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ABSTRACT

Multi-objective multi-agent reinforcement learning (MOMARL) problems fre-
quently arise in real world applications (e.g., path planning for robots) but have
not been explored well. To find Pareto-optimum is NP-hard, and thus some multi-
objective algorithms have emerged recently to provide Pareto-stationary solution
centrally, managed by a single agent. Yet, they cannot deal with MOMARL prob-
lem, as the dimension of global state-action (s, a) grows exponentially with the
number of spatially distributed agents. To tackle this issue, we design a novel
graph-truncated )-function approximation method for each agent i, which does
not require the global state-action (s, @) but only the neighborhood state-action
(sarx,an) of its k-hop neighbors. To further reduce the dimension to state-
action (sxr=, a;) with only local action, we further develop a concept of action-
averaged ()-function and establish the equivalence between using graph-truncated
@-function and action-averaged @-function for policy gradient approximation.
Accordingly, we develop a distributed scalable algorithm with linear function ap-
proximation and prove that it successfully converges Pareto-stationary solution at
rate O(1/T) that is inversely proportional to time domain T'. Finally, we run sim-
ulations in a robot path planning environment and show our algorithm converges
to greater multi-objective values as compared to the latest MORL algorithm, and
performs close to the central optimum with much shorter running time.

1 INTRODUCTION

As real-world applications become increasingly complex, multi-objective optimization problems are
becoming more prevalent. For example, in the e-commerce domain (Weck et al., 2022; |Xu et al.,
2024), platforms aim for product recommendations that are not only clickable and purchasable but
also engaging enough to encourage user sharing and collection. This scenario involves optimiz-
ing multiple objectives, including the click-through rate, purchase rate, and collection rate of the
products. For such scenarios involving multiple optimization objectives, the traditional setting of a
single reward structure in the reinforcement learning (RL) framework (Sutton & Barto, [1998)) is ob-
viously insufficient to describe. Therefore, it is necessary to establish multi-objective RL (MORL)
problems.

Different from the rapid development of traditional RL (Grondman et al, 2012} |[Zhang et al, |2021)),
the research in MORL (Ge et al., 2022 |Stamenkovic et al, 2022) is still in its infancy to address the
potential conflicts between multiple objectives. One common approach to solving MORL problem
involves assigning weights to different objectives and transforming the multi-objective problem into
a single-objective problem (Blondin & Hale} 2020). However, this approach has the limitation of
assuming known objective weights, which can restrict its applicability. In the MORL problems, a
more appropriate and relevant metric is to find a Pareto-optimal solution for all objectives, where
no objective can be unilaterally improved without sacrificing another. As many real-world MORL
problems are typically non-convex, finding the Pareto-optimal solution is NP-hard (Yang et al.,
2024).

To address the NP-hard nature of non-convex MORL problems, Pareto-stationary solutions (a neces-
sary condition for Pareto optimality) are employed (Sener & Koltunl 2018). For the MORL problems
with continuous action space, (Chen et al., 2021) proposed an actor-critic MORL algorithm based
on the deterministic policy-gradient (Silver et al., 2014). More generally, for the MORL problem
with non-continuous action space, a unified multi-objective actor-critic algorithmic framework was
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proposed for both discounted and average reward settings in (Zhou et al., 2024)), where the update
of stochastic policy parameters employs the multi-gradient descent method in (Désidéri, [2012).

The aforementioned methods are all directed towards addressing the MORL problem in a central-
ized setting or for a single agent. However, practical applications of MORL problems often involve
multi-agents. For instance, teams of robots need to decide themselves how to explore distinct regions
by simultaneously minimizing energy consumption and travel time. In comparison to the MORL
problem with single-agent, the multi-objective multi-agent problem (MOMARL) is more intricate
as it encompasses not only potential conflicts among different objectives but also interactions be-
tween the distributed agents with limited communication. An intuitive approach to the MOMARL
problem is to consider it as a MORL problem with a single agent, where the state and action are rep-
resented by the joint states and joint actions of all agents, respectively. However, as the number of
agents increases, the size of their joint state-action space will exponentially grow. This characteristic
renders the current algorithms used for solving MORL problems with a single agent in (Chen et al.|
2021} [Zhou et al., 2024) unsuitable for large-scale scenarios with multi-agents. Consequently, the
MOMARL problem poses new challenges to the design of scalable algorithms and their theoretical
analysis.

This paper aims to address the following problem: How to develop a scalable algorithm for the
MOMARL problem and ensure its convergence to Pareto-stationary of the multi-objective function?
The contributions of this paper are described as follows.

(1) In order to improve the scalability of the algorithm and avoid using the global state-action, we
design a novel graph-truncated ()-function approximation for each agent ¢, which only requires the
neighborhood state-action (s NF G Nf) of its k-hop neighbors, instead of the global state-action. Ad-
ditionally, we introduce a new concept of action-averaged (Q-function and establish the equivalence
between using the graph-truncated ()-function and action-averaged @)-function for policy gradient
approximation.

(ii) Based on the concept of action-averaged ()-function, we propose a distributed scalable actor-
critic algorithm for the MOMARL problem. In critic step, we use linear function to approximate the
action-averaged Q-function, which further reduces the dimension of state-action to (s NE a;) with
local action. In addition, we use the multi-gradient descent method in actor step to update the policy
parameter for finding a Pareto-stationary solution.

(iii) We prove that the proposed scalable algorithm for MOMARL successfully converges to the
Pareto-stationary solution at rate O(1/7") that is inversely proportional to time domain 7. Moreover,
we run simulations in a robot path planning environment and show our algorithm converges to
greater multi-objective values as compared to the latest MORL algorithm (Zhou et al., 2024)), and
performs close to the central optimum with much shorter running time.

2 THE NEW MOMARL PROBLEM FORMULATION AND PRELIMINARIES

2.1 MODEL OF THE MOMARL PROBLEM

The MOMARL problem can be described as (N, M,G(N, E),{S:}ien, {Aitien, {Pitien p,
{r"Yienrmem,¥), where N = {1,--- N} and M = {1,--- , M} represent the agent set and the
objective set, respectively. G = (N € ) represents the communication network among agents with
£ being the set of edges For integer x > 1, denote \V/* as the k-hop neighborhood of agent i.

State and action: S; and A; represent the local state space and the local action space of agent i,

respectively. Denote S = Hfil S;and A = Hfil A; as the global state space and the global action
space, respectively. Denote s = (s1,--- ,sny) € Sand a = (a1, -+ ,an) € A as the global state
and the global action of agents, where s; € S; and a; € A; represent the local state and local action
of agent i € N, respectively. For integer x > 1, denote s A+ and ap= as the state and action of agent

i’s r-hop neighbors, respectively. Moreover, denote Sy = 11 JENT Sjand Ayr = II JENF A; as
the state space and the action space of agent i’s x-hop neighbors, respectively. '

'For the case of time-varying neighbor agents, our algorithm is still applicable if the agent communicates
intermittently (or delays communication) with its initial neighbor. In the process of convergence analysis of the
algorithm, we just need to introduce an additional error term caused by communication disconnection or delay.
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State transition probability function: P;(si[sy1,a:) @ Syr x A x S; — [0, 1] is the state
transition probability function of agent ¢, dependent of its 1-hop neighborhood state and its local
action. Denote P(s'|s,a) = Hf;lpi(sﬂs,\/},ai) : 8 x Ax 8 — [0,1] as the global state
transition probability function. Note that the definition of the state transition probability function
Hf\;l Pi(si|sp1;a;) is common in the literature. For example, it applies to the scenario of traffic

signal control problem (Chu et al., 2020; Dai et al.,|2024), where the traffic flow at each intersection
is influenced by the traffic flow at its neighboring intersections and its own signal light.

Initial state distribution: p is the distribution of the initial state sg.

Reward function: r"(s;,a;) : S; X A; — R is the reward function of agent s € A in the objective
m € M. Denote s; = (S1,, -+ ,Sn,) and a; = (a14,-- - ,an,) as the global state and the global
action at time ¢, respectively The reward of agent s € N in the objective m € M at time ¢ can be
represented as 1] = ™(S4.¢, @it ), as in the literature (Chu et al., 2020; Dai et al., |2024; Zhou et
al.l 2023} [Qu et al 20203)

Discount factor: v = (7, 4M)T € RM with 4™ € (0,1) being the discount factor in the
objective m € M.

Softmax policy: In this paper, we use the parameterized softmax policy 7, (a;|s;) with parameter
0; € RISl which is described as

€xXp ei,si,ai
(anlse) = <=2 inian)

= =11 @))]
' Za; exp(oiﬁi,a;) ’
where 0; s, o, represents the element corresponding to (s;, a;) in ;. Denote @ = (6] ,--- ,0%) "

REZ1ISiIA a5 the joint policy parameter of agents and g (a|s) = Hf\;l 7o, (a;]s;) be the joint
policy of all agents. Note that the softmax policy is used in RL to ensure the exploration of a-
gents (Zhou et al., 2023} [Zhang et al., [2022)).

In the MOMARL problem, given a joint policy parameter 8, the m-th objective of all agents is
defined as J™(0) and represented as

© N
J"(6) SNP[%ZZ ?&\So:svatNﬂe(WSt)] (2)

t=0 i=1

The goal of agents in the MOMARL problem is to find a joint policy parameter 6 to maximize the
following composite objective, i.e.,

max J () = [(J1(8),---, M (0)" € RM. 3)

In order to address the potential conflicts among the J (@) in , the notions of Pareto-optimality
and e-Pareto-stationarity are introduced as follows.

Definition 1 (Pareto-optimality) A solution 8 dominates solution 0" if and only if J™(0) > J™(6’),

Vm € Mand Im’ € M, J™ () > J™ (0'). A solution 0 is Pareto-optimal if it is not dominated
by any other solution.

Considering that finding Pareto-optimal solutions for non-convex MOMARL problems is NP-hard,
it is generally more practical to seek the e-Pareto-stationary solution instead of the Pareto-optimal
solution (Kumar et al., 2019)).

Definition 2 (e-Pareto-stationarity) A solution 0 is e-Pareto stationary if there exists A =
AL AT e RM sych that minycga ||V () TA|2 <
e> 0.

Based on Definitions[T}{2] it is obvious that the Pareto-stationarity is a necessary condition for a solu-
tion to be Pareto-optimal. Specifically, in the context of convex MOMARL problems, the solutions
that are Pareto-stationary also qualify as Pareto-optimal. Given the complexity associated with the
MOMARL problem, this paper focuses on developing a distributed scalable algorithm to identify
and achieve Pareto-stationarity.
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2.2  PRELIMINARIES IN THE MOMARL PROBLEM

In the MOMARL problem, for any joint policy parameter 8 and m € M, the global Q-function
Q™ (s, a;0) in m-th objective is defined as
1 oo N
Q" (5,0:0) = Exy |- D" a0 = 3,00 = al. )

Different from the definition of the global ()-function in @), for each agent i € N, its local Q-
function Q7" (s, a; 8) in m-th objective is defined as

Q7" (8,a;0) = Er, {Z(w’”)trmso =s,a) = a] (5)

t=0
Based on the definitions of the global Q-function (4) and the local Q-function (3], we have

N
1
Qm(saa;e) = N § Q;"(s,a;@), (6)
i=1

which shows the global @)-function can be decomposed into the sum of the local @-functions of
all agents. In the MOMARL problem, given the joint policy parameter 6, define dg””(s) as the
discounted state visitation distribution, which is represented as

o0

dp™(s) = (1=7") ) _(Y")'Pr"™ (s, = s|so ~ p), @)

t=0
where Pr™® (s; = s|sg ~ p) represents the probability of s, = s at time ¢ under the initial state
distribution p and the joint policy mg. Moreover, let fg’m(s, a) be the discounted state-action
visitation distribution of (s,a) € S x A and satisfy

£g’m(s7a) = dg’m(s)ﬂ'g(a|s). 8)
In the MOMARL problem, some assumptions are introduced in the following.

Assumption 1 In the MOMARL problem, for any joint policy parameter 0 and objective m € M,
9m (s, a) satisfies that

inf . 0,m .
in (s7ar)11€1'lsle§p (s,a) >0 )

Assumption 2 In the MOMARL problem, for any agent i € N and objective m € M, there exists
constant R > 1 such that the instantaneous reward 17’y at time t > 0 satisfies [r"y| < R.

Assumptionensures that for any joint policy g, (s,a) € S X A is visited with a non-zero prob-
ability and Assumption [2] provides an upper bound on the reward. These assumptions are standard
prerequisite for the convergence analysis of RL algorithms and can be found in (Zhou et al., 2023}
Zhang et al., 2022).

Recall that the policy gradient theorem (Sutton et al., 2000) is the foundation of algorithm design in
RL. Inspired by the theorem, in our MOMARL problem, we also have the following policy gradient
lemma.

Lemma 1 In the MOMARL problem, for any joint policy parameter 6, the gradient of J™(0) in
m-the objective with respect to 0 is given by:

Vo ™(0) = —

- m Hs~d®™ a~me
11— P

[Vologme(als)Q™ (s, a;0)],Vm € M. (10)

Lemmall|shows that the calculation of the policy gradient V¢J™ (6) depends on Q™ (s, a; @), which
involves global state-action (s, a). Consequently, there are two challenges in applying : (i) the
computational complexity of handling the global state-action (s, @) in a centralized setting is high;
(ii) it is difficult to achieve efficient distributed decision making among multi-agents with limited
communication.
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3 DISTRIBUTED SCALABLE ACTOR-CRITIC ALGORITHM FOR MOMARL
PROBLEM

In order to mitigate the RL algorithm’s dependence on global state-action (s, a), this section designs
a distributed scalable algorithm through the following 3 steps as in Fig. [I} (1) We first propose a
new graph-truncated Q-function approximation for each agent i € N, which does not require the
global state-action (s, a) but only the neighborhood state-action (sxx, axr) of its k-hop neighbors;
(2) Then, we introduce a new concept of action-averaged (Q-function and establish the equivalence
between using the graph-truncated Q-function and action-averaged @Q-function for policy gradient
approximation; (3) Finally, we use linear function to approximate the action-averaged (J-function
and reduce the dimensionality of state-action of each agent i € N to (syr=, a;).

Step 1 Step 2 Step 3
7777777777777777 , e ey
H Section 3.1 ' H Section 3.2 i | Section 3.3 !
! [Graph-truncated Q-function] [ setion-averaged Q-function i \[ Critic Step: Linear function |} ______________
: . = A : ag Qo =1 approximation ' ' (Sectiond) |
! in (12) H ! s | ! ( .5 )inQo ' ! Distributed scalable |
i @ | ' @ ! I :‘:>\ algorithm !
i ! 1 ' | Section 3.4 ' | in Algorithm 1 1
[~ ~ - I | [, '
i| Graph-truncated policy |1 ! | Approximated policy gradient|| '] Actor Step: Approximation i
1| gradient w O | ! ()in(17) ::>, optimation gradient in (25) | |
i |
i ! i ' i i

Proposition 1

Figure 1: The main flowchart of algorithm design: Step 1 proposes a new graph-truncated Q-
function @7y, ;(snx; anx; @) and the graph-truncated policy gradient Vg, Ji7!, ;(0); Step 2 designs
a action-averaged Q-function @R(s7 a;; @) and approximation policy gradient Vy, J;7 (), which
is equivalent to Vy, J;7!, () (i.e., Proposition ; Step 3 proposes the linear function approximation
and policy parameter update for the distributed scalable algorithm in Section 4]

3.1 GRAPH-TRUNCATED ()-FUNCTION

In the following, we first introduce the formal definition of the exponential decay property in the
MOMARL problem.

Definition 3 The MOMARL satisfies the (9, p)-exponential decay property with 9 =
WL 9MT € RM g = (o!,---,0M)T € RM, if for any joint policy g, agent i € N,
objective m € M, sy= € Syw, ans € Anx, s_nw, 8 zn € S_nw, and a_pnw, 0! zw € A px,
Q" (s, a; 0) satisfies

Qi (snr, 5Ny anr, a a3 0) — QT(SN;"SI_NL.MGJ\/;’@/_M;;O)‘ <I™(e™)L A

The exponential decay property of the MOMARL problem indicates that the dependence of agen-
t i’s local Q-function Q7" (s, a; ) on other agents shrinks rapidly as the distance between them
increases. By Assumption[2} we can directly obtain the following lemma.

Lemma 2 The MOMARL problem satisfies (( T ffy Ty, %)T, 'y) -exponential decay property.
The proof can be found in Appendix [A.T] Lemma 2] provides a possibility for agents to approximate
Q7" (s, a; 0) by only using its x-hop neighbors’ information. Inspired by exponential decay property
in Lemma|2] we design a proper class of graph-truncated )-functions:

Qptyi(snmyans;0) = > €8 (s_nryamnrlsa, ane ) QY (snm, - nm, ane, a- e 0),
S_NFa-NF

(12)
where 52”” (5-nrmy a_ne|sarx, apw) is the weight coefficient and satisfies
E8 M (sarm, S_nm s GNR, G Nw)
P : ! ; ;

E0™ (snm Ao prr|sar, ane) = 5 . (13)
g Z gp,m(s./\/.fvS/_/\/i'w‘aa./\/'fval_./\/'iﬁ)

’ ’
SN NE
: i
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Using (12), we define the graph-truncated policy gradient Vo, Ji7!, ;(8) as

tru,t
1

1
Esmadg"'",arwﬂg |:N Z Qmu,j (S/\/’fv a./\/]f‘; 0)V91 IOg 9, (ai |SZ)1| . (14)

Vo, Jim, :(0) =
i Y tru,i 1— v
JENE

The graph-truncated policy gradient approximation error is presented in the following.

Lemma 3 In the MOMARL problem, for any agent i € N and objective m € M, we have

V0.0, - Vos0)], < oy 15)

Similar to (Qu et al, [2020a), Lemma shows that the graph-truncated (@-functions
{QFrw i (snr anr;0) }jenr can effectively approximate the policy gradient Vi, J™ () through
the state-action (sy/x, ay). In order to improve the scalability of the algorithm, we further explore
the properties of graph-truncated Q-function in (I3)) and reduce the dimensionality of the algorithm
to (sarx, @q).

3.2 POLICY GRADIENT APPROXIMATION

To further reduce the neighbors’ action ax+ in graph-truncated Q-function (12) to local action a;,
for any agent ¢ and objective m, we design a novel concept of “action-averaged @-function” by
using its x-hop neighbors’ rewards as follows:

oo

—— 1
Q7(s,a;;0) =Enr, {N Z(Vm)t Z i (s4e,a5,)|80 = 8,450 = ai] (16)
t=0 JENT

Define Vy, J,Zﬁp(O) as the approximated policy gradient of agent ¢ by using the action-averaged

Q-function in (I6), given by:
1

VG i (0) = 1— A

i app,t

EsNdf,'"",awmi [@ZE(S, a;; 0)Vy, log mp, (ai|si)} . )

Unlike the graph-truncated policy gradient Vy, J;1!, ;(0) in that requires ayr, only requires
the local action a;. As shown in Fig.[I] we establish the equivalence between graph-truncated policy
gradient V, J;, ;(68) and approximated policy gradient V,J;} ,(6) in the following proposition.
Proposition 1 In the MOMARL problem, given a joint policy mg, for any agent i € N and objective
m € M, it holds

Vo, Jiu,i(0) = Vo, Jiiy, (6). (18)

The proof of Proposition [T| can be found in Appendix Proposition [I] provides an equivalence
between Qi ;(syx, @ NS 6) and 6/2?(3, a;; 0) in policy gradient approximation. Based on Propo-
sition |1} the approximation error between Vi, Ji}, ;(0) and original Vi, J™ (@) in (10) can be well
bounded for the MOMARL problem in the following theorem.

Theorem 1 In the MOMARL problem, given a joint policy me, for any agent i € N and objective
m € M, it holds that

V2R

V0, T330i(0) = Vol O)]l2 < g

(v™)" (19)

Theorem [I]is built upon Lemma 3]and Proposition[T} with its proof provided in Appendix[A.4]

The policy gradient has been approximated so far by constructing @R(s,ai;g) in and

Vo, oy :(6) in 1i which reduces the action dimension of each agent ¢ to its local action a;.

However, the expression of (j}?(s, a;; 0) still requires the global state. Therefore, in the following,
we will focus on reducing the dimensionality of agents’ state information.
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3.3 CRITIC STEP: LINEAR FUNCTION APPROXIMATION

As shown in Fig. [T] in this subsection, we use the localized stochastic approximation and propose
a linear function in (20) to reduce the dimension of the state-action required by agent i € A to

(snx, ai). Specially, the linear function QM (s N, aq;wit) of agent 4 to approximate Q" (s, a;; 0)
is given as

S T
Q;n(sj\f[”aai;wzm) = (bl(s-’\ff?afl) w;", (20)
where @i (s, ai) : Sy X A — R9 is the feature vector mapping and w™ € R% is the parameter
of agent 7 in m-th objective. By the definition of Q" (s, a;; ) in l| the parameter with initial
value w;', can be updated by sample sequence {Sa/ ¢, @i ts TR 4 J0<to <K aS
Wi 41 = Wig = N 140 Pi (SN to+15 Citg+1), 21

where 477} is the local temporal difference error at time ¢y and represented as

m

1
m T m m
0o = Pi(s7 to: Gisto) Wiy — 3 Y T = AN 41, Gt 1
JENT

)Twlh o, (22)

and 7, is the fixed learning rate of parameters w;". The detailed description of linear function
approximation is illustrated in Algorithm 2]in Appendix

3.4 ACTOR STEP: POLICY PARAMETER UPDATE
i app,t

cy mg,, we denote g/y(B) as the estimation of Vy,J;7 (0) based on the sample sequence
{(Sj’\/{g’h, a?,h)}OSbSB—LOShSH—l? calculated by

Based on our peoposed approximated policy gradient Vy,J!" .(€) in , for joint poli-

b 1=
mb+1) = ——gn(b) + —— Ve, 10 (0 23
gz,t( + ) b+lgz,t( )+ b+1v‘91 app,l( t)7 (23)
where ¢j",(0) = O;s,|.4,| and Ve, J;;;f’,i(ot) is defined as
R H-1
o, (00) = 3 (1), log o, (st )du(shr o al) Tul 4)
h=0

Let g7 = g7s(B)T and g" = ((g7%) 7., (g%)7) " € RELIISIAL Related to Pareto-

o~

stationarity in Definition |1, we denote A\; = (th, e ,Xiw )T € RM as solution of the following
quadratic programming problem:

M 9
i Aalt 2. >0, [ M) =1 25
At:(ki,-?lz\%f)TeRAJ mz:; L PR £ 2 0, [1Mdlly (25)

After computing Xt, we update the weight A; as
Ar = (1= ma0) A1+ mase, (26)

where 7 ; is the learning rate of A;. Denote g; = Zfrvf:l A7'gl", the update of ;1 is presented as

0,11 =0, +70,:9:, 27)

where 7g ; is the learning rate of policy parameter. In the NMARL problem, the agents can use 8,
to achieve the distributed decision based on ().

4 DISTRIBUTED SCALABLE ACTOR-CRITIC ALGORITHM AND ITS
PARETO-STATIONARY CONVERGENCE

In this section, we first propose a distributed scalable actor-critic algorithm (i.e., Algorithm [T)) for
the NMARL problem. Then, we prove the Pareto-stationary convergence of Algorithm T}
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Based on Section [3] we propose a distributed scalable actor-critic algorithm for the MOMARL
problem, which is given in Algorithm[I} In order to analyze the Pareto-stationary convergence of
Algorithm [T}

Algorithm 1: Distributed scalable actor-critic algorithm for the MOMARL problem
Require: The non-negative integers 7', B, H, the learning-rates n;,', {nx ¢ }+c{1,... 7} and
{n@,t}te{l,m T}
Initialization: Initialize Ao = ﬁl v € RM  the policy parameter 0i1€ RISiIxIAil to follow
Gaussian distribution for all i € {1,2,--- , N};
fort=1,2,--- ,Tdo
Initial policy gradient estimation g7} (0) = 0)s,|.4,| for all i € N;
Critic step: All agents use in Algorithm and output the weight vectors {w;"} }ienrs
Actor step:
forb =0,1,2,--- ,B—1do
All agents execute the joint policy mg, in H — 1 horizon;
Each agent i € N collects a sequence of samples, which includes the state information
{s J } JENF from its x-hop neighbors and its local action information a;, i.e.,

{(sher o a2 ) Yohem—13
Each agent ¢ estimates the local policy gradient in m-th objective according to ;
end
All agents calculate g}, = g (B) by and achieve g = ((97%) ", - -, (g}(}"t)T)T for all
m € [M];
Compute A; as the solution to problem ;
Update the weight A, acording to (26);
Update the policy parameter 6; ;1 according to (27);
end

Output: 7g_ with T chosen uniformly from {1,--- , T}

Our process to prove the Pareto-stationary convergence of Algorithm [I]is as follows: (i) We start
from the definition of Pareto-stationarity in Definition [2| and analyze the error between the true
gradient Vy, J™(0;) and the calculated gradient g;"; in (i.e., Lemma EI); (i1) We control A
by setting the step size 7 ; to ensure that Algorithm [I] converges to Pareto-stationary solution in
Theorem 2]

Lemma 4 In Algorithm|] for joint policy parameter 0,, any agent i € N, and objective m € M,
we have

8R? 32 8(y™)2H el .
EHlVg,L.Jm(et) _ meHQ} §7(777L>2n+2 4 4 critic ,
R CEEOR (I=9ym)?B (1=t (1=9m)
where efﬁm-c is the linear approximation error and defined as
A — 2
Efﬁitic = sup supE[sup Qi(snrs ai;wi'y) — Q7 (s, as; Ot)‘ } (28)

meM ieN s,a;4

The proof of the Lemma [] is given in Appendix [A.6] Based on Lemma [d] the Pareto-stationary
convergence of Algorithm[l|is presented in the following theorem.
1

Theorem 2 In Algorithm let L; = maX;em % Not = ﬁ and nx; = (SR Our

policy parameter sequences {0}, generated by Algorithm satisﬁes:

T
~ 36L 8R?
ElIVoT(0) Al < =iy (1 Xmae) 5 mae (= a 07
t=1

(1= [Ivllec)T meM \ (1 —~™)
32N 8(ym)2HN 8 0. N
+ — (7 ) — maXlStST;C;"Lt'LC )7 (29)
(1—=9ym)2B  (1—~m) (1 —~m)

where T is uniformly sampled among {1, --- | T'}.
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The proof of Theorem [2] can be found in Appendix Theorem [2] shows that Algorithm [I] can
converge to an approximate Pareto-stationary solution at a rate of O(1/T'). The gap between the ap-

proximate Pareto-stationary and the Pareto-optimal depends on graph-truncated approximation error
2 0t

%(’ym)%+2 and linear function approximation error % These errors are not signifi-

cant, as we can control the upper bound of their upper bounds by setting the graph-truncated distance

 and the feature vector in the linear approximation. Specially, the graph-truncated approximation

error is exhibits an exponential decrease as k increases.

5 ROBOTS PATH PLANNING EXPERIMENTS

In this section, we study MOMARL by considering /N robots as agents in a typical path planning
simulation experiment by following (Zhou et al., 2023). Similar setting is also used in (Duan et al.,
2016}, Zhang & Pavone| [2016). We consider different path networks as shown in Figs. and[3(a)]
where leftmost nodes represent the starting locations for agents and rightmost nodes represent the
different objective destinations. The agents have the option to either halt or continue along the path
until they reach the objective destinations, where they will remain. The goal of agents is to explore
different destinations, for simultaneously minimizing the travel time and collision with each other.

In path planning simulation experiment, for each agent i € {1,--- , N}, define all possible locations
as its local state space and all possible movements as its local action space. In order to better
understand the movement changes of agents, we take network 3-2-2 in Fig. 2(a)|as an example. If
agent ¢ at node bo, it can choose remain stationary at the current node for one time step, move along
the edge (b2, ¢1) or edge (ba, c2).

The reward setting of each agent ¢ includes: (i) the cost of travel time —0.5 at each step, (ii) the
collision penalty —0.5 when it chooses the same path with another to move, (iii) the final reward for
reaching a destination. Specifically, when a agent reaches objective 1 and objective 2 in network 3-2-
2, it will receive additional rewards of [0.5, 0], and [0, 1], respectively. In network 5-5-5-3, each agent
reaches objective 1, objective 2, and objective 3 will receive the additional rewards of [0.5,0, 0],
[0,1.5,0], and [0, 0, 1], respectively. The goal of agents is to find a joint policy parameter 8 to
maximize (3).

— Policy gradient by centralized algorithm
10 //—-_-_-_-_-_' 25 —— Policy gradient by Algorithm 1

20
2
15 1

0

Al |
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2 (Objective 2) —e— Obj 1 by Algorithm 1
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|
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(a) Acyclic network  (b) The evolution of the objective per- (c) The evolution of the norm of policy
formance J(6,) gradient ||g¢||2

Figure 2: (a) Experiment network setting for N = 6 robots, (b) the multi-objective performances,
and (c) the norm of gradient of our Algorithm [I]as compared to the centralized Algorithm 3}

In path network 3-2-2, we set the discount factor v = (0.9, 0.9)T, the communication distance
x = 1, and the initial positions of agents are set to by, bo, b3, b1, bo, b3, respectively. In order to
demonstrate the superiority of our proposed Algorithm [I|in terms of runtime and computational
performance, we compare it to the centralized Algorithm [3| presented in Appendix [A.8] which uses
the global state-action information and has also been proven to converge to 0-Pareto-stationarity
(i.e., Theorem[d]in Appendix [A.8).

The discounted average cumulative reward {.J"™ (6;)} 1,2} of the policy sequence generated by
Algorithm [1| and the centralized Algorithm |3|are depicted in Fig. where x-axis represents the
running time. Although the final value of objective 2 generated by centralized Algorithm [3]is better
than Algorithm 1] it takes longer time to learn. As shwn in Fig.[2(b)] centralized Algorithm [3]takes
575s to implement an update to the policy parameters, but our algorithm has already learned in this
time. Furthermore, the value of objective 1 in our proposed Algorithm [I] converges to greater value
as compared to the centralized Algorithm 3]
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The Pareto-stationary convergence error (i.e., ||g¢||2 in ) generated by Algorithm |1|and the cen-
tralized Algorithm 3]is depicted in Fig. where the x-axis represents the running time. Although
the norm of policy gradient generated by centralized Algorithm 3]is closer to O than Algorithm|[I] the
norm of policy gradient of our Algorithm [T]can reach to 0.05 quickly after running 575s, which is
significantly faster than the centralized Algorithm 3] This speed advantage stems from the fact that
the centralized algorithm requires time-consuming calculations of the exact value of the global Q-
function during policy updates. In contrast, our Algorithm[I]does not necessitate such computations
and thus outperforms the centralized algorithm in term of runtime.

L
5

~¥— Obj 1 by Algorithm 1 —— Policy gradient by Algorithm 1
0bj 2 by Algorithm 1 175 Policy gradient by Zhou et al., 2024
—<— Obj 3 by Algorithm 1
—e— Obj 1 by Zhou et al., 2024 15.0
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e
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(a) Acyclic network  (b) The evolution of the objective (c) The evolution of the norm of
performance J(6;) policy gradient ||g¢||2
Figure 3: (a) Experiment network setting for N = 10 robots, (b) the multi-objective results, and (c)
the norm of gradient of our Algorithm |l| as compared to the latest MORL algorithm (Zhou et al.,
2024).

In the larger path network 5-5-5-3, we set the discount factor v = (0.9, 0.9, 0.9)T, the communica-
tion distance x = 1, and the initial positions of agents are set to by, ba, b3, by, b5, b1, b2, b3, by, bs, re-
spectively. In this simulation, the centralized Algorithm[3is no longer applicable due to its enormous
computational complexity. Thus, we compare our Algorithm|T]to the latest MORL algorithm (Zhou
et al., [2024]), which specifically addresses the MORL problem with discrete action space and is cur-
rently the only approach for achieving Pareto-stationarity. Since the latest MORL algorithm cannot
directly apply to our multi-agent setting of limited communications, we transform the multi-agent
setting to its MORL with a single agent, who accesses the global state-action information.

The discounted average cumulative reward {.J™ (0;) },c{1,2,3} of the policy sequence generated by
our Algorithm(T|and the latest MORL algorithm are depicted in Fig.[3(b)l where x-axis represents the
number of iterations. As shown in Fig. our Algorithm|[I|converges to all greater multi-objective
values as compared to the latest MORL algorithm.

In order to demonstrate the superiority of the algorithm in convergence performance, the Pareto-
stationary convergence error generated by Algorithm |1 and the latest MORL algorithm are shown
in Fig. where the x-axis represents the number of iterations. The norm of the policy gradient,
as demonstrated by Algorithm [I] exhibits a clear convergence trend towards 0. However, the policy
gradient in the latest MORL algorithm deviates significantly from O due to the excessively large
global state-action dimension, resulting in a substantial approximation error in the global Q-function
approximation.

Based on the simulation results, the centralized Algorithm [3] necessitates the computation of the
exact value of the global Q-function at each update, resulting in a time-consuming procedure. The
latest MORL algorithm (Zhou et al.] 2024) employs an approximation of the global Q-function,
which enhances its efficiency; however, it encounters convergence challenges in MAMORL prob-
lem. In comparison to the centralized Algorithm [3| and the latest MORL algorithm (Zhou et al.,
2024), our proposed Algorithm [T demonstrates favorable outcomes in terms of both running time
and convergence.

6 CONCLUSIONS

In this paper, we proposed a distributed scalable actor-critic algorithm for the MOMARL problem
and proved that this algorithm reaches a close-to-Pareto-stationary point of J(8). In the proposed
algorithm, each agent only requires state-action information (s NE a;), which can effectively im-
prove the scalability of the algorithm. The underlying framework of distributed scalable actor-critic
algorithm, which includes the graph-truncated Q-function (I2) and the action-averaged Q-function
(16), constitutes a significant contribution in its own right and has the potential to pave the way for
other scalable reinforcement learning methods in networked systems.

10
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A APPENDIX

A.1 THE DETAILED PROOF OF LEMMA [2]

Proof. For any objective m € M and agent ¢ € N, by using Lemma 3 in (Qu et al., [2020a)), we
have that

Q7 (snrs S—nrs ans, a—nr3 0) — Q" (swr, 8, anr, a'_j\/;;@)‘ <7 _Rvm (Y™,
which can further deduce that the MOMARL problem satisfies the ((1 _ny T, ,%)T,v)-
exponential decay property. ]
A.2 THE DETAILED PROOF OF LEMMA [3]

Proof. By Lemmal[I] for each agent i € A and objective m € M, we have
Vg, J™(0) = ﬁESng,m’awm [Qm(s, a; 0)Vy, log my, (ai|si)} . (30)
Based on the definition of Vy, J}!, ;(6) in (14), we have

Vo, J1)u,i(0) = Vo, J™ (0) 2

1 1 m m
:HWES~d§’m,a~we [(ﬁ ZN Qtru,j(sf\/'faa./\/f;e) - Q (87a;0))v97’, 10g71'97/ (al‘sl)] H
je iﬁ

1 1 m m
:HWESNdf,”",a~We {N Z ( tru,j (SN, ane; 0) — QT (s, a; 0))V91. log g, (az|sz)}

1 1 "
TSy endl™ 7 (X Qirlongany10)) Vo, logmo, (arlso) | GD
je-NfF
1 1 m m
rt8son [ 5 (@Fasfonsons:0) - apte1) o],
JEN
(@)
1 1 m
+ Hl_i’ymEswdg’m_yaNﬂe {N< Z Qtru,j(sj\ffva./\/'f;e)) Vy, log mg, (ai|5i)} ’ o’ (32)

JjeE-NY

()
where the second inequality can be obtained by (6).
For (i)-term on the right side of (31), we have

1 1 m m
HmEsmdﬁ‘"’"aNﬂe |:N Z (Qtru,j (SN]7‘7G‘N]5; 0) - Qz (Sv a; 0))v9L IOg o, (az‘sl):| H2
JENE
1 1 m m
T Bt am 37 D |@us 5y a3 0) — Q7' (5,0:0)| V5, log o, (asls) |
JENF
V2R
< ,ym n+17 (33)
)
where the last inequality can be obtained by the facts that
m m R m\K
Qfru,j (s anr;0) — Q" (s,a;0)| < W(V ) (34)
and
V6,6, (ailsi)ll2 < v2m, (ails:) (35)
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in Lemma F.7 in (Zhou et al .| 2023)).
For j € —N[* in (ii)-term on the right side of (3T), we have

Es~d§”",a~we [Qmu_j (s, ane; 0) Ve, log e, (ai\si)]

N
m veiﬂ-ai(aws')
:Eswdf,’m [Z H urn (aklsk)Qtru,j (SNJE,CLN;; 0)711}

el 7o, (ailsi)
=E_, ~d® rn[ZHﬂ-Gk (ar|sk)Qffu,;(snr anr; 6 ZV@ 7o, (ai]Si ]
a—; k#i
=0, (36)

where the last equality comes from the fact that 3, Vg, 7, (ais:) = Vo, 1 = 0.

Substituting (33) and (36) into (32), we have

V2R
v 6)— VoI (0)]| < () 37
H 0; truz( ) 0; ( ) 9 = (1_7m)2(7 ) ( )
O
A.3 THE DETAILED PROOF OF PROPOSITION'I'
Proof. By the definition of Vi, Jj7!, ;(8) in (14), we have
]Es~df,=m,a~7r9[ Z Qi ( SN GNFS 0)Vy, log m, (ai|si)]
JENE
:]Esw o aN‘l\'e[ z Z €9m(5 N _NJE‘SNJﬁ’ai’auﬁf'i)
76/\/”5 J\/’" a_ _N’"f
QF (snrs S—wrms @iy aur diﬂ'e)Ve-logﬂe-(aﬂsi)}
:]Esng,m@Nﬂe[ > QP s sonran aus_ anri0)Vs, 1og7rai(ai|si)} (38)
JENT
:]Es~df,””,ai~7rsi l [Z Z T (sjt,a5¢)|80 = 8,00 = al}VQ log g, (a;|si )]
t=0 JENE
(39)
B g oy, Q0 (5,05 0) V0, oo a5 (40)

where the second equality (38) is obtained from the definition of €8 (s_arv,a_ne|spre, ap)
in (T3), the third equality (39) comes from the definition of the local Q-function in (3)), and the

last equality can be achieved by the definition of @Z—E(s, a;; 0) in . Hence, the proof is
completed. ]

A.4 THE PROOF OF THEOREM/[I]

Proof. By the definition of Vy, J;7  .(0) in (17), we have

app,i
HVGL app, z(9> - vgi J"L(O)HQ :||V9LJ;ZP, (0) - Vei Jg?uz(e) + VG tru z(e) - Vei Jm(6)||2
:”sz Jtru,i(o) - vei Jm(0)||2 41)
V2R
< T () (42)
ST 7m)g('v )

where the second equality comes from Proposition [I] and last inequality achieved by Lemma [3]
Hence, the proof is completed.
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A.5 LINEAR FUNCTION APPROXIMATION IN CRITIC STEP

The linear function approximation in critic step is represented in Algorithm 2]

Algorithm 2: Linear function approximation

Require: The Non-negative integers K, the learning-rates 7, and € > 0;
Initialization: Initialize the e-exploration policy 7§ = I 17, » Where
w5, (ailsi) = (1 — &)mp, (ailsi) + oy foralli € N. The initial values of the parameters wy", is set
as wiy = 0g, foralli € {1,2,--- ,N};
The agents execute the e-exploration policy 7§ and each agent ¢ € A collects a sequence of
samples {(Si,¢y, @ity 71t ) Jo<to< I in m-the objective;
fori=1,2,--- ,Ndo
For each objective m € M, agent i € N collects the state information {s;},ec N of its k-hop
neighbors and reward {rgn }ie N from its £-hop neighbors to form a sample set
{sar b0 Qistos TREx 4 Yo<to <K
fortg =0,1,2,--- ,K —1do
Each agent i € N\ estimates its local TD error:

m ) . T, m _ 1 m Mk X T, m .
0; to — Cbz(sj\/,[”,toa a; to) Wity = N Zje,/\/f Tito — 7 d)Z(S./\/.,f,to-‘rl) az,to-‘rl) Wy 45
m wm msm 4. ) . .
w’L t0+1 i,to - T]w 62 ,to ¢l(8/\/{”7t0+17 az,t0+1),
end
end

Output: {w]" bicnmem

In Algorithm [2] each agent ¢ only requires its local action information a; and its x-hop neighbors’
state information sy=. The e-exploration joint policy mg is used to ensure the induced Markov

chain {(s¢, a;)} is aperlodlc and irreducible.

In Algorithm let c;Si(s, a;) be a feature mapping of agent ¢ € N defined on the global state and
the local action, and satisfy ¢;(s,a;) = ¢i(sa=,a;) foralli € N, s € S, and a; € A;. Define
®; € RISIMAilXdi 45 the feature matrix of agent i with its (s, a;)-th row being ¢;(s, a;) for all
(s,a;) € (S, A;). In the MOMARL problem, denote (5% (s, a) as the stationary distribution of
(s,a), and (p g’m(:s N, a;) as the stationary distribution of (syrx, a;) and satisfy

;"67 SN,,, ,. Z Zcﬂ'e’ 3./\/'1."‘78/—./\/;.”7&7;70’,—7;)' (43)

In order to analyze the convergence of Algorithm[2} some common assumptions and definitions are
introduce as follows.

Assumption 3 For each agent i € N, the feature vector mapping g?)i(s, a;) satisfies ||gz~52(s, ai)ll2 <
1, and the columns of the feature matrix ®; are linearly independent.

Assumption 4 In the MOMARL problem, for objective m € M, the Markov chain {s;, a;} satisfies

m mEf min Cp (SNf,ai) > 0. (44)

min
4 SN

Define D76-™ ¢ R‘SHA‘X“S”"” as a matrix with diagonal elements {Cﬂ"’ (8,a)}(s,a)esx.4- By

the definitions of Cp "(s,a) and ®,, it is obvious that D™ is strictly positive diagonal and
®] D™ ®; is a positive definite matrix. Based on these facts, define X, (®] D™6"®;) as the

smallest eigenvalue of matrix ®] D™ ®; and \™ = min; infre Am (D] D™ m®;) > 0.

For any agent ¢ € N and objective m € M, the Markov chain setting of the localized stochastic
approximation model of MOMARL is defined as follows.
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Deﬁnition 4 In MAMORL (N7 Ma g(Na g)» {Si}i€N7 {Ai}i€N7 {Pi}iGNu P, {T;ﬂ}iGN,mEMa ’7)’
given a joint policy §, the localized stochastic approximation model of agent i € N in m-th
objective is defined as

Mlmﬂ-e = (N g {ZZ}]ENa {P }]EJ\/a 77 api)a (45)

where N, G(N,E), and v™ have the same definition as them in MOMARL. Specially, {ZJ’ Yien
2 € ZI, {Pi}jen, F™, and p' are defined as

i) Six Ay, ifj=1,
Zj _{ Sj, if j # i, (46)
i (si,ai), lf] = i,
%= { sj,  ifj#i, 47)
7 7 1 P( /|SN7al) (a;|82)7 lf] :i7
Pi((z) 1) = { S, 7 (01555 () sx 03, i G £ 1, (48)
7o (2 Z 71'0“,,” (aur_ [suz ) Z ri'(sj,a4), 49)
N, JENT
(2, 2L;) = p(s)mo, (ailsi), (50)

where z' = (z1,--+ | 2%).
In the localized stochastic approximation model M*™ ™ the value function is defined as

VIS (21) = VI (5, 0;) = Ene [Z(*y VF™ 8o = 8,400 = a;| = QM (s, a:;0%). (51)
t=0

Next, we introduce the sub-chain of the localized stochastic approximation model M*™ ™6

ZmTl'e

Definition 5 In the localized stochastic approximation model M“>™™6  define My, as a sub-

chain and described as
MG = (N GNTE, Ene) A2 s (P sen 77 4™, pa@), (52)

where { Z} }J’GNF’ {Pi}jenr, and 7™ have the same definition as them in MBI particular,
pj\/h is the marginal initial state distribution and defined as

s ) = 3 (el 2o (53

—NF

1

z

By the definition of ./\/ll T ll the value function VX}?’”" (2is+) is represented as

o0

VAT () = V™ (w0 = g | (") 7 " lsnr0 = s aio = ai] . (54
t=0

In the localized stochastic approximation model M* "7, for each agent i € N, define

Ziy = (Z/i\/iN,taZJi\/iN,t+1)a (55)

F™M(Z] s wf) = Z P Y G (SNm 1, Q1) W — Gisar e aie) Wi, (56)
jGN"

FMwi) = E[F] (Z] ;wi")]. (57)

According to the definition of F/™(Z} ;;w!™) in and d; 4, in (21)), we have F/™(Z{, ;wl ) =
dit,- The mixing time of function {F[”(nyt, ™) }iens is introduction in the following.
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Definition 6 For any 6 > 0, the mixing time of function {F m(th, ™) }ienr With precision 0 is
defined as

t7" = min{t > 1||[EF"(Z] 5 wf)] = F(wi)ll2 < 6(1+4™)(lwf"[l2 +1),¥i € N} (58)

In order to use the results of the localized stochastic approximation analysis in|Zhou et al.[(2023)), we
will show that the Assumptions C.1, C.2, and C.3 in|Zhou et al.| (2023) are still satisfied in Markov

. - e
chain M"»™™e

Lemma 5 For any joint policy w§, agent i € N, and objective m € M, the Markov chain
{(s¢,ai+)} induced by M»" ™6 is aperiodic and irreducible.

Proof. Let Pr™(s',a/|s, a; ) as the probability of (s, a’) occurring at time ¢ in MOMARL with
initial state (s, a) and Pr"™ ™ (s’ a/|s, a;;t) as the probability of (s, a}) occurring at time ¢ in
M>™T6 with initial state (s,a;). Specially, Pr™®(s’, a’|s, a;t) and Pr""™e (s’ a/|s,a;;t) are
represented as

Pr7e (s’ a'|s,a;t) = Pr™o(s, = s’ a; = a|sy = s,a0 = a),

Prim™ ™o (s',adi]s,a;;t) = Pri’m’"g(st =58, a1 = ai|lso = s,a;0 = a;).

(i) Irreducible: By Lemma D.2 in [Zhou et al.| (2023), we have that for any joint policy g, the
Markov chain {s;, a;} induced by MOMARL is aperiodic and irreducible. Hence, for any s, s’ € S,

a;,a; € A, and a_;, a0’ , € A_;, there exists t > 0, such that Pr"e(s ah,al s, ai,a_g;t) > 0.
Let to = min{¢|Pr™ (s’ ,ai,a_i|s7ai, a_;;t) > 0,Va_;,a’; € A_;}, we can obtain that

Pri™ ™6 (' s, ag; to) :Zngi(a,As,i) ZPr"e s a;,a’ s, ai,a_i5t9) >0, (59)
. a/ .

where the inequality comes from the fact that 75 (a—i[s—;) > 0 and

Pr”e(s al,a’ ;|s,a;,a_;;tg) > 0foralla_;,a’ ; € A_,. Therefore, M"™ 76 is irreducible.

s Yo

(i) Aperiodic: if Pr*™™® has period T > 2, then for any time ¢ not divisible by 7" and (s,a;), we
have

0 = Pri™™ (s a;|s,a:;t) = Zwé_i(aﬂ-lsﬂ-) Z Pr (s, a;,a’_;|s, ai,a_g;t). (60)

’
a_;

In 1@} it is clearly evident that Pr™e (s,a;,a—q|s,a;,a_;;t) = 0,Ya_; € A_;, which implies
that the Markov chain {s;, a;:} induced by MOMARL is periodic. This contradicts the fact that the
Markov chain {s;, a;} induced by MOMARL is aperiodic. Hence, MB™7T6 is aperiodic. g

Lemma 6 In MOMARL, For any agenti € N and objective m € M, we have that
(i) |F™(Z] i) = F’”(Zzt; PO ™)l — w2, Voo wi, 2Ly
(ii) ufim(Zz t’Od )| < zt’

(iii) F{”( ™) has a unique zero point W)
(i) (wf" — wi™) TF™M(w) < —(1 - ))\mem—wm*H%;
(v) Qm(sjw a;; wi") is 1-Lipschitz wzth respect to w}"

Tﬂ*

Proof. (i) By the definition of F/™ (nyt; w!™) in 1) for all w!, w™ , Z!,, we have that

it
‘Fm( Zt? i) = Fm(ZzZﬁ m/)|

:Wm¢i(8/\/f,t+1,ai,t+1) (wzm_wzm/)_¢i(3Ni",t7ai,t)T(w;n_wzm/)‘

<Y bi(sam ety aier )2 (@™ — w2 + i (sarm ity aie) 2l (@] — wi™ )|z

<4+ [wf" = wi |5 (61)

<(R+~™)lwf* = wi |15 (62)
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where (61)) is obtained from Assumption [3]and the last inequality comes from the fact that R > 1.
(i1) By the definition of F" (Zf 5w ) in , we have

|Fm(Zzlt7 Od

ert

JENF

<R<R+~y™

(iii) Considering M*™ 76 as a SARL problem, based on Zhou et al.| (2023) and [Tsitsiklis & Roy
(1997), we can get that FC (w;) has a unique zero point w**

(iv) According to Lemma 9 in (Tsitsiklis & Roy| (1997), we have that (w™ — w™*) T F™(wm) <
—(1—=~™) ||<f)zwzn — @w{”* | =g.m - By the definition of the D™%™  we can obtain

(wf" — w™)TE (W) < = (1= 4™)||Bgw]” — @™ || g
<= (1= (] = w™) T&] Do Py (w]" — wi™)
<= (1= ™A™ i — w3, 63)

where the last inequality can be obtained by the definition of A",
(v) By the definition of Qm(s N, @i wit) in , we have

Q7 (s @i ") = Qi (s ass w)! )| =[di(sw, ai) T (w] —w]™)]
<lgi(sary s an) 2w = w1
<llwf* = w2, (64)
where the last inequality is obtained from Assumption 3] ]

By Theorem D.1 in|Zhou et al.|(2023)), we can obtain the following theorem.

Theorem3 Suppose Assumptions |Ii4| hold. In Algorithm I not satisfies nmtm <

w nT‘rl
min{ R-M 5 1(114(g+v)\ 7} and K > maxpme p{ty } then it holds that

‘ITL/

K- . Mwtym
€cmtw <4 7:2/124 |:c’£n* (]‘ - (1 - ’ym)Aan}n) v+ ;n W + g;pi|, (65)
where ¢"* = (1 + max; ||w}”*||2)2, g = 114(R + y™)? (1 + max; [|w™* |2)2, tZ}:L represents

™ 2 o2 2
the mixing time as defined in DeﬁnitionH and (g, = ((1_5,;‘)‘9me ) + (117> + (%)
with

e = sup sup 1nf sup
app
ws ieN LW sa;

Quswssaiswi") = Q7 (s,0::6°)| . (66)

Proof. LemmaE] and Lemma|§| show that the Assumptions C.1, C.2, and C.3 in Zhou et al.| (2023)
are still satisfied in Markov chain /\/li mmg By Theorem D.1 in|Zhou et al.|(2023)), if the learning

rate 7 satisfies 7, tgi < min{ s +w’”) , 1(1{1?%:2{%:;2 }, then for all K > t%, then we have

N — 2
sup SupE[Sup Qi(snr, ai;w]'y) —Q;”(é‘,ai;O)’ }
e iEN s,a;
mx m_m\EK— t m* n:ﬂnt’ﬂé €7lln 2 ’}/m 2
§4{c1 (L= (1 =A™ +2 = ”)/\m+((1_’3” ) +(1_7m)
—_ min
6Ne 2
+ (7) } 67)
(1 —~m)?

where ¢f"* = (1 + max; ||w™*||2 ) and ¢ = 114(R +~™)?(1 + max; |w!* |2 )2
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By the definition of € ;.. in , we have that

— 2
Qulswzsais i) - Qi (s,050)| |

]
Ecritic = Sup sup & [5up
meMieN Lsa;

Kt Mty em 2
<4 sup [cm* 1= =9™A"ny 4 eyt v+ ( u )
meM ! ( ( ) ) = ( )A ' (]‘ - ’Y)C’Z’Lbin
AT N2 6Ne 2
+H(557) +Hae) | )
L—ym (T —9m)?
which completes the proof. (|

A.6 THE PROOF OF LEMMA [4]

The detailed proof of Lemma]is provided in the following.
Proof. By the update of g;" (b + 1) in and g = gj"(B), we have

Vo, J"(0:) — gi7
:vai Jm(et) Vo, Jap (075) + VG@ app, z(at) g;n,t

i app,t

=V, J™(6:) — Vo, 1%, (6) +Z V'E |V, log o, , (asl5:) Q0 (sh, ain; 61)|

1 pgch b b b b \T
B Ve log g, f( i,h|5i,h)¢i(st,hvai,h) Wi ¢ (69)
b=0 h:O
H-1 o
=V, J™(0;) — Vo, ap,,l(et>+2<w>hE[vei logmi,t(ai,h|si,h>Q;ﬂ<sh7ai,h;09}
T h=0
T2
+> (™"E [Va log 7, , (ai,nlsi.n)QF (sn, ain; Bt)}
h=H
pa
1 B—1H-1 -
- E Z Z (,Ym)hvai IOgﬂ-@i, ( i, h|81 h)Q (Sha z h70t)
b=0 h=0
Ta
B—1H-1
1 —
+ 3 )"V, log o, (al st ) (QFF (55, a2 5 00) = Gl alp) Twis ), (70)
b=0 h:O

Ts

where the equality (69) can be obtained by the policy gradient theorem variant (i.e., Lemma F.1
in (Zhou et al} [2023)). Based on (70), we have

E[[|Vo, J™(6:) — g3 |I3]
=E[|Ti + T2+ T5 — Ta + T5|13]

<AE[|T3)3 + 172 = Tall3 + 17515 + [ 75113)- (71)
2 m\2H 6
§ 8R (,ym)2m+2 + 32 4 8('7 ) 8€cmtz(’ . (72)
(1 _ 7m)4 (1 _ ,ym)QB (1 _ ,ym)4 (1 _ ,Ym)Q
where |i can be obtained by and the definition of Ef:,iti . in . O

A.7 THE PROOF OF THEOREM[2|

Before provmg Theorem [2] let’s first introduce some related lemmas. In the MOMARL problem,
for any ¢ € N, denote s_; = s\ s; as the state of agents other than agent i and a_; = a \ a; as
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the action of agents other than agent i. For any joint policy g, denote de 7 (s;) and de " (s—i)

as the discounted state visitation distribution of s; and s_; in m-objective, respectlvely Deﬁne the
averaged value function, the averaged )-function, and the averaged advantage function of agent
i € N in the objective m € M as

V7 (s1;0 Zd" (s) D> V(51,5 ;;0), (73)

JEN
W(Siaala N Z 7T97 /—ils/—i) Z Q;n(siasl—i7a‘iaa/—i;0)a (74)
EN JEN
AT (si,04;0) = Q" (54,05 0) — V™ (54 0). (75)

Lemma 7 (Softmax policy gradient) In the MOMARL problem, for any joint policy g, agent i €
N, and objective m € M, the gradient of J™(0) with respect to 0; s, 4, is represented as

20, 1_ ’}/m p'L (si)ml(al|sz)A;"(sz,al,0) (76)

Proof. According to the policy gradient lemma([T]and (6), we have

aJm o1 .
aezf,al T L >—O§5fi,m (L are.e0)

s’,a’

=1= mZd"’” ailsy) D df,ﬂ(s',»mi(a;\s:»(1{s;:si,a;=az}
s’ al,

— 1{s; = s;}mp, (a;|s; ) (ZQm SiyS ;a0 _1,0)> 77

JEN

1 m —_
=T o (s0)mo, (ails) Q7 (51, i 0)

1 m _
—1= mdgji (si)7o, (ailsi) > 7o, (ails:) QT (s, ai; 0)
1 - _ _
== dei’” (s:)0, (as]s:) (Q7 (s, ai; 0) — V7 (515 0))
1 _
= d% (s;)mg, (as]si) AT (si, a4 6), (78)

1_,ym Pyt

where the second equality comes from the fact that

Ologmg(a'ls’) _ Ologm, (ais;) = 1{s], = s;,a, = a;} — 1{s, = s;} 7y, (a;|s;) (79)

aei,suai B 892’751'7111
and the last equality can be obtained from the definition of the averaged advantage function
@(Si, a;; 0) D

Lemma 8 (Smoothness) In the MOMARL problem, for any objective m € M, the objective J™ ()
is %-smooﬂz, i.e., for any different policies wg and g/, we have

6N
(1 —Am)?

Proof. Consider that for any different policies g and 74/, we have

Vo] (6") = VoI (6)]]2 < 16" — 612 (80)

N
IV J™(8") = Vo ™(B)II3 <D V6, J™(6") — Vo, /™ (O)I3

i=1

N
Z V6, T™(8') = Vo, T (0)]5. 1)
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By Lemmas 7} we have
||V9 J™(0) = Vo, ™ (0)]n

= Z ’d (5:)mor (ailsi) Aj " (si,a:;0") — dg:?(si)ﬂgi(ai\si)A?(si,ai;B)

m
Si,Q4

v Z |d9 M(8)mwe (als)A™(s,a;0") — dz’m(s)ﬂ'g(a|s)Am(s,a;0)| (82)

=TT vm > (|8 ™ (s)me (als) — d5™ (s)me(als)|) A™ (s, a; 0)
+ df,’m(s)ﬂg(a\sﬂAm(s, a;0') — A" (s,a;0)]
1 1 . m
ST 2 T (5 ()7 (als) — ™ (s)me(als) )

+ max |A™(s,a;0") — A™(s,a,0)], (83)

where the first inequality can be obtained from the definition of A7 (s;, a;;6) in li and the
|.| comes

fact that | Z 1% — Zivzl yil < sz\;1 |z; — vi|,Vzi,y; € R, and the last inequality (83
from the fact that Am@a; 0)<1/(1—~

For the right side of , We can use CorollaI.'y 35 and Lemma 32 in|Zhang et al.|(2022) to further
obtain

Z\de ™(s)me (als) — dp™ (s)me(als)| <

T om max|mo([s) = wo([s)ll,  (84)

2
A™(s,a;0") — A™(s,a;0)] < ————
A7 (3,0:0') — A" (5,6)] <
Substituting (84) and (83) into (83), we have

IV, J"(6') = Vo, J™(0)]|1 <

max [|mer (-[s) — o (:|s)]l1- (85)

3
—mys axllmo (ls) — ma(-ls)

=
3 N
:m stax||779;('|si) U ACED (86)
Y -
6 N
S——= 3 16) = 642, (87)
(1— ) &=

where the last inequality (87) is obtained from Corollary 37 in Zhang et al.| (2022) that for any two
difference softmax pohcles mg, and mg:, and s; € Sy, ||7p, (+|s:) — o (+[si)[l1 < 210 — O]]2-
Combining (1) and (87), we further have

Ve J™(0) — Vo™ (0]

H'Mz

> (5 imgfj%—&mf
=1
N
= 36N 6(2”9, 9i||2>2
i=1

36N2 N
e > 1167 = 013 (88)
=1
36N2
Sl Gt 2 (89)

where the second inequality is obtained from that (Zf;l xi)z < N (Zl L 22),V; € ]R
Hence, the proof is completed.
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Denote L; = max;,em %, by Lemma (8] we can have that J™ (@) is L ;-smooth for all

m € M. Based on this property, the convergence result of the Algorithm [I]is presented in the
following theorem.

Proof. According to the smoothness of J™(0) in Lemmaand Lj = maxmem %, we can
have

L
Jm(0t+1) Z Jm(et) -+ <V9Jm(0t),0t+1 0t> — 7]”0,54_1 0t||§,Vm S M (90)

Taking A\, weighted summation over (90), we have

Ly

J(041) ZA[ J(61) + (Vo (6:) " Ay, 011 — 6,) — 5 101 — 6.3
M 1779
“ATT(0) + 10, (VoI (0) AL D Agl) — ‘ H Z H 1)
m=1 m=1
M
=X T(00) +710.4{Vod () N, D AN (g7 — Vo™ (6:) + Vo™ (61) )
m=1
LJ’)’]g M 2
-5 X v,

M
=X/ J(6:) + 770,t<v0J(9t)T)\t, Z )\TVQJW(Gt)>
m=1
M

M I ,,72 ,
+ 7]9,t<V9J(0t)T)\t7 Z )\:n (g;n _ Vng(et))> . J29,t ’

m=1 m=

Z N g — Vo " (0)|

gt
1

>A[T(8) + T2V (6T A3 - T2t

2

- LJggtH Z A (gt — Ve (0y) + Vng(Ht))H2 (92)

>A\ J(6;) + (% — Lymg t) [Vod (0:) " Aell3

— (" g, )| S (o' — V0" (0)) . ©93)
m=1

where the equality comes from (27), the inequality can be obtained by the fact that (z, y) >
—L(ll]? + [|yl[?), Ve, y € REE: IS4 and the inequality (93) can be get by the fact that ||z +
yl3 < 20113 + lyI3), v,y € RES S By 03), we have

2(A[ T (841) — A J(6y))
ot — 2mg L

Ve (6:) T Aell3 <

ot + 213, Ly <& 2
+7H A (Vo™ (8,) — mH (94)
779,1&—2775}15[«] mzzjl t ( 0J"(0:) — g, ) 0

Consider that Xt is the optimal of problem , we have

||V0J(9t)TXtH§ < Vo (6:) T Aell3. (95)
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Using the setting of the learning rate as ng ; = % and taking expectation on both side of , we
further have

E[|[VeJ (8,) X|I3]

M
2
SISLIEN J(0r1) = N T(0)] +5( D N[ Vo (8) — g1"|]).
m=1
<I8LJEA J(8,11) — A T (6)]
SR2 22 39N 8(’7m)2HN 85crmc
Y G B T A (R DA (e D

where the last inequality comes from Lemmald] Taking average of (96) over 7', we have

E[|VeJ (8;) Az
T

> E[[Vod (8:) " Af3]

t=1

el

18L EN] J(0141) — N[ T (6,)]

IA
N[ =
[M]=

t=1

8R? 32N 8(y™)*AN  8maxi<icred, N
5 P (Am\ 2642 critic )
o ((1 o O ey T =y =) )
97
Considering that
T
> RN T(Be11) — A/ T(6,)]
t=1
T-1

:]E[

(]

(“Aest +A) T T(Oii1) — AT J(0:) + )\;J(OTH)}

t=1
T—1
<E [ l _)‘H—l+)‘t||1HJ(0t+1)”OO+|}‘1|1||J(91)||00+|AT|00||J(0T+1)”OO:| (98)
t=1
{m E[IA = Adl] } + 2 (99)
—~ T—lvlleed  1T—=]7ll
< 1+ n (100)
=1- ||7||oo( Z a):

where the inequality comes from the fact that z "y < ||z||1]|y]|oo, V2, y € RM and the inequal-
ity (99) is obtained from the update of A in (26).

Taking (T00) into (97), we further have
E[|VeJ (0 A>TATA||2]

36L
e TR w— (1 + N t)
(1 = [[v[lee)T Z

8R? 32N 8(y")?2AN 8 O i
+ 5 max ( — (,ym)2f£+2 + — (’Y ) — maxi<¢<T Ec;’ztzc )
meM A (1 —~™) (I=9ym)?B ~ (1=7") (1=~
Hence, the proof is completed. O

A.8 CENTRALIZED ALGORITHM FOR THE NMARL PROBLEM

In this section, we propose a centralized exact policy gradient algorithm for achieving a e-Pareto-
stationarity of MOMARL problem.
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In an ideal scenario, assuming all agents possess comprehensive knowledge of MOMARL prob-
lem, including the model of state transition probability functions and reward functions. The design
process of the centralized exact policy gradient algorithm is as follows.

At time ¢, for a given joint policy g, with 8, = ((‘)It, e 911\—/,15)—'—’ the policy gradient Vg, J"(6;)
of agent ¢ in m-th objective can be calculated by and represented as

1

mos~d ™ anm
1-— Y 4 ’ 0t

Vo, J"(6:) = [Veo, logmo, , (ai]s:)Q™ (s, a;0)],Ym € M. (101)

T T\ T <
Denote VgJ™(6;) = ((VQ1J7n(0t)> v (Van J™(6y)) ) and let A" =

(et L XeemM)T ¢ RM be the solution of the following quadratic programming prob-

lem:

min
)\gc"i(kgcn'l,“- ’A:5"=AI)T cRM

2
’2 S8 AL > 0, [AC ], = 1. (102)

M
> AV oI (6)
n=1

After computing 3\55”, we update the weight A7°" as
A = (1= X)L XA (103)

where 75°) is the learning rate of A{*" at time ¢. Denote Vg J(0y) = Zn]\le AN 9 ™ (0y), the
update of 8, is designed as

i1 =0, + 157 VoJ (6;), (104)

where 1g°" is the learning rate of policy parameter at time ¢. In particular, the overall of the central-

ized exact policy gradient algorithm is illustrated in Algorithm 3]

Algorithm 3: Centralized exact policy gradient algorithm for MOMARL

Require: The Non-negative integers 7', the learning-rates {Uﬁf?}te{o,1,~~ -1y and

{6 Yeeon, 71y

Initialization: Initialize A°]* = ﬁl v € RM  the policy parameter 6; ¢ € RIS: X4l to follow
Gaussian distribution for all ¢ € {1,2,--- ,N};

fort=0,1,2,--- ;T —1do

Each agent i € A calculates the local exact policy gradient in the m-the objective Vg, J™(6;);

T
Let Vo.J(6;) = ((vgl T0) ", (Voy Jm(et))T) in m-the objective;
Computing Xfe” as the solution of problem 1)

Update the weight A{“" as: A{" = (1 — )AL + nxr AL

Update the policy parameter ;1 as: 6;11 = 6; + 157" Efle AN 9 J(0y);

end
Output: 7o,

Denote L; = maXpecm % by Lemma [8] we can have that J™ (@) is L -smooth for all
m € M. Based on this property, the convergence result of the Algorithm [3]is presented in the
following theorem.

Theorem 4 Suppose Assumptions hold.  In Algorithm let ng%' = L%] and T >

Eufﬁ% max{1, ZtT:l 205t ), for the policy parameter sequences {0}/, it holds that
e
E[|Ved (07) X513 < e,

where T is uniformly sampled among {1,2,---,T}.
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Proof. By the L j-smooth of J(0), we have
Ly

Jm(0t+1) Z Jm(et) -+ <VQJm(0t),0t+1 — 0t> — 7”0,54_1 — 0t||§,Vm S M (105)

Taking A;“"""™ weighted summation over (103), we have

L
A T T (Or11) =(AF™) T T (6,) + (Vo (8;) T A", 0111 — 0,) — 7J||9t+1 — 643

M
=) TI(0) + 757 (Vo d (00T, ST A0 (6))
m=1

L'](ncen)2 al cen,m m 2
LR S o]
m=1
LJ(ncen)Q
() TI0) + (w5 = 5= ) IVed (6)TX 3. (107)

Substituting ng®" = %J into (107), we have

Vo (8:) "AF" 13 <2Ls (AF") " T (Br41) — (AF") " T (61)). (108)
Consider that Xfe” is the optimal of problem 1} then we have
VoI (61) T Xi" 15 < [1VoT (6) " Xi“" I3 (109)
Combing (T08) and (T09), we have
VoI (0) TR 15 < 2L (AF") T T (Br1) — (XF™) T T (61)). (110)
Taking average of (IT0) over 7', we have

E[|[VoJ(8:) " A" ||3]

Nl
B

E[|Vod (07) " AE" 3] =

t=1
1z
<= Y 2LE[AF) T T (8r40) — (A TI(6)),  (11D)
=
where 7 is uniformly sampled among {1,2,--- ,T'}. Consider that

D E[AF) T T (Be11) — (AT T(61)]

t=1

=E[ 30 (A + A T T (0001) — (5 TI(02) + (AF) T T (0r41)|

t=1
T—1
SE[ = AEFT A+ A T (Oeg1) oo + AT 11T (01) oo + AT oo 1T (O741) [ | (112)
t=1
<T1|: cen]E[HAcen Xcen” ] 1 :| + 2 (113)
> n - 1
D S e 1 Iy
9 T
§7(1+ ncen)’ (114)
T (2

where the inequality (112)) comes from the fact that 2 "y < ||2||1||y|| oo, ¥, ¥ € RM and the inequal-
ity (T13) is obtained from the update of A{*" in (T03). Substituting (T14) into (TTT), we further have

T
- AL,
ElVaJ(6.: T}\gen 2 < . 1+ cen
[” 6 ( T) T ||2] T(l— “7"00)( ;n)\,t)
<e, (115)

where the last inequality can be obtained by the fact that 7' > 6(178#% max{1, ], 205t} O
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