
ln IN(

√
λ

2
,Y0) =

λN

4
( ⟨M2

N ⟩
0
− ⟨MN ⟩20 ) ≥ 0.

Thus, by the convexity of ln IN(
√
λ
2
,Y0) w.r.t.

√
λ∗ and Proposition 1, we get that almost surely

lim
N→+∞

⟨MN ⟩0 =
2√
λ

df0(λ,λ∗)
d
√
λ∗

= 4

√
λ∗
λ

df0(λ,λ∗)
dλ∗

.
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Recall that Kρ(x) = Rρ(x) + 1/x. Then, the derivative of f0 with respect to λ∗ is given by

df0
dλ∗

(λ,λ∗) =
1

4
( 1

λ2∗
− ( λ

λ3∗
)
1/2

)(R′
ρ(

1√
λ∗

) − λ∗)1(h
√
λ∗ ≥ 1 ∩ λλ∗ > 1)

with h̄ = h̄0. From these two last equations, the result of the lemma follows.

Lemma 2. In the setting considered, for all λ,λ∗ > 0 fixed and letting Q(⋅, ⋅) be given by (9), we
have

lim
N→+∞

E ⟨QN ⟩0 = Q(λ,λ∗).

Proof. Note that in the exponent of the spherical integral (21) the only term in which ε appears (when
writing Yε explicitly in terms ofW ) is

√
λεx⊺Wx/2. Then, we have that for every N ≥ 1

d

d
√
ε

1

N
E ln IN(

√
λ

2
,Yε)∣

ε=0
=

√
λ

2N
E ⟨x⊺Wx⟩

0
. (22)

Furthermore,

d2

(d
√
ε)2

E ln IN(
√
λ

2
,Yε) =

λ

4
E( ⟨(x⊺Wx)2⟩

ε
− ⟨x⊺Wx⟩2

ε
) ≥ 0. (23)

Since W is Wigner, its elements are distributed as independent Gaussian random variables (up to
symmetry) with variance 1/N for the off-diagonal elements and 2/N on the diagonal. Using Gaussian
integration by parts3 in the r.h.s. of (22), we get that

d

d
√
ε

1

N
E ln IN(

√
λ

2
,Yε) =

λ
√
ε

2
(1 −E ⟨QN ⟩ε), (24)

and thus

d

dε

1

N
E ln IN(

√
λ

2
,Yε)∣

ε=0
= λ

4
(1 −E ⟨QN ⟩0). (25)

Hence, by the convexity of E ln IN(
√
λ
2
,Yε) w.r.t. ε and Proposition 1, we obtain that

lim
N→+∞

E ⟨QN ⟩0 = 1 − 4

λ

dfε(λ,λ∗)
dε

∣
ε=0
. (26)

To find the asymptotic value of E ⟨QN ⟩0, we are thus left to compute dεfε(λ,λ∗). We will then need
to consider the three regimes of Proposition 1.

Firstly, if h
√
λ∗ ≥ 1 and λλ∗ > 1, then

dfε(λ,λ∗)
dε

∣
ε=0

= d

dε
gλ,ε(Kρε(λ

−1/2
∗ ))∣

ε=0

=
∂gλ,ε(x)

∂ε
∣
ε=0,x=Kρ0(λ−1/2∗ )

+
dgλ,ε(x)
dx

∣
ε=0,x=Kρ0(λ−1/2∗ )

dKρε(λ
−1/2
∗ )

dε
∣
ε=0
.

For computing ∂εgλ,ε(x), note that the only term of gλ,ε depending on ε is

`(x, ε) ∶= −1

2
∫ dρε(γ) ln(x − γ),

for which we have dx`(x, ε) = − 1
2
Hρε(x). Thus, for any appropriate x0,

`(x, ε) = −1

2
∫

x

x0

Hρε(y)dy +C(x0, ε),

where C(x0, ε) is a constant depending only on x0 and ε. Furthermore, by the Dyson Brownian
motion characterization of the eigenvalues of the matrixZ+

√
εW , we have that the limiting Stieltjes

transform Hρε(x) is a solution of Burger’s equation (see for example [4, Proposition 4.3.10]); that is,

dHρε(x)
dε

= −Hρε(x)
dHρε(x)
dx

= −1

2

dH2
ρε(x)
dx

. (27)

3The used formula here is EZf(Z) = σ2Ef ′(Z) for Z ∼ N(0, σ2).
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We then have
d`(x, ε)
dε

= −1

2
∫

x

x0

dHρε(y)
dε

dy + dC(x0, ε)
dε

= 1

4
H2
ρε(x) −

1

4
H2
ρε(x0) +

dC(x0, ε)
dε

. (28)

As the left hand-side is independent of x0, − 1
4
H2
ρε(x0) + dεC(x0, ε) is some function c(ε) of ε alone.

This gives that
∂gλ,ε(x)

∂ε
∣
ε=0,x=Kρ0(λ−1/2∗ )

= 1

4
H2
ρ0(Kρ0(λ

−1/2
∗ )) + c(0) = 1

4λ∗
+ c(0). (29)

Furthermore,
dgλ,ε(x)
dx

=
√
λ

2
− 1

2
Hρε(x), (30)

and dεKρε(x) = x (which follows from the additivity of the R-transform and the fact that the R-
transform associated with the asymptotic spectral density of the Wigner part

√
εW is εx). Then,

dgλ,ε(x)
dx

∣
ε=0,x=Kρ0(λ−1/2∗ )

dKρε(λ
−1/2
∗ )

dε
∣
ε=0

= 1

2
(
√

λ

λ∗
− 1

λ∗
). (31)

Combining equations (26), (29), and (31) we get that, if h
√
λ∗ ≥ 1 and λλ∗ > 1, then

lim
N→+∞

E ⟨QN ⟩0 = 1 − 2√
λλ∗

+ 1

λλ∗
+ c(0) = (1 − 1√

λλ∗
)
2

+ c(0).

We now show that c(0) = 0. First note that c(0) does not depend on λ nor λ∗. Assume that c(0) is
positive and fix λ∗ s.t. h

√
λ∗ > 1. Choose λ large enough so that we simultaneously have λλ∗ > 1

and (1 − 1/
√
λλ∗)2 + c(0) > 1. This can be done because c(0) > 0. For these values of λ and λ∗, we

thus have that limN→+∞E ⟨QN ⟩0 > 1. However, this is a contradiction, since for every λ,λ∗ > 0 and
N ≥ 1 a.s. 0 ≤ QN ≤ 1. We therefore have that c(0) is non-positive. In a similar way, we can prove
that c(0) is non-negative. Then, we conclude that, if h

√
λ∗ ≥ 1 and λλ∗ > 1,

lim
N→+∞

E ⟨QN ⟩0 = (1 − 1√
λλ∗

)
2

.

Secondly, we will now establish the limit of the overlap when h
√
λ∗ < 1 and

√
λ > h. In this region,

dfε(λ,λ∗)
dε

∣
ε=0

= d

dε
gλ,ε(γε)∣

ε=0
=
∂gλ,ε(x)

∂ε
∣
ε=0,x=γ0

+
∂gλ,ε(x)
∂x

∣
ε=0,x=γ0

∂γε
∂ε

∣
ε=0
. (32)

The partial derivatives ∂εgλ,ε(x) and ∂xgλ,ε(x) are obtained as before. Therefore, we only need to
compute ∂εγ∣ε=0. We will prove that as ε → 0, γε = γ0 + h0ε + o(ε). As a consequence of the large
deviation principle of [44, Theorem 2.5], γε is equal to the supremum of the compact supportKε of ρε.
By Assumption 2, for all ε > 0 we have limz↓γεH

′
ρε(z) = −∞. This implies that limx↓hεK

′
ρε(x) = 0.

Thus, hε is a solution to the equation K ′
ρ0(x) + ε = 0 (again, this can be seen by additivity of the

R-transform and its link to Kρε). As K ′
ρ0 is analytic and monotonously increasing, the solution is

unique and depends smoothly on ε. Thus, hε = h0 +O(ε), which means that
γε = lim

x↓hε
Kρε(x) = lim

x↓h0

Kρ0(x) + εh0 + o(ε) = γ0 + εh0 + o(ε),

where we used that limx↓h0
K ′
ρ0(x) = 0. This proves that

∂εγε∣ε=0 = h0.
Combining this with equations (26), (28), (30), and (32) gives the result in this region.
Finally, by Proposition 1 and (26), if (λ,λ∗) does not verify either of the conditions considered
above, then by dominated convergence

lim
N→+∞

E ⟨QN ⟩0 = 1 − 2

λ
∫

√
λ

0
∂εRρε(x)dx = 1 − 2

λ
∫

√
λ

0
x dx = 0.

This finishes the proof that limN→+∞E ⟨QN ⟩0 = Q(λ,λ∗).

Proof of Theorem 1. In order to establish the formula for the MSE, it suffices to use Lemmas 1 and 2
combined with the observation that

1

2N2
E∥⟨xx⊺⟩0 −XX⊺∥2F = 1

2
(1 +E ⟨QN ⟩0 − 2E ⟨MN ⟩0 ).
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C Proofs for Approximate Message Passing

C.1 Auxiliary AMP

The iterates of the auxiliary AMP are denoted by z̃t, x̃t ∈ RN , and they are computed as follows, for
t ≥ 1:

z̃t = Zx̃t −
t

∑
i=1

bt,ix̃
i, x̃t+1 = h̃t+1(z̃1, . . . , z̃t, x̂1,X). (33)

The iteration (33) is initialized with x̃1 = x̂1, where x̂1 is also the initialization of the true AMP (see
(7)). For t ≥ 1, the functions h̃t+1 ∶ Rt+2 → R are applied component-wise, and they are recursively
defined as

h̃t+1(z1, . . . , zt, x̂1, x) = ht+1(zt + (Bt)t,1x̂1 +
t

∑
i=2

(Bt)t,ih̃i (z1, . . . , zi−1, x̂1, x) + µtx

− β̄th̃t−1 (z1, . . . , zt−2, x̂1, x)).
(34)

The idea is that the choice (34) for the denoisers {h̃t+1}t≥1 allows to “correct” for the mismatch and
compensate for the wrong Onsager corrections in (8). Here, ht+1 is the denoiser of the true AMP (see
(8)), and (µt, β̄t,Bt) come from the state evolution recursion of the true AMP: µ1 is given by (13),
and, for t ≥ 2, µt is given by (15); β̄1 = 0 and, for t ≥ 2, β̄t = E[h′t(xt−1)], where the law of xt−1 is
given by (14); and Bt is defined via (16). We now discuss how to obtain the coefficients {bt,i}ti=1.
Let us define the matrix Φt ∈ Rt×t as

(Φt)i,j = 0, for i ≤ j, (Φt)i,j = ⟨∂jx̃i⟩, for i > j, (35)

where, for j < i, the vector ⟨∂jx̃i⟩ ∈ RN denotes the partial derivative of h̃i ∶ Ri+1 → R with respect
to the j-th input (applied component-wise). Then, the vector (bt,1, . . . ,bt,t) is given by the last row
of the matrix B̃t ∈ Rt×t defined as

B̃t =
t−1
∑
j=0

κj+1Φ
j
t , (36)

where {κk}k≥1 denotes the sequence of free cumulants associated to the matrix Z.

C.2 State evolution of auxiliary AMP

Using Theorem 2.3 in [87], we provide a state evolution result for the auxiliary AMP (33). In
particular, we show in Proposition 2 that the joint empirical distribution of (z̃1, . . . , z̃t) converges to
a t-dimensional Gaussian N(0, Σ̃t).

The covariance matrices {Σ̃t}t≥1 are defined recursively, starting with Σ̃1 = κ̄2E[x̂21], where x̂1 is
defined in (7). Given Σ̃t, let

(z̃1, . . . , z̃t) ∼ N(0, Σ̃t) and independent of (X, x̂1),
x̃s = h̃s (z̃1, . . . , z̃s−1, x̂1,X) , for s ∈ {2, . . . , t + 1},

(37)

where h̃s is defined via (34) and we set x̃1 = x̂1. Let Φ̃t+1, ∆̃t+1 ∈ R(t+1)×(t+1) be matrices with
entries given by

(Φ̃t+1)i,j = 0, for i ≤ j, (Φ̃t+1)i,j = E[∂j x̃i], for i > j,
(∆̃t+1)i,j = E[x̃i x̃j], 1 ≤ i, j ≤ t + 1,

(38)

where ∂j x̃i denotes the partial derivative ∂zj h̃i(z̃1, . . . , z̃i−1, x̂1,X). Then, we compute the covari-
ance matrix Σ̃t+1 as

Σ̃t+1 =
2t

∑
j=0

κ̄j+2Θ̃
(j)
t+1, with Θ̃

(j)
t+1 =

j

∑
i=0

(Φ̃t+1)i∆̃t+1(Φ̃⊺
t+1)j−i. (39)

It can be verified that the t × t top left sub-matrix of Σ̃t+1 is given by Σ̃t.
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Proposition 2 (State evolution for auxiliary AMP). Consider the auxiliary AMP in (33) and the state
evolution random variables defined in (37). Let ψ̃ ∶ R2t+2 → R be any pseudo-Lipschitz functions of
order 2. Then for each t ≥ 1, we almost surely have

lim
N→∞

1

N

N

∑
i=1
ψ̃ ((z̃1)i, . . . , (z̃t)i, (x̃1)i, . . . , (x̃t+1)i, (X)i) = E[ψ̃(z̃1, . . . z̃t, x̃1, . . . , x̃t+1,X)].

(40)

Equivalently, as N →∞, almost surely:

(z̃1, . . . , z̃t, x̃1, . . . , x̃t+1, X) W2Ð→ (z̃1, . . . , z̃t, x̃1, . . . , x̃t+1, X).

Proof. The result follows from Theorem 2.3 in [87]. In fact, Assumption 2.1 of [87] holds because of

the model assumptions on Z, Assumption 2.2(a) holds because (X, x̂1) W2Ð→ (X, x̂1) from (7), and
Assumption 2.2(b) follows from the definition of h̃t+1 in (34) and our Assumption 3. As the auxiliary
AMP in (33) is of the standard form for which the state evolution result of Theorem 2.3 in [87] holds,
the proof is complete.

C.3 Proof of Theorem 2

We start by presenting a useful technical lemma.
Lemma 3. Let F ∶ Rt → R be a Lipschitz function, and let ∂kF denote its derivative with respect
to the k-th argument, for 1 ≤ k ≤ t. Assume that ∂kF is continuous almost everywhere in the k-th
argument, for each k. Let (V (m)1 , . . . , V

(m)
t ) be a sequence of random vectors in Rt converging in

distribution to the random vector (V1, . . . , Vt) as m→∞. Furthermore, assume that the distribution
of (V1, . . . , Vt) is absolutely continuous with respect to the Lebesgue measure. Then,

lim
m→∞E[∂kF (V (m)1 , . . . , V

(m)
t )] = E[∂kF (V1, . . . , Vt)], 1 ≤ k ≤ t. (41)

The result was proved for t = 2 in [18, Lemma 6]. The proof for t > 2 is essentially the same; see also
[39, Lemma 7.14].
At this point, we are ready to give the proof of Theorem 2.

Proof of Theorem 2. The first step is to show the equivalence between the state evolution for the true
AMP and the corresponding one for the auxiliary AMP. In particular, we prove that, for t ≥ 1,

(z̃1, . . . , z̃t)
d= (z1, . . . , zt), (42)

where the random variables on the left are defined in (37), and the random variables on the right are
defined in (14). As (z̃1, . . . , z̃t) ∼ N(0, Σ̃t) and (z1, . . . , zt) ∼ N(0,Σt), (42) is readily implied by

Σ̃t = Σt, for all t ≥ 1. (43)

We now show that (43) holds by induction. The base case (t = 1) follows from the definitions of
Σ̃1,Σ1. Towards induction, assume that Σ̃t = Σt for some t ≥ 1. By comparing the definition of x̂s
in (14) with the definition of x̃s in (37) and by using the choice of h̃s in (34) (for s ∈ {2, . . . , t + 1}),
we readily obtain that ∆t+1 = ∆̃t+1 and Φ̄t+1 = Φ̃t+1. Hence, by using (17) and (39), we have that
Σ̃t+1 = Σt+1 and the proof of (43) is complete.
The second step is to show that, for any pseudo-Lipschitz function ψ ∶ R2t+2 → R of order 2, the
following limit holds almost surely for t ≥ 1:

lim
N→∞

RRRRRRRRRRR

1

N

N

∑
i=1
ψ ((x1)i, . . . , (xt)i, (x̂1)i, . . . , (x̂t+1)i, (X)i)

− 1

N

N

∑
i=1
ψ ((u1)i, . . . , (ut)i, (x̃1)i, . . . , (x̃t+1)i, (X)i)

RRRRRRRRRRR
= 0,

(44)
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where, we have defined for s ∈ {1, . . . , t},

us = z̃s + (Bs)s,1x̃1 +
s

∑
i=2

(Bs)s,ix̃i + µsX − β̄sx̃s−1. (45)

From here till the end of the argument, all the limits hold almost surely, and we use C to denote a
generic positive constant, which can change from line to line and is independent of N . By using that
ψ is pseudo-Lipschitz, we have that

RRRRRRRRRRR

1

N

N

∑
i=1
ψ ((x1)i, . . . , (xt)i, (x̂1)i, . . . , (x̂t+1)i, (X)i)

− 1

N

N

∑
i=1
ψ ((u1)i, . . . , (ut)i, (x̃1)i, . . . , (x̃t+1)i, (X)i)

RRRRRRRRRRR

≤ C

N

N

∑
i=1

(1 + ∣(X)i∣ + 2∣(x̂1)i∣ +
t

∑
`=1

(∣(x`)i∣ + ∣(u`)i∣ + ∣(x̂`+1)i∣ + ∣(x̃`+1)i∣))

⋅ (
t

∑
`=1

(∣(x`)i − (u`)i∣2 + ∣(x̂`+1)i − (x̃`+1)i∣2))
1/2

≤ C(4t + 3) [1 + ∥X∥2

N
+

t

∑
`=1

(∥x
`∥2

N
+ ∥u`∥2

N
+ ∥x̂`+1∥2

N
+ ∥x̃`+1∥2

N
)]

1/2

⋅ (
t

∑
`=1

(∥x` −u`∥2

N
+ ∥x̂`+1 − x̃`+1∥2

N
))

1/2
,

(46)

where the last step uses twice Cauchy-Schwarz inequality. We now inductively show that as N →∞:
(i) each of the terms in the last line of (46) converges to zero, and (ii) the terms within the square
brackets in (46) all converge to finite, deterministic limits.
Base case (t = 1). We have that

x1 −u1 = Y x̂1 − z̃1 − (B1)1,1x̃1 − µ1X

= Zx̂1 +
√
λ∗

⟨X, x̂1⟩
N

X −Zx̃1 + b1,1x̃
1 − (B1)1,1x̃1 − µ1X

=
√
λ∗

⟨X, x̂1⟩
N

X + b1,1x̃
1 − (B1)1,1x̃1 − µ1X,

(47)

where the first equality uses (8) and (45), the second equality uses (1) and (33), and the third equality
uses that x̃1 = x̂1. Hence, by triangle inequality,

∥x1 −u1∥2

N
≤ 2(

√
λ∗

⟨X, x̂1⟩
N

− µ1)
2 ∥X∥2

N
+ 2 (b1,1 − (B1)1,1)2

∥x̃1∥2

N

≤ C
⎛
⎝
(
√
λ∗

⟨X, x̂1⟩
N

− µ1)
2

+ (b1,1 − (B1)1,1)2
⎞
⎠
,

(48)

where the last inequality uses that x̃1 = x̂1 and that (X, x̂1) converge in W2 to random variables
with finite second moments. By using (7) and recalling that µ1 =

√
λ∗ε (cf. (13)), we have

lim
N→∞

√
λ∗

⟨X, x̂1⟩
N

=
√
λ∗ε = µ1. (49)

Furthermore, note that (B1)1,1 = κ̄1 (cf. (13)) and b1,1 = κ1 (cf. (36)). Hence, by Assumption 1,
κ1 → κ̄1, as N →∞. Hence, b1,1 → (B1)1,1 and, by combining this observation with (48) and (49),
we obtain that

lim
N→∞

∥x1 −u1∥2

N
= 0. (50)

Next, by expressing x̂2 via (8) and x̃2 via (33), (34) and (45), we have that

x̂2 − x̃2 = h2(x1) − h2(u1). (51)
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Thus, as h2 is Lipschitz, (50) immediately implies that

lim
N→∞

∥x̂2 − x̃2∥2

N
= 0. (52)

An application of the triangle inequality gives that, for any i ≥ 1,

∥ui∥ − ∥xi −ui∥ ≤ ∥xi∥ ≤ ∥ui∥ + ∥xi −ui∥,
∥x̃i+1∥ − ∥x̂i+1 − x̃i+1∥ ≤ ∥x̂i+1∥ ≤ ∥x̃i+1∥ + ∥x̂i+1 − x̃i+1∥.

(53)

Thus, by using (53) with i = 1 and Proposition 2, we obtain that

lim
N→∞

∥x1∥2

N
= lim
N→∞

∥u1∥2

N
= E[(z̃1 + (B1)1,1x̂1 + µ1X)2],

lim
N→∞

∥x̂2∥2

N
= lim
N→∞

∥x̃2∥2

N
= E[(x̃2)2],

(54)

which concludes the base step.
Induction step. Assume towards induction that

lim
N→∞

∥xj −uj∥2

N
= 0, for j ∈ {1, . . . , t}, (55)

lim
N→∞

∥x̂j − x̃j∥2

N
= 0, for j ∈ {2, . . . , t + 1}, (56)

lim
N→∞

∥xj∥2

N
= lim
N→∞

∥uj∥2

N

= E
⎡⎢⎢⎢⎢⎣
(z̃j + (Bj)j,1x̂1 +

j

∑
i=2

(Bj)j,ix̃i + µjX − β̄j x̃j−1)
2 ⎤⎥⎥⎥⎥⎦
, for j ∈ {1, . . . , t}, (57)

lim
N→∞

∥x̂j∥2

N
= lim
N→∞

∥x̃j∥2

N
= E[x̃2j ], for j ∈ {2, . . . , t + 1}. (58)

We now show that the following limits hold:

lim
N→∞

∥xt+1 −ut+1∥2

N
= 0, (59)

lim
N→∞

∥x̂t+2 − x̃t+2∥2

N
= 0, (60)

lim
N→∞

∥xt+1∥2

N
= lim
N→∞

∥ut+1∥2

N

= E
⎡⎢⎢⎢⎢⎣
(z̃t+1 + (Bt+1)t+1,1x̂1 +

t+1
∑
i=2

(Bt+1)t+1,ix̃i + µt+1X − β̄t+1x̃t)
2 ⎤⎥⎥⎥⎥⎦
, (61)

lim
N→∞

∥x̂t+2∥2

N
= lim
N→∞

∥x̃t+2∥2

N
= E[x̃2t+2]. (62)

By doing so, we will have proved also the induction step and consequently that (44) holds.
Using similar passages as in (47), we obtain

xt+1 −ut+1 = Y x̂t+1 − βt+1x̂t − z̃t+1 − (Bt+1)t+1,1x̃1 −
t+1
∑
i=2

(Bt+1)t+1,ix̃i − µt+1X + β̄t+1x̃t

= Zx̂t+1 +
√
λ∗

⟨X, x̂t+1⟩
N

X − βt+1x̂t −Zx̃t+1 +
t+1
∑
i=1

bt+1,ix̃i − (Bt+1)t+1,1x̃1

−
t+1
∑
i=2

(Bt+1)t+1,ix̃i − µt+1X + β̄t+1x̃t.

(63)
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Hence, by triangle inequality,

∥xt+1 −ut+1∥2

N
≤ C(∥Zx̂t+1 −Zx̃t+1∥2

N
+ (

√
λ∗

⟨X, x̂t+1⟩
N

− µt+1)
2 ∥X∥2

N

+
t+1
∑
i=1

(bt+1,i − (Bt+1)t+1,i)2
∥x̃i∥2

N
+ (β̄t+1 − βt+1)2

∥x̂t∥2

N
+ (β̄t+1)2

∥x̃t − x̂t∥2

N
)

∶= C(T1 + T2 + T3 + T4 + T5).

(64)

Consider the first term. Since ∥Z∥op ≤ C, the induction hypothesis (56) implies that T1 → 0 as
N →∞.
Consider the second term. The following chain of equalities holds:

lim
N→∞

√
λ∗

⟨X, x̂t+1⟩
N

= lim
N→∞

√
λ∗

⟨X, x̃t+1⟩
N

=
√
λ∗E[X x̃t+1] =

√
λ∗E[X x̂t+1] = µt+1. (65)

Here, the first equality uses (56) together with the fact that ∥X∥2/N = 1; the second equality follows
from Proposition 2; the third equality uses (42) and the definitions of x̂t+1 and x̃t+1 in (14) and (37),
respectively; and the fourth equality uses the definition of µt+1 in (15). Finally, using (65) and again
that ∥X∥2/N = 1 gives that T2 → 0 as N →∞.
Consider the third term. The following chain of equalities holds, for 1 ≤ j < i ≤ (t + 1),

lim
N→∞

(Φt+1)i,j = lim
N→∞

⟨∂jx̃i⟩ = E[∂j x̃i] = E[∂j x̂i] = (Φ̄t+1)i,j (66)

Here, the first equality uses the definition (35); the second equality follows from Lemma
3, as x̃i = h̃i(z̃1, . . . , z̃i−1, x̂1,X) converges in W2 (and therefore in distribution) to x̃i =
h̃i(z̃1, . . . , z̃i−1, x̂1,X) and hi satisfies Assumption 3; the third equality uses (42) and the definitions
of x̂i and x̃i in (14) and (37), respectively; and the fourth equality uses the definition of (Φ̄t+1)i,j in
(16). By Assumption 1, as N →∞, κj → κ̄j for all j. Thus, by combining (66) with the definitions
ofBt+1 and B̃t+1 in (16) and (36), respectively, we conclude that, as N →∞, bt+1,i → (Bt+1)t+1,i
for i ∈ {1, . . . , t + 1}. By using the induction hypothesis (58), which shows that ∥x̃i∥2/N converges
to a finite limit, we conclude that T3 → 0 as N →∞.
Consider the fourth term. By using the induction hypothesis (55) and (57), together with (46), we
obtain that xt and ut have the same W2 limit given by Proposition 2, namely,

xt
W2Ð→ z̃t + (Bt)t,1x̂1 +

t

∑
i=2

(Bt)t,ix̃i + µtX − β̄tx̃t−1.

Thus, by recalling that βt+1 = ⟨h′t+1(xt)⟩, an application of Lemma 3 gives that

lim
N→∞

βt+1 = E[h′t+1(z̃t + (Bt)t,1x̂1 +
t

∑
i=2

(Bt)t,ix̃i + µtX − β̄tx̃t−1)]. (67)

Furthermore, by using (42) and recalling the definition of β̄t+1, we have that the RHS of (67) is equal
to β̄t+1. Hence, by using the induction hypothesis (58), we obtain that T4 → 0 as N →∞. Finally, by
using the induction hypothesis (56), we conclude that also T5 → 0 as N →∞.
As Ti → 0 for i ∈ {1, . . . ,5}, (64) implies that (59) holds. Next, as ht+1 is Lipschitz, (59) immediately
implies (60). Then, by using (53) with i = t + 1 and Proposition 2, we obtain that (61) and (62) hold,
thus concluding the inductive proof. The result we have just proved by induction, combined with
(46), gives that (44) holds.
Another application of Proposition 2, together with (44), gives that

lim
N→∞

1

N

N

∑
i=1
ψ ((x1)i, . . . , (xt)i, (x̂1)i, . . . , (x̂t+1)i, (X)i) = E[ψ(u1, . . . , ut, x̃1, . . . , x̃t+1,X)],

(68)

where we have defined for s ∈ {1, . . . , t},

us = z̃s + (Bs)s,1x̃1 +
s

∑
i=2

(Bs)s,ix̃i + µsX − β̄sx̃s−1. (69)
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Finally, by using (42), we have that

E[ψ(u1, . . . , ut, x̃1, . . . , x̃t+1,X)] = E[ψ(x1, . . . , xt, x̂1, . . . , x̂t+1,X)]. (70)

By combining (68) and (70), we obtain that the desired result (18) holds, which concludes the
proof.

C.4 State evolution for Gaussian AMP with spectral initialization

In this appendix, we consider the Gaussian AMP iteration (8) with spectral initialization x̂1 = vN ,
where vN denotes the eigenvector of the data matrix Y associated to the largest eigenvalue
νN . As for the Gaussian AMP previously analyzed, one can show that the joint empirical
distribution of (x1, . . . ,xt, x̂1, . . . , x̂t+1,X) converges (in W2 distance) to the random vector
(x1, . . . , xt, x̂1, . . . , x̂t+1,X). The law of this random vector can be captured via a state evolu-
tion recursion, which is expressed via a sequence of vectors µsi

t = (µ0, µ1, . . . , µt) and matrices
Σsi
t ,∆

si
t ,B

si
t ∈ R(t+1)×(t+1), defined recursively as follows. Here, the superscript si highlights that

the state evolution refers to an AMP with spectral initialization. We also note that, to ease the notation,
we have shifted the initialization index from 1 to 0.
We start with the initialization

µsi
0 =

√
COS, Σsi

0 = 1 −COS, ∆si
0 = 1/λ∗, Bsi

0 = Rρ (
1√
λ∗

) , (71)

where λ∗ is the true SNR (see (1)), and Rρ(⋅) denotes the R-transform of ρ. Inductively, having
defined (µsi

t−1,Σ
si
t−1,∆

si
t−1,B

si
t−1), we define the following joint law

(z0,, . . . , zt−1) ∣X ∼ N(µsi
t−1 ⋅X,Σsi

t−1), x̂0 = z0/
√
λ∗, x̂1 = z0,

xs = zs − β̄sx̂s−1 +
s

∑
i=0

(Bsi
s )s,ix̂i, x̂s+1 = hs+1(xs), for s = 1, . . . , t − 1,

(72)

where we have set β̄1 = 0, and for t ≥ 2, β̄t = E[h′t(xt−1)]. Then, the parameter µsi
t is

µsi
t =

√
λ∗E[X x̂t]. (73)

Next, we decompose the second moment matrix ∆si
t of (x̂0, . . . , x̂t) into four parts:

∆si
t = ∆̄si

t + ∆̃si
t + (∆̃si

t )⊺ + ∆̂si
t , (74)

where ∆̄si
t , ∆̃

si
t , ∆̂

si
t ∈ R(t+1)×(t+1) are defined as follows:

(∆̄si
t )i,j = E[x̂i−1 x̂j−1] for i ∈ {2, . . . , t + 1}, j ∈ {2, . . . , t + 1}, and (∆̄si

t )i,j = 0 otherwise,

(∆̃si
t )i,j = E[x̂i−1 x̂j−1] for i = 1, j ∈ {2, . . . , t + 1} and (∆̃si

t )i,j = 0 otherwise,

(∆̂si
t )i,j = E[x̂i−1 x̂j−1] for i = j = 1, and (∆̂si

t )i,j = 0 otherwise.
(75)

Then, let us define the matrix Φ̄si
t ∈ R(t+1)×(t+1) as

(Φ̄si
t )i,j = 0 if i ≤ j, and (Φ̄t)i,j = E[∂j x̂i−1] if i > j. (76)

At this point, we define the two matricesBaux
t , B̃aux

t ∈ R(t+1)×(t+1) as

Baux
t =

∞
∑
j=0

κ̄j+1Φ̄
j
t , B̃aux

t =
∞
∑
j=0

κ̃j+1Φ̄
j
t , (77)

where

κ̃s =
∞
∑
j=0

κ̄j+s (
1√
λ∗

)
j

, for s ≥ 1. (78)

Then, the first column ofBsi
t consists in the first column of B̃aux

t , and the remaining columns ofBsi
t

are equal to the corresponding columns ofBaux
t .
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Finally, we define the covariance matrix Σsi
t as

Σsi
t =

∞
∑
j=0

j

∑
i=0

(Φ̄si
t )i(κ̄j+2∆̄si

t + κ̃j+2∆̃si
t + κ̃j+2(∆̃si

t )⊺ + κ̂j+2∆̂si
t )((Φ̄si

t )⊺)j−i, (79)

where we have set

κ̂s =
∞
∑
j=0

(j + 1)κ̄j+s (
1√
λ∗

)
j

, for s ≥ 1. (80)

Having defined the state evolution recursion above, we can prove that (18) holds, where we recall
that the AMP algorithm is initialized with the spectral estimate x̂1 = vN . The proof follows steps
similar to those detailed in Appendices C.1-C.3 to show Theorem 2. In this case, the auxiliary AMP
is given by the AMP with spectral initialization described in Section 3.2 of [87], and the denoisers4

ut are taken to be the following:

u1(z0) = z0,

ut+1(z0, . . . , zt) = ht+1(zt +
t

∑
i=0

(Bsi
t )t,iui (z0, . . . , zi−1) − β̄tut−1 (z0, . . . , zt−2)),

(81)

where the matrixBsi
t is obtained via the state evolution recursion described above.

D Implementation details and additional numerical results

D.1 Correct AMP: algorithm and corresponding state evolution

In our experiments, for both the correct and Gaussian AMP, we assume to have access to an initializa-
tion x̂1 ∈ RN s.t. (7) holds. Then, for t ≥ 1, the correct AMP iteration reads

xtc = Y x̂tc −
t

∑
i=1

bct,ix̂
i
c, x̂t+1c = ht+1(xtc, . . . ,x1

c). (82)

To obtain the coefficients {bct,i}ti=1, we define the matrix Φc
t ∈ Rt×t as

(Φc
t)i,j = 0, for i ≤ j, (Φc

t)i,j = ⟨∂jx̂ic⟩, for i > j, (83)

where, for j < i, the vector ⟨∂jx̂ic⟩ ∈ RN denotes the partial derivative of hi ∶ Ri−1 → R with respect
to the j-th input (applied component-wise). Then, the vector (bct,1, . . . ,bct,t) is given by the last row
of the matrixBc

t ∈ Rt×t defined as

Bc
t =

t−1
∑
j=0

κj+1(Φc
t)j , (84)

where {κk}k≥1 denotes the sequence of free cumulants associated to the matrix Y . By using the
results of [37, 87] (e.g., Theorem 2.3 in [87]), one can obtain a state evolution result for the correct
AMP (82). More specifically, we have that

(x1
c , . . . ,x

t
c, x̂

1
c , . . . , x̂

t+1
c , X) W2Ð→ (xc1, . . . , xct , x̂c1, . . . , x̂ct+1, X). (85)

The law of the random vector (xc1, . . . , xct , x̂c1, . . . , x̂ct+1) is expressed via a sequence of vectors
µc
t = (µc

1, . . . , µ
c
t) and matrices Σc

t ,∆
c
t ∈ Rt×t defined recursively as follows. We start with the

initialization
µc
1 =

√
λ∗ε, Σc

1 = κ̄2E[x̂21], ∆c
1 = E[x̂21], (86)

where λ∗ is the SNR (see (1)), ε is given in (7), and {κ̄k}k≥1 are the free cumulants associated to the
asymptotic spectral measure of the noise ρ. For t ≥ 1, given µc

t ,Σ
c
t ,∆

c
t , let

(xc1, . . . , xct) = (µc
1, . . . , µ

c
t)X + (wc

1, . . . ,w
c
t),

(wc
1, . . . ,w

c
t) ∼ N(0,Σc

t) and independent of (X, x̂1),
x̂cs = hs (xc1, . . . , xcs−1) , for s ∈ {2, . . . , t + 1},

(87)

4For the denoisers, we use the notation ut for consistency with (3.9)-(3.10) in [87].
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Then, Φ̄c
t+1,∆

c
t+1 ∈ R(t+1)×(t+1) are matrices with entries given by

(Φ̄c
t+1)i,j = 0, for i ≤ j, (Φ̄c

t+1)i,j = E[∂j x̂ci ], for i > j,
(∆c

t+1)i,j = E[x̂ci x̂cj], 1 ≤ i, j ≤ t + 1,
(88)

where ∂j x̂ci denotes the partial derivative ∂xc
j
hi(xc1, . . . , xci−1). Finally, we compute µc

t+1 and Σc
t+1

as

µc
t+1 = E[Xx̂ct+1],

Σc
t+1 =

2t

∑
j=0

κ̄j+2
j

∑
i=0

(Φ̄c
t+1)i∆c

t+1((Φ̄c
t+1)⊺)j−i.

(89)

As usual, the t × t top left sub-matrix of Σc
t+1 is given by Σc

t .

D.2 Choice of non-linearities

For the denoiser ht+1(x1, . . . , xt) of the correct AMP iteration (82), we use the posterior-mean that
takes into account all the past iterates, namely,

ht+1(x1, . . . , xt) = E[X ∣ (xc1, . . . , xct) = (x1, . . . , xt)], (90)

where X,xc1, . . . , x
c
t are the state evolution random variables defined above. If the distribution ofX

is uniform on the sphere, then X ∼ N(0,1) and the conditional expectation (90) can be simplified as

ht+1(x1, . . . , xt) =
(µc

t)⊺(Σc
t)−1xt

1 + (µc
t)⊺(Σc

t)−1µc
t

, (91)

where we use the short-hand xt = (x1, . . . , xt). The state evolution parameters µc
t and Σc

t needed to
implement the denoiser ht+1 are estimated consistently from the data.
For the denoiser ht+1(xt) of the Gaussian AMP iteration (8), we use the posterior-mean denoiser
that takes into account a single iterate, namely,

ht+1(xt) =
µG
t

(µG
t )2 + (ΣG

t )t,t
xt. (92)

In (92), we use the supra-index G (as opposed to c) to indicate that these quantities correspond
to the Gaussian AMP (8) (as opposed to the correct AMP (82)). As usual, the parameters µG

t and
(ΣG

t )t,t are obtained from the data by using the recursion of the correct AMP specialized to the case
of Gaussian noise. Let us highlight that this recursion can be implemented also in the mismatched
setting, as it depends only on data. However, it does not lead to consistent estimates of the state
evolution parameters as derived in Theorem 2, because of the mismatch.

D.3 Additional numerical results

Let the matrix A ∈ RN×N be an orthogonal matrix with “Rademacher spectrum” ρ = 1
2
(δ1 + δ−1)

(the eigenvalues are i.i.d. uniform ±1) and W a standard Wigner matrix. Then, the noise is Zt ∶=√
tW +

√
1 − tA for t ∈ [0,1]. For t = 1, this coincides with the pure Wigner case: here, the Bayes

estimator is optimal, and the Gaussian AMP is also optimal unless a statistical-to-computational gap
is present [28, 12, 54]. In contrast, for t ∈ [0,1), there is a mismatch and our results give a sharp
asymptotic characterization of the Bayes and AMP estimators, cf. Theorem 1 and 2, respectively. By
additivity of the R-transform for (asymptotically) free random matrices [70], denoting Rt(x) the
R-transform of Zt, we obtain

Rt(x) = tx +
√

4(1 − t)x2 + 1 − 1

2x
.

In Fig. 2, we take t ∈ {0.2,0.5,1}. We note that, for this model, Assumption 1 clearly holds, and
we have verified numerically that Assumption 2 holds too. As t goes from 0 to 1, we get closer to
a model without mismatch and, therefore, the performance gap between mismatched algorithms
(Gaussian AMP, GauSpec, Bayes) and optimal ones (correct AMP, OptSpec) shrinks. As expected, all
curves collapse at t = 1. The phenomenology described at the end of Section 4 can also be observed
in this setting.
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(a) t = 0.2.
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(b) t = 0.5.
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Figure 2: MSE (on the left) and overlap (on the right), as a function of the true SNR λ∗, when the
noise spectrum is the free convolution of Rademacher and semicircle spectra.
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