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ABSTRACT

Multi-objective multi-agent reinforcement learning (MOMARL) problems fre-
quently arise in real world applications (e.g., path planning for robots) but have
not been explored well. To find Pareto-optimum is NP-hard, and thus some multi-
objective algorithms have emerged recently to provide Pareto-stationary solution
centrally, managed by a single agent. Yet, they cannot deal with MOMARL prob-
lem, as the dimension of global state-action (s,a) grows exponentially with the
number of spatially distributed agents. To tackle this issue, we design a novel
graph-truncated Q-function approximation method for each agent i, which does
not require the global state-action (s,a) but only the neighborhood state-action
(sNκi , aNκi ) of its κ-hop neighbors. To further reduce the dimension to state-
action (sNκi , ai) with only local action, we further develop a concept of action-
averagedQ-function and establish the equivalence between using graph-truncated
Q-function and action-averaged Q-function for policy gradient approximation.
Accordingly, we develop a distributed scalable algorithm with linear function ap-
proximation and prove that it successfully converges Pareto-stationary solution at
rate O(1/T ) that is inversely proportional to time domain T . Finally, we run sim-
ulations in a robot path planning environment and show our algorithm converges
to greater multi-objective values as compared to the latest MORL algorithm, and
performs close to the central optimum with much shorter running time.

1 INTRODUCTION

As real-world applications become increasingly complex, multi-objective optimization problems are
becoming more prevalent. For example, in the e-commerce domain (Weck et al., 2022; Xu et al.,
2024), platforms aim for product recommendations that are not only clickable and purchasable but
also engaging enough to encourage user sharing and collection. This scenario involves optimiz-
ing multiple objectives, including the click-through rate, purchase rate, and collection rate of the
products. For such scenarios involving multiple optimization objectives, the traditional setting of a
single reward structure in the reinforcement learning (RL) framework (Sutton & Barto, 1998) is ob-
viously insufficient to describe. Therefore, it is necessary to establish multi-objective RL (MORL)
problems.

Different from the rapid development of traditional RL (Grondman et al, 2012; Zhang et al, 2021),
the research in MORL (Ge et al., 2022; Stamenkovic et al, 2022) is still in its infancy to address the
potential conflicts between multiple objectives. One common approach to solving MORL problem
involves assigning weights to different objectives and transforming the multi-objective problem into
a single-objective problem (Blondin & Hale, 2020). However, this approach has the limitation of
assuming known objective weights, which can restrict its applicability. In the MORL problems, a
more appropriate and relevant metric is to find a Pareto-optimal solution for all objectives, where
no objective can be unilaterally improved without sacrificing another. As many real-world MORL
problems are typically non-convex, finding the Pareto-optimal solution is NP-hard (Yang et al.,
2024).

To address the NP-hard nature of non-convex MORL problems, Pareto-stationary solutions (a neces-
sary condition for Pareto optimality) are employed (Sener & Koltun, 2018). For the MORL problems
with continuous action space, (Chen et al., 2021) proposed an actor-critic MORL algorithm based
on the deterministic policy-gradient (Silver et al., 2014). More generally, for the MORL problem
with non-continuous action space, a unified multi-objective actor-critic algorithmic framework was
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proposed for both discounted and average reward settings in (Zhou et al., 2024), where the update
of stochastic policy parameters employs the multi-gradient descent method in (Désidéri, 2012).

The aforementioned methods are all directed towards addressing the MORL problem in a central-
ized setting or for a single agent. However, practical applications of MORL problems often involve
multi-agents. For instance, teams of robots need to decide themselves how to explore distinct regions
by simultaneously minimizing energy consumption and travel time. In comparison to the MORL
problem with single-agent, the multi-objective multi-agent problem (MOMARL) is more intricate
as it encompasses not only potential conflicts among different objectives but also interactions be-
tween the distributed agents with limited communication. An intuitive approach to the MOMARL
problem is to consider it as a MORL problem with a single agent, where the state and action are rep-
resented by the joint states and joint actions of all agents, respectively. However, as the number of
agents increases, the size of their joint state-action space will exponentially grow. This characteristic
renders the current algorithms used for solving MORL problems with a single agent in (Chen et al.,
2021; Zhou et al., 2024) unsuitable for large-scale scenarios with multi-agents. Consequently, the
MOMARL problem poses new challenges to the design of scalable algorithms and their theoretical
analysis.

This paper aims to address the following problem: How to develop a scalable algorithm for the
MOMARL problem and ensure its convergence to Pareto-stationary of the multi-objective function?
The contributions of this paper are described as follows.

(i) In order to improve the scalability of the algorithm and avoid using the global state-action, we
design a novel graph-truncated Q-function approximation for each agent i, which only requires the
neighborhood state-action (sNκi , aNκi ) of its κ-hop neighbors, instead of the global state-action. Ad-
ditionally, we introduce a new concept of action-averaged Q-function and establish the equivalence
between using the graph-truncated Q-function and action-averaged Q-function for policy gradient
approximation.

(ii) Based on the concept of action-averaged Q-function, we propose a distributed scalable actor-
critic algorithm for the MOMARL problem. In critic step, we use linear function to approximate the
action-averaged Q-function, which further reduces the dimension of state-action to (sNκi , ai) with
local action. In addition, we use the multi-gradient descent method in actor step to update the policy
parameter for finding a Pareto-stationary solution.

(iii) We prove that the proposed scalable algorithm for MOMARL successfully converges to the
Pareto-stationary solution at rateO(1/T ) that is inversely proportional to time domain T . Moreover,
we run simulations in a robot path planning environment and show our algorithm converges to
greater multi-objective values as compared to the latest MORL algorithm (Zhou et al., 2024), and
performs close to the central optimum with much shorter running time.

2 THE NEW MOMARL PROBLEM FORMULATION AND PRELIMINARIES

2.1 MODEL OF THE MOMARL PROBLEM

The MOMARL problem can be described as
(
N ,M,G(N , E), {Si}i∈N , {Ai}i∈N , {Pi}i∈N ,ρ,

{rmi }i∈N ,m∈M,γ
)
, whereN = {1, · · · , N} andM = {1, · · · ,M} represent the agent set and the

objective set, respectively. G =
(
N , E

)
represents the communication network among agents with

E being the set of edges 1. For integer κ ≥ 1, denote N κ
i as the κ-hop neighborhood of agent i.

State and action: Si and Ai represent the local state space and the local action space of agent i,
respectively. Denote S =

∏N
i=1 Si and A =

∏N
i=1Ai as the global state space and the global action

space, respectively. Denote s = (s1, · · · , sN ) ∈ S and a = (a1, · · · , aN ) ∈ A as the global state
and the global action of agents, where si ∈ Si and ai ∈ Ai represent the local state and local action
of agent i ∈ N , respectively. For integer κ ≥ 1, denote sNκi and aNκi as the state and action of agent
i’s κ-hop neighbors, respectively. Moreover, denote SNκi =

∏
j∈Nκi

Sj and ANκi =
∏
j∈Nκi

Aj as
the state space and the action space of agent i’s κ-hop neighbors, respectively.

1For the case of time-varying neighbor agents, our algorithm is still applicable if the agent communicates
intermittently (or delays communication) with its initial neighbor. In the process of convergence analysis of the
algorithm, we just need to introduce an additional error term caused by communication disconnection or delay.
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State transition probability function: Pi(s′i|sN 1
i
, ai) : SN 1

i
× Ai × Si → [0, 1] is the state

transition probability function of agent i, dependent of its 1-hop neighborhood state and its local
action. Denote P(s′|s,a) =

∏N
i=1 Pi(s′i|sN 1

i
, ai) : S × A × S → [0, 1] as the global state

transition probability function. Note that the definition of the state transition probability function∏N
i=1 Pi(s′i|sN 1

i
, ai) is common in the literature. For example, it applies to the scenario of traffic

signal control problem (Chu et al., 2020; Dai et al., 2024), where the traffic flow at each intersection
is influenced by the traffic flow at its neighboring intersections and its own signal light.

Initial state distribution: ρ is the distribution of the initial state s0.

Reward function: rmi (si, ai) : Si ×Ai → R is the reward function of agent i ∈ N in the objective
m ∈ M. Denote st = (s1,t, · · · , sN,t) and at = (a1,t, · · · , aN,t) as the global state and the global
action at time t, respectively. The reward of agent i ∈ N in the objective m ∈ M at time t can be
represented as rmi,t = rmi (si,t, ai,t), as in the literature (Chu et al., 2020; Dai et al., 2024; Zhou et
al., 2023; Qu et al., 2020a).

Discount factor: γ = (γ1, · · · , γM )> ∈ RM with γm ∈ (0, 1) being the discount factor in the
objective m ∈M.

Softmax policy: In this paper, we use the parameterized softmax policy πθi(ai|si) with parameter
θi ∈ R|Si||Ai|, which is described as

πθi(ai|si) =
exp(θi,si,ai)∑
a′i

exp(θi,si,a′i)
, (1)

where θi,si,ai represents the element corresponding to (si, ai) in θi. Denote θ = (θ>1 , · · · , θ>N )> ∈
R

∑N
i=1 |Si||Ai| as the joint policy parameter of agents and πθ(a|s) =

∏N
i=1 πθi(ai|si) be the joint

policy of all agents. Note that the softmax policy is used in RL to ensure the exploration of a-
gents (Zhou et al., 2023; Zhang et al., 2022).

In the MOMARL problem, given a joint policy parameter θ, the m-th objective of all agents is
defined as Jm(θ) and represented as

Jm(θ) =Es∼ρ
[ 1

N

∞∑
t=0

N∑
i=1

(γm)trmi,t|s0 = s,at ∼ πθ(·|st)
]
. (2)

The goal of agents in the MOMARL problem is to find a joint policy parameter θ to maximize the
following composite objective, i.e.,

max
θ
J(θ) = [J1(θ), · · · , JM (θ)]> ∈ RM . (3)

In order to address the potential conflicts among the J(θ) in (3), the notions of Pareto-optimality
and ε-Pareto-stationarity are introduced as follows.

Definition 1 (Pareto-optimality) A solution θ dominates solution θ′ if and only if Jm(θ) ≥ Jm(θ′),
∀m ∈ M and ∃m′ ∈ M, Jm

′
(θ) > Jm

′
(θ′). A solution θ is Pareto-optimal if it is not dominated

by any other solution.

Considering that finding Pareto-optimal solutions for non-convex MOMARL problems is NP-hard,
it is generally more practical to seek the ε-Pareto-stationary solution instead of the Pareto-optimal
solution (Kumar et al., 2019).

Definition 2 (ε-Pareto-stationarity) A solution θ is ε-Pareto stationary if there exists λ =
(λ1, · · · , λM )> ∈ RM such that minλ∈RM ‖∇θJ(θ)>λ‖22 ≤ ε with λ ≥ 0, ‖λ‖1 = 1, and
ε > 0.

Based on Definitions 1-2, it is obvious that the Pareto-stationarity is a necessary condition for a solu-
tion to be Pareto-optimal. Specifically, in the context of convex MOMARL problems, the solutions
that are Pareto-stationary also qualify as Pareto-optimal. Given the complexity associated with the
MOMARL problem, this paper focuses on developing a distributed scalable algorithm to identify
and achieve Pareto-stationarity.
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2.2 PRELIMINARIES IN THE MOMARL PROBLEM

In the MOMARL problem, for any joint policy parameter θ and m ∈ M, the global Q-function
Qm(s,a;θ) in m-th objective is defined as

Qm(s,a;θ) = Eπθ
[ 1

N

∞∑
t=0

N∑
i=1

(γm)trmi,t|s0 = s,a0 = a
]
. (4)

Different from the definition of the global Q-function in (4), for each agent i ∈ N , its local Q-
function Qmi (s,a;θ) in m-th objective is defined as

Qmi (s,a;θ) = Eπθ
[ ∞∑
t=0

(γm)trmi,t|s0 = s,a0 = a
]
. (5)

Based on the definitions of the global Q-function (4) and the local Q-function (5), we have

Qm(s,a;θ) =
1

N

N∑
i=1

Qmi (s,a;θ), (6)

which shows the global Q-function can be decomposed into the sum of the local Q-functions of
all agents. In the MOMARL problem, given the joint policy parameter θ, define dθ,mρ (s) as the
discounted state visitation distribution, which is represented as

dθ,mρ (s) = (1− γm)

∞∑
t=0

(γm)tPrπθ (st = s|s0 ∼ ρ), (7)

where Prπθ (st = s|s0 ∼ ρ) represents the probability of st = s at time t under the initial state
distribution ρ and the joint policy πθ. Moreover, let ξθ,mρ (s,a) be the discounted state-action
visitation distribution of (s,a) ∈ S ×A and satisfy

ξθ,mρ (s,a) = dθ,mρ (s)πθ(a|s). (8)

In the MOMARL problem, some assumptions are introduced in the following.

Assumption 1 In the MOMARL problem, for any joint policy parameter θ and objective m ∈ M,
ξθ,mρ (s,a) satisfies that

inf
θ

min
(s,a)∈S×A

ξθ,mρ (s,a) > 0. (9)

Assumption 2 In the MOMARL problem, for any agent i ∈ N and objective m ∈ M, there exists
constant R > 1 such that the instantaneous reward rmi,t at time t ≥ 0 satisfies |rmi,t| ≤ R.

Assumption 1 ensures that for any joint policy πθ, (s,a) ∈ S ×A is visited with a non-zero prob-
ability and Assumption 2 provides an upper bound on the reward. These assumptions are standard
prerequisite for the convergence analysis of RL algorithms and can be found in (Zhou et al., 2023;
Zhang et al., 2022).

Recall that the policy gradient theorem (Sutton et al., 2000) is the foundation of algorithm design in
RL. Inspired by the theorem, in our MOMARL problem, we also have the following policy gradient
lemma.

Lemma 1 In the MOMARL problem, for any joint policy parameter θ, the gradient of Jm(θ) in
m-the objective with respect to θ is given by:

∇θJm(θ) =
1

1− γm
Es∼dθ,mρ ,a∼πθ [∇θ logπθ(a|s)Qm(s,a;θ)],∀m ∈M. (10)

Lemma 1 shows that the calculation of the policy gradient∇θJm(θ) depends onQm(s,a;θ), which
involves global state-action (s,a). Consequently, there are two challenges in applying (10): (i) the
computational complexity of handling the global state-action (s,a) in a centralized setting is high;
(ii) it is difficult to achieve efficient distributed decision making among multi-agents with limited
communication.

4
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3 DISTRIBUTED SCALABLE ACTOR-CRITIC ALGORITHM FOR MOMARL
PROBLEM

In order to mitigate the RL algorithm’s dependence on global state-action (s,a), this section designs
a distributed scalable algorithm through the following 3 steps as in Fig. 1: (1) We first propose a
new graph-truncated Q-function approximation for each agent i ∈ N , which does not require the
global state-action (s,a) but only the neighborhood state-action (sNκi , aNκi ) of its κ-hop neighbors;
(2) Then, we introduce a new concept of action-averaged Q-function and establish the equivalence
between using the graph-truncated Q-function and action-averaged Q-function for policy gradient
approximation; (3) Finally, we use linear function to approximate the action-averaged Q-function
and reduce the dimensionality of state-action of each agent i ∈ N to (sNκi , ai).

Graph-truncated Q-function 
����,�

� (���
� , ���

�; �) 
in (12)

Action-averaged Q-function 
��

�(�, ��; �) in (16)

Graph-truncated policy 
gradient �������,�

� (�) in 
(14)

Critic Step: Linear function 
approximation 

��
�(���

� , ��; ��
�) in (20)

Approximated policy gradient
 �������,�

� (�) in (17)

Section 3.3

Section 3.4

Actor Step: Approximation 
optimation gradient �� in (25)

(Section 4)
Distributed scalable 

algorithm 
in  Algorithm 1 

Section 3.1

Step 1 Step 2 Step 3 

Section 3.2

Equivalence in 
Proposition 1

Figure 1: The main flowchart of algorithm design: Step 1 proposes a new graph-truncated Q-
function Qmtru,i(sNκi , aNκi ;θ) and the graph-truncated policy gradient ∇θiJmtru,i(θ); Step 2 designs
a action-averaged Q-function Q̂mi (s, ai;θ) and approximation policy gradient∇θiJmapp,i(θ), which
is equivalent to∇θiJmtru,i(θ) (i.e., Proposition 1); Step 3 proposes the linear function approximation
and policy parameter update for the distributed scalable algorithm in Section 4.

3.1 GRAPH-TRUNCATED Q-FUNCTION

In the following, we first introduce the formal definition of the exponential decay property in the
MOMARL problem.

Definition 3 The MOMARL satisfies the (ϑ,%)-exponential decay property with ϑ =
(ϑ1, · · · , ϑM )> ∈ RM ,% = (%1, · · · , %M )> ∈ RM , if for any joint policy πθ, agent i ∈ N ,
objective m ∈ M, sNκi ∈ SNκi , aNκi ∈ ANκi , s−Nκi , s

′
−Nκi

∈ S−Nκi , and a−Nκi , a
′
−Nκi

∈ A−Nκi ,
Qmi (s,a;θ) satisfies∣∣∣Qmi (sNκi , s−Nκi , aNκi , a−Nκi ;θ)−Qmi (sNκi , s

′
−Nκi , aN

κ
i
, a′−Nκi ;θ)

∣∣∣ ≤ ϑm(%m)κ+1. (11)

The exponential decay property of the MOMARL problem indicates that the dependence of agen-
t i’s local Q-function Qmi (s,a;θ) on other agents shrinks rapidly as the distance between them
increases. By Assumption 2, we can directly obtain the following lemma.

Lemma 2 The MOMARL problem satisfies
(
( R
1−γ1 , · · · , R

1−γM )>,γ
)
-exponential decay property.

The proof can be found in Appendix A.1. Lemma 2 provides a possibility for agents to approximate
Qmi (s,a;θ) by only using its κ-hop neighbors’ information. Inspired by exponential decay property
in Lemma 2, we design a proper class of graph-truncated Q-functions:

Qmtru,i(sNκi , aNκi ;θ) =
∑

s−Nκ
i
,a−Nκ

i

ξθ,mρ (s−Nκi , a−Nκi |sNκi , aNκi )Qmi (sNκi , s−Nκi , aNκi , a−Nκi ;θ),

(12)

where ξθ,mρ (s−Nκi , a−Nκi |sNκi , aNκi ) is the weight coefficient and satisfies

ξθ,mρ (s−Nκi , a−Nκi |sNκi , aNκi ) =
ξθ,mρ (sNκi , s−Nκi , aNκi , a−Nκi )∑

s′−Nκ
i
,a′−Nκ

i

ξθ,mρ (sNκi , s
′
−Nκi

, aNκi , a
′
−Nκi

)
. (13)
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Using (12), we define the graph-truncated policy gradient∇θiJmtru,i(θ) as

∇θiJmtru,i(θ) =
1

1− γ
Es∼dθ,mρ ,a∼πθ

[ 1

N

∑
j∈Nκi

Qmtru,j(sNκj , aNκj ;θ)∇θi log πθi(ai|si)
]
. (14)

The graph-truncated policy gradient approximation error is presented in the following.

Lemma 3 In the MOMARL problem, for any agent i ∈ N and objective m ∈M, we have∥∥∥∇θiJmtru,i(θ)−∇θiJm(θ)
∥∥∥
2
≤

√
2R

(1− γm)2
(γm)κ+1. (15)

Similar to (Qu et al., 2020a), Lemma 3 shows that the graph-truncated Q-functions
{Qmtru,j(sNκj , aNκj ;θ)}j∈Nκi can effectively approximate the policy gradient ∇θiJm(θ) through
the state-action (sNκi , aNκi ). In order to improve the scalability of the algorithm, we further explore
the properties of graph-truncated Q-function in (13) and reduce the dimensionality of the algorithm
to (sNκi , ai).

3.2 POLICY GRADIENT APPROXIMATION

To further reduce the neighbors’ action aNκi in graph-truncated Q-function (12) to local action ai,
for any agent i and objective m, we design a novel concept of “action-averaged Q-function” by
using its κ-hop neighbors’ rewards as follows:

Q̂mi (s, ai;θ) = Eπθ
[ 1

N

∞∑
t=0

(γm)t
∑
j∈Nκi

rmj (sj,t, aj,t)|s0 = s, ai,0 = ai

]
. (16)

Define ∇θiJmapp(θ) as the approximated policy gradient of agent i by using the action-averaged
Q-function in (16), given by:

∇θiJmapp,i(θ) =
1

1− γm
Es∼dθ,mρ ,ai∼πθi

[
Q̂mi (s, ai;θ)∇θi log πθi(ai|si)

]
. (17)

Unlike the graph-truncated policy gradient∇θiJmtru,i(θ) in (14) that requires aNκi , (17) only requires
the local action ai. As shown in Fig. 1, we establish the equivalence between graph-truncated policy
gradient∇θiJmtru,i(θ) and approximated policy gradient∇θiJmapp(θ) in the following proposition.

Proposition 1 In the MOMARL problem, given a joint policy πθ, for any agent i ∈ N and objective
m ∈M, it holds

∇θiJmtru,i(θ) = ∇θiJmapp,i(θ). (18)

The proof of Proposition 1 can be found in Appendix A.3. Proposition 1 provides an equivalence
between Qmtru,i(sNκi , aNκj ;θ) and Q̂mi (s, ai;θ) in policy gradient approximation. Based on Propo-
sition 1, the approximation error between ∇θiJmapp,i(θ) and original ∇θiJm(θ) in (10) can be well
bounded for the MOMARL problem in the following theorem.

Theorem 1 In the MOMARL problem, given a joint policy πθ, for any agent i ∈ N and objective
m ∈M, it holds that

‖∇θiJmapp,i(θ)−∇θiJm(θ)‖2 ≤
√

2R

(1− γm)2
(γm)κ+1. (19)

Theorem 1 is built upon Lemma 3 and Proposition 1, with its proof provided in Appendix A.4.

The policy gradient has been approximated so far by constructing Q̂mi (s, ai;θ) in (16) and
∇θiJmapp,i(θ) in (17), which reduces the action dimension of each agent i to its local action ai.
However, the expression of Q̂mi (s, ai;θ) still requires the global state. Therefore, in the following,
we will focus on reducing the dimensionality of agents’ state information.

6
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3.3 CRITIC STEP: LINEAR FUNCTION APPROXIMATION

As shown in Fig. 1, in this subsection, we use the localized stochastic approximation and propose
a linear function in (20) to reduce the dimension of the state-action required by agent i ∈ N to
(sNκi , ai). Specially, the linear function Q̂mi (sNκi , ai;w

m
i ) of agent i to approximate Q̂mi (s, ai;θ)

is given as

Q̂mi (sNκi , ai;w
m
i ) = φi(sNκi , ai)

>wmi , (20)

where φi(sNκi , ai) : SNκi ×Ai → Rdi is the feature vector mapping and wmi ∈ Rdi is the parameter
of agent i in m-th objective. By the definition of Q̂mi (s, ai;θ) in (16), the parameter with initial
value wmi,0 can be updated by sample sequence {sNκi ,t0 , ai,t0 , r

m
Nκi ,t0

}0≤t0≤K as

wmi,t0+1 = wmi,t0 − η
m
w δ

m
i,t0φi(sNκi ,t0+1, ai,t0+1), (21)

where δmi,t0 is the local temporal difference error at time t0 and represented as

δmi,t0 = φi(sNκi ,t0 , ai,t0)>wmi,t0 −
1

N

∑
j∈Nκi

rmj,t0 − γ
mφi(sNκi ,t0+1, ai,t0+1)>wmi,t0 , (22)

and ηmw is the fixed learning rate of parameters wmi . The detailed description of linear function
approximation is illustrated in Algorithm 2 in Appendix A.5.

3.4 ACTOR STEP: POLICY PARAMETER UPDATE

Based on our peoposed approximated policy gradient ∇θiJmapp,i(θ) in (17), for joint poli-
cy πθt , we denote gmi,t(B) as the estimation of ∇θiJmapp,i(θ) based on the sample sequence
{(sbNκi ,h, a

b
i,h)}0≤b≤B−1,0≤h≤H−1, calculated by

gmi,t(b+ 1) =
b

b+ 1
gmi,t(b) +

1

b+ 1
∇̂θiJ

m,b
app,i(θt), (23)

where gmi,t(0) = 0|Si||Ai| and ∇̂θiJ
m,b
app,i(θt) is defined as

∇̂θiJ
m,b
app,i(θt) =

H−1∑
h=0

(γm)h∇θi log πθi,t(a
b
i,h|sbi,h)φi(s

b
Nκi ,h, a

b
i,h)>wmi,t. (24)

Let gmi,t = gmi,t(B)> and gmt =
(
(gm1,t)

>, · · · , (gmN,t)>
)> ∈ R

∑N
i=1 |Si||Ai|. Related to Pareto-

stationarity in Definition 1, we denote λ̂t = (λ̂1t , · · · , λ̂Mt )> ∈ RM as solution of the following
quadratic programming problem:

min
λt=(λ1

t ,··· ,λMt )>∈RM

∥∥∥ M∑
m=1

λmt g
m
t

∥∥∥2
2

s.t. λt ≥ 0, ‖λt‖1 = 1. (25)

After computing λ̂t, we update the weight λt as

λt = (1− ηλ,t)λt−1 + ηλ,tλ̂t, (26)

where ηλ,t is the learning rate of λt. Denote gt =
∑M
m=1 λ

m
t g

m
t , the update of θt+1 is presented as

θt+1 = θt + ηθ,tgt, (27)

where ηθ,t is the learning rate of policy parameter. In the NMARL problem, the agents can use θt
to achieve the distributed decision based on (1).

4 DISTRIBUTED SCALABLE ACTOR-CRITIC ALGORITHM AND ITS
PARETO-STATIONARY CONVERGENCE

In this section, we first propose a distributed scalable actor-critic algorithm (i.e., Algorithm 1) for
the NMARL problem. Then, we prove the Pareto-stationary convergence of Algorithm 1.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Based on Section 3, we propose a distributed scalable actor-critic algorithm for the MOMARL
problem, which is given in Algorithm 1. In order to analyze the Pareto-stationary convergence of
Algorithm 1.

Algorithm 1: Distributed scalable actor-critic algorithm for the MOMARL problem
Require: The non-negative integers T , B, H , the learning-rates ηmw , {ηλ,t}t∈{1,··· ,T} and
{ηθ,t}t∈{1,··· ,T};
Initialization: Initialize λ0 = 1

M 1M ∈ RM , the policy parameter θi,1 ∈ R|Si|×|Ai| to follow
Gaussian distribution for all i ∈ {1, 2, · · · , N};
for t = 1, 2, · · · , T do

Initial policy gradient estimation gmi,t(0) = 0|Si||Ai| for all i ∈ N ;
Critic step: All agents use (21) in Algorithm 2 and output the weight vectors {wmi,t}i∈N ;
Actor step:
for b = 0, 1, 2, · · · , B − 1 do

All agents execute the joint policy πθt in H − 1 horizon;
Each agent i ∈ N collects a sequence of samples, which includes the state information
{sj}j∈Nκi from its κ-hop neighbors and its local action information ai, i.e.,
{(sbNκi ,h, a

b
i,h)}0≤h≤H−1;

Each agent i estimates the local policy gradient in m-th objective according to (23);
end
All agents calculate gmi,t = gmi,t(B) by (23) and achieve gmt =

(
(gm1,t)

>, · · · , (gmN,t)>
)>

for all
m ∈ [M ];
Compute λ̂t as the solution to problem (25);
Update the weight λt acording to (26);
Update the policy parameter θt+1 according to (27);

end
Output: πθT̂ with T̂ chosen uniformly from {1, · · · , T}

Our process to prove the Pareto-stationary convergence of Algorithm 1 is as follows: (i) We start
from the definition of Pareto-stationarity in Definition 2 and analyze the error between the true
gradient ∇θiJm(θt) and the calculated gradient gmi,t in (23)(i.e., Lemma 4); (ii) We control λt
by setting the step size ηθ,t to ensure that Algorithm 1 converges to Pareto-stationary solution in
Theorem 2.

Lemma 4 In Algorithm 1, for joint policy parameter θt, any agent i ∈ N , and objective m ∈ M,
we have

E[‖∇θiJm(θt)− gmi,t‖22] ≤ 8R2

(1− γm)4
(γm)2κ+2 +

32

(1− γm)2B
+

8(γm)2H

(1− γm)4
+

8εθtcritic
(1− γm)2

,

where εθtcritic is the linear approximation error and defined as

εθtcritic = sup
m∈M

sup
i∈N

E
[

sup
s,ai

∣∣∣Q̂i(sNκi , ai;wmi,K)− Q̂mi (s, ai;θt)
∣∣∣2]. (28)

The proof of the Lemma 4 is given in Appendix A.6. Based on Lemma 4, the Pareto-stationary
convergence of Algorithm 1 is presented in the following theorem.

Theorem 2 In Algorithm 1, let LJ = maxm∈M
6N

(1−γm)3 , ηθ,t = 1
3LJ

, and ηλ,t = 1
(t+1)2 . Our

policy parameter sequences {θt}Tt=1 generated by Algorithm 1 satisfies:

E[‖∇θJ(θT̂ )>λ̂T̂ ‖
2
2] ≤ 36LJ

(1− ‖γ‖∞)T

(
1 +

T∑
t=1

ηλ,t

)
+ 5 max

m∈M

( 8R2

(1− γm)4
(γm)2κ+2

+
32N

(1− γm)2B
+

8(γm)2HN

(1− γm)4
+

8 max1≤t≤T ε
θt
criticN

(1− γm)2

)
, (29)

where T̂ is uniformly sampled among {1, · · · , T}.
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The proof of Theorem 2 can be found in Appendix A.7. Theorem 2 shows that Algorithm 1 can
converge to an approximate Pareto-stationary solution at a rate ofO(1/T ). The gap between the ap-
proximate Pareto-stationary and the Pareto-optimal depends on graph-truncated approximation error

8R2

(1−γm)4 (γm)2κ+2 and linear function approximation error 8ε
θt
criticN

(1−γm)2 . These errors are not signifi-
cant, as we can control the upper bound of their upper bounds by setting the graph-truncated distance
κ and the feature vector in the linear approximation. Specially, the graph-truncated approximation
error is exhibits an exponential decrease as κ increases.

5 ROBOTS PATH PLANNING EXPERIMENTS

In this section, we study MOMARL by considering N robots as agents in a typical path planning
simulation experiment by following (Zhou et al., 2023). Similar setting is also used in (Duan et al.,
2016; Zhang & Pavone, 2016). We consider different path networks as shown in Figs. 2(a) and 3(a),
where leftmost nodes represent the starting locations for agents and rightmost nodes represent the
different objective destinations. The agents have the option to either halt or continue along the path
until they reach the objective destinations, where they will remain. The goal of agents is to explore
different destinations, for simultaneously minimizing the travel time and collision with each other.

In path planning simulation experiment, for each agent i ∈ {1, · · · , N}, define all possible locations
as its local state space and all possible movements as its local action space. In order to better
understand the movement changes of agents, we take network 3-2-2 in Fig. 2(a) as an example. If
agent i at node b2, it can choose remain stationary at the current node for one time step, move along
the edge (b2, c1) or edge (b2, c2).

The reward setting of each agent i includes: (i) the cost of travel time −0.5 at each step, (ii) the
collision penalty −0.5 when it chooses the same path with another to move, (iii) the final reward for
reaching a destination. Specifically, when a agent reaches objective 1 and objective 2 in network 3-2-
2, it will receive additional rewards of [0.5, 0], and [0, 1], respectively. In network 5-5-5-3, each agent
reaches objective 1, objective 2, and objective 3 will receive the additional rewards of [0.5, 0, 0],
[0, 1.5, 0], and [0, 0, 1], respectively. The goal of agents is to find a joint policy parameter θ to
maximize (3).

Network 3-2-2
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Figure 2: (a) Experiment network setting for N = 6 robots, (b) the multi-objective performances,
and (c) the norm of gradient of our Algorithm 1 as compared to the centralized Algorithm 3.

In path network 3-2-2, we set the discount factor γ = (0.9, 0.9)>, the communication distance
κ = 1, and the initial positions of agents are set to b1, b2, b3, b1, b2, b3, respectively. In order to
demonstrate the superiority of our proposed Algorithm 1 in terms of runtime and computational
performance, we compare it to the centralized Algorithm 3 presented in Appendix A.8, which uses
the global state-action information and has also been proven to converge to 0-Pareto-stationarity
(i.e., Theorem 4 in Appendix A.8).

The discounted average cumulative reward {Jm(θt)}m∈{1,2} of the policy sequence generated by
Algorithm 1 and the centralized Algorithm 3 are depicted in Fig. 2(b), where x-axis represents the
running time. Although the final value of objective 2 generated by centralized Algorithm 3 is better
than Algorithm 1, it takes longer time to learn. As shwn in Fig. 2(b), centralized Algorithm 3 takes
575s to implement an update to the policy parameters, but our algorithm has already learned in this
time. Furthermore, the value of objective 1 in our proposed Algorithm 1 converges to greater value
as compared to the centralized Algorithm 3.
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The Pareto-stationary convergence error (i.e., ‖gt‖2 in (27)) generated by Algorithm 1 and the cen-
tralized Algorithm 3 is depicted in Fig. 2(c), where the x-axis represents the running time. Although
the norm of policy gradient generated by centralized Algorithm 3 is closer to 0 than Algorithm 1, the
norm of policy gradient of our Algorithm 1 can reach to 0.05 quickly after running 575s, which is
significantly faster than the centralized Algorithm 3. This speed advantage stems from the fact that
the centralized algorithm requires time-consuming calculations of the exact value of the global Q-
function during policy updates. In contrast, our Algorithm 1 does not necessitate such computations
and thus outperforms the centralized algorithm in term of runtime.
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Figure 3: (a) Experiment network setting for N = 10 robots, (b) the multi-objective results, and (c)
the norm of gradient of our Algorithm 1 as compared to the latest MORL algorithm (Zhou et al.,
2024).

In the larger path network 5-5-5-3, we set the discount factor γ = (0.9, 0.9, 0.9)>, the communica-
tion distance κ = 1, and the initial positions of agents are set to b1, b2, b3, b4, b5, b1, b2, b3, b4, b5, re-
spectively. In this simulation, the centralized Algorithm 3 is no longer applicable due to its enormous
computational complexity. Thus, we compare our Algorithm 1 to the latest MORL algorithm (Zhou
et al., 2024), which specifically addresses the MORL problem with discrete action space and is cur-
rently the only approach for achieving Pareto-stationarity. Since the latest MORL algorithm cannot
directly apply to our multi-agent setting of limited communications, we transform the multi-agent
setting to its MORL with a single agent, who accesses the global state-action information.

The discounted average cumulative reward {Jm(θt)}m∈{1,2,3} of the policy sequence generated by
our Algorithm 1 and the latest MORL algorithm are depicted in Fig. 3(b), where x-axis represents the
number of iterations. As shown in Fig. 3(b), our Algorithm 1 converges to all greater multi-objective
values as compared to the latest MORL algorithm.

In order to demonstrate the superiority of the algorithm in convergence performance, the Pareto-
stationary convergence error generated by Algorithm 1 and the latest MORL algorithm are shown
in Fig. 3(c), where the x-axis represents the number of iterations. The norm of the policy gradient,
as demonstrated by Algorithm 1, exhibits a clear convergence trend towards 0. However, the policy
gradient in the latest MORL algorithm deviates significantly from 0 due to the excessively large
global state-action dimension, resulting in a substantial approximation error in the globalQ-function
approximation.

Based on the simulation results, the centralized Algorithm 3 necessitates the computation of the
exact value of the global Q-function at each update, resulting in a time-consuming procedure. The
latest MORL algorithm (Zhou et al., 2024) employs an approximation of the global Q-function,
which enhances its efficiency; however, it encounters convergence challenges in MAMORL prob-
lem. In comparison to the centralized Algorithm 3 and the latest MORL algorithm (Zhou et al.,
2024), our proposed Algorithm 1 demonstrates favorable outcomes in terms of both running time
and convergence.

6 CONCLUSIONS

In this paper, we proposed a distributed scalable actor-critic algorithm for the MOMARL problem
and proved that this algorithm reaches a close-to-Pareto-stationary point of J(θ). In the proposed
algorithm, each agent only requires state-action information (sNκi , ai), which can effectively im-
prove the scalability of the algorithm. The underlying framework of distributed scalable actor-critic
algorithm, which includes the graph-truncated Q-function (12) and the action-averaged Q-function
(16), constitutes a significant contribution in its own right and has the potential to pave the way for
other scalable reinforcement learning methods in networked systems.
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A APPENDIX

A.1 THE DETAILED PROOF OF LEMMA 2

Proof. For any objective m ∈ M and agent i ∈ N , by using Lemma 3 in (Qu et al., 2020a), we
have that∣∣∣Qmi (sNκi , s−Nκi , aNκi , a−Nκi ;θ)−Qmi (sNκi , s

′
−Nκi , aN

κ
i
, a′−Nκi ;θ)

∣∣∣ ≤ R

1− γm
(γm)κ+1,

which can further deduce that the MOMARL problem satisfies the
(
( R
1−γ1 , · · · , R

1−γM )>,γ
)
-

exponential decay property. �

A.2 THE DETAILED PROOF OF LEMMA 3

Proof. By Lemma 1, for each agent i ∈ N and objective m ∈M, we have

∇θiJm(θ) =
1

1− γm
Es∼dθ,mρ ,a∼πθ

[
Qm(s,a;θ)∇θi log πθi(ai|si)

]
. (30)

Based on the definition of∇θiJmtru,i(θ) in (14), we have

‖∇θiJmtru,i(θ)−∇θiJm(θ)‖2

=
∥∥∥ 1

1− γm
Es∼dθ,mρ ,a∼πθ

[( 1

N

∑
j∈Nκi

Qmtru,j(sNκj , aNκj ;θ)−Qm(s,a;θ)
)
∇θi log πθi(ai|si)

]∥∥∥
=
∥∥∥ 1

1− γm
Es∼dθ,mρ ,a∼πθ

[ 1

N

∑
j∈N

(
Qmtru,j(sNκj , aNκj ;θ)−Qmj (s,a;θ)

)
∇θi log πθi(ai|si)

]
− 1

1− γm
Es∼dθ,mρ ,a∼πθ

[ 1

N

( ∑
j∈−Nκi

Qmtru,j(sNκj , aNκj ;θ)
)
∇θi log πθi(ai|si)

]∥∥∥
2

(31)

≤
∥∥∥ 1

1− γm
Es∼dθ,mρ ,a∼πθ

[ 1

N

∑
j∈N

(
Qmtru,j(sNκj , aNκj ;θ)−Qmj (s,a;θ)

)
∇θi log πθi(ai|si)

]∥∥∥
2︸ ︷︷ ︸

(i)

+
∥∥∥ 1

1− γm
Es∼dθ,mρ ,a∼πθ

[ 1

N

( ∑
j∈−Nκi

Qmtru,j(sNκj , aNκj ;θ)
)
∇θi log πθi(ai|si)

]∥∥∥
2︸ ︷︷ ︸

(ii)

, (32)

where the second inequality can be obtained by (6).

For (i)-term on the right side of (31), we have∥∥∥ 1

1− γm
Es∼dθ,mρ ,a∼πθ

[ 1

N

∑
j∈Nκi

(
Qmtru,j(sNκj , aNκj ;θ)−Qmi (s,a;θ)

)
∇θi log πθi(ai|si)

]∥∥∥
2

≤ 1

1− γm
Es∼dθ,mρ ,a∼πθ

[ 1

N

∑
j∈Nκi

∣∣∣Qmtru,j(sNκj , aNκj ;θ)−Qmi (s,a;θ)
∣∣∣‖∇θi log πθi(ai|si)‖

]
≤
√

2R

(1− γm)2
(γm)κ+1, (33)

where the last inequality can be obtained by the facts that∣∣∣Qmtru,j(sNκj , aNκj ;θ)−Qmi (s,a;θ)
∣∣∣ ≤ R

(1− γm)2
(γm)κ+1 (34)

and

‖∇θiπθi(ai|si)‖2 ≤
√

2πθi(ai|si) (35)
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in Lemma F.7 in (Zhou et al., 2023).

For j ∈ −N κ
i in (ii)-term on the right side of (31), we have

Es∼dθ,mρ ,a∼πθ

[
Qmtru,j(sNκj , aNκj ;θ)∇θi log πθi(ai|si)

]
=Es∼dθ,mρ

[∑
a

N∏
k=1

πθk(ak|sk)Qmtru,j(sNκj , aNκj ;θ)
∇θiπθi(ai|si)
πθi(ai|si)

]
=Es∼dθ,mρ

[∑
a−i

∏
k 6=i

πθk(ak|sk)Qmtru,j(sNκj , aNκj ;θ)
∑
ai

∇θiπθi(ai|si)
]

=0, (36)

where the last equality comes from the fact that
∑
ai
∇θiπθi(ai|si) = ∇θi1 = 0.

Substituting (33) and (36) into (32), we have∥∥∥∇θiJmtru,i(θ)−∇θiJm(θ)
∥∥∥
2
≤

√
2R

(1− γm)2
(γm)κ+1. (37)

�

A.3 THE DETAILED PROOF OF PROPOSITION 1

Proof. By the definition of∇θiJmtru,i(θ) in (14), we have

Es∼dθ,mρ ,a∼πθ

[ 1

N

∑
j∈Nκi

Qmtru,j(sNκj , aNκj ;θ)∇θi log πθi(ai|si)
]

=Es∼dθ,mρ ,a∼πθ

[ 1

N

∑
j∈Nκi

∑
s̃−Nκ

j
,ã−Nκ

j

ξθ,mρ (s̃−Nκj , ã−Nκj |sNκj , ai, aUκj,−i)

Qmj (sNκj , s̃−Nκj , ai, aUκj,−i , ã−Nκj ;θ)∇θi log πθi(ai|si)
]

=Es∼dθ,mρ ,a∼πθ

[ 1

N

∑
j∈Nκi

Qmj (sNκj , s−Nκj , ai, aUκj,−i , a−Nκj ;θ)∇θi log πθi(ai|si)
]

(38)

=Es∼dθ,mρ ,ai∼πθi

[
1

N
Eπθ

[ ∞∑
t=0

(γm)t
∑
j∈Nκi

rmj (sj,t, aj,t)|s0 = s, ai,0 = ai

]
∇θi log πθi(ai|si)

]
(39)

=Es∼dθ,mρ ,ai∼πθi

[
Q̂mi (s, ai;θ)∇θi log πθi(ai|si)

]
, (40)

where the second equality (38) is obtained from the definition of ξθ,mρ (s−Nκi , a−Nκi |sNκi , aNκi )
in (13), the third equality (39) comes from the definition of the local Q-function in (5), and the
last equality (40) can be achieved by the definition of Q̂mi (s, ai;θ) in (16). Hence, the proof is
completed. �

A.4 THE PROOF OF THEOREM 1

Proof. By the definition of∇θiJmapp,i(θ) in (17), we have

‖∇θiJmapp,i(θ)−∇θiJm(θ)‖2 =‖∇θiJmapp,i(θ)−∇θiJmtru,i(θ) +∇θiJmtru,i(θ)−∇θiJm(θ)‖2
=‖∇θiJmtru,i(θ)−∇θiJm(θ)‖2 (41)

≤
√

2R

(1− γm)2
(γm)κ+1, (42)

where the second equality comes from Proposition 1 and last inequality achieved by Lemma 3.
Hence, the proof is completed. �

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.5 LINEAR FUNCTION APPROXIMATION IN CRITIC STEP

The linear function approximation in critic step is represented in Algorithm 2.

Algorithm 2: Linear function approximation
Require: The Non-negative integers K, the learning-rates ηmw and ε > 0;
Initialization: Initialize the ε-exploration policy πεθ = ΠN

i=1π
ε
θi

, where
πεθi(ai|si) = (1− ε)πθi(ai|si) + ε

|Ai| for all i ∈ N . The initial values of the parameters wmi,0 is set
as wmi,0 = 0di for all i ∈ {1, 2, · · · , N};
The agents execute the ε-exploration policy πεθ and each agent i ∈ N collects a sequence of
samples {(si,t0 , ai,t0 , rmi,t0)}0≤t0≤K in m-the objective;
for i = 1, 2, · · · , N do

For each objective m ∈M, agent i ∈ N collects the state information {sj}j∈Nκi of its κ-hop
neighbors and reward {rmj }j∈Nκi from its κ-hop neighbors to form a sample set
{sNκi ,t0 , ai,t0 , r

m
Nκi ,t0

}0≤t0≤K ;
for t0 = 0, 1, 2, · · · ,K − 1 do

Each agent i ∈ N estimates its local TD error:
δmi,t0 = φi(sNκi ,t0 , ai,t0)>wmi,t0 −

1
N

∑
j∈Nκi

rmj,t0 − γ
mφi(sNκi ,t0+1, ai,t0+1)>wmi,t0 ;

wmi,t0+1 = wmi,t0 − η
m
w δ

m
i,t0
φi(sNκi ,t0+1, ai,t0+1);

end
end
Output: {wmi,K}i∈N ,m∈M

In Algorithm 2, each agent i only requires its local action information ai and its κ-hop neighbors’
state information sNκi . The ε-exploration joint policy πεθ is used to ensure the induced Markov
chain {(st,at)} is aperiodic and irreducible.

In Algorithm 2, let φ̃i(s, ai) be a feature mapping of agent i ∈ N defined on the global state and
the local action, and satisfy φ̃i(s, ai) = φi(sNκi , ai) for all i ∈ N , s ∈ S, and ai ∈ Ai. Define
Φ̃i ∈ R|S||Ai|×di as the feature matrix of agent i with its (s, ai)-th row being φ̃i(s, ai) for all
(s, ai) ∈ (S,Ai). In the MOMARL problem, denote ζπ

ε
θ,m

ρ (s,a) as the stationary distribution of
(s,a), and ζπ

ε
θ,m

ρ (sNκi , ai) as the stationary distribution of (sNκi , ai) and satisfy

ζ
πεθ,m
ρ (sNκi , ai) =

∑
s′−Nκ

i

∑
a′−i

ζ
πεθ,m
ρ (sNκi , s

′
−Nκi , ai, a

′
−i). (43)

In order to analyze the convergence of Algorithm 2, some common assumptions and definitions are
introduce as follows.

Assumption 3 For each agent i ∈ N , the feature vector mapping φ̃i(s, ai) satisfies ‖φ̃i(s, ai)‖2 ≤
1, and the columns of the feature matrix Φ̃i are linearly independent.

Assumption 4 In the MOMARL problem, for objectivem ∈M, the Markov chain {st,at} satisfies

ζmmin = inf
πεθ

min
i,sNκ

i
,ai
ζ
πεθ,m
ρ (sNκi , ai) > 0. (44)

Define Dπ
ε
θ,m ∈ R|S||A|×|S||A| as a matrix with diagonal elements {ζπ

ε
θ,m

ρ (s,a)}(s,a)∈S×A. By

the definitions of ζπ
ε
θ,m

ρ (s,a) and Φ̃i, it is obvious that Dπ
ε
θ,m is strictly positive diagonal and

Φ̃>i D
πεθ,mΦ̃i is a positive definite matrix. Based on these facts, define λmmin(Φ̃>i D

πεθ,mΦ̃i) as the
smallest eigenvalue of matrix Φ̃>i D

πεθ,mΦ̃i and λm = mini infπεθ λ
m
min(Φ̃>i D

πεθ,mΦ̃i) > 0.

For any agent i ∈ N and objective m ∈ M, the Markov chain setting of the localized stochastic
approximation model of MOMARL is defined as follows.
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Definition 4 In MAMORL
(
N ,M,G(N , E), {Si}i∈N , {Ai}i∈N , {Pi}i∈N ,ρ, {rmi }i∈N ,m∈M,γ

)
,

given a joint policy πεθ, the localized stochastic approximation model of agent i ∈ N in m-th
objective is defined as

Mi,m,πεθ = (N ,G, {Zij}j∈N , {Pij}j∈N , r̃i,m, γm,ρi), (45)

where N , G(N , E), and γm have the same definition as them in MOMARL. Specially, {Zij}j∈N ,
zij ∈ Zij , {Pij}j∈N , r̃i,m, and ρi are defined as

Zij =

{
Si ×Ai, if j = i,
Sj , if j 6= i, (46)

zij =

{
(si, ai), if j = i,
sj , if j 6= i, (47)

Pij
(
(zij)

′|ziNj
)

=

{
Pi(s′i|sNi , ai)πεθi(a

′
i|s′i), if j = i,∑

aj
πεθj (aj |sj)Pj(s

′
j |sNj , aj), if j 6= i, (48)

r̃i,m(zi) =
1

N

∑
aUκ
i,−i

πεθUκ
i,−i

(aUκi,−i |sUκi,−i)
∑
j∈Nκi

rmj (sj , aj), (49)

ρi(zii , z
i
−i) = ρ(s)πθi(ai|si), (50)

where zi = (zi1, · · · , ziN ).

In the localized stochastic approximation modelMi,m,πεθ , the value function is defined as

Ṽ i,m,π
ε
θ (zi) = Ṽ i,m,π

ε
θ (s, ai) = Eπεθ

[ ∞∑
t=0

(γm)tr̃i,mt |s0 = s, ai,0 = ai

]
= Q̂mi (s, ai;θ

ε). (51)

Next, we introduce the sub-chain of the localized stochastic approximation modelMi,m,πεθ .

Definition 5 In the localized stochastic approximation modelMi,m,πεθ , defineMi,m,πεθ
Nκi

as a sub-
chain and described as

Mi,m,πεθ
Nκi

=
(
N κ
i ,G(N κ

i , ENκi ), {Zij}j∈Nκi , {P
i
j}j∈Nκi , r̃

i,m, γm, ρiNκi

)
, (52)

where {Zij}j∈Nκi , {Pij}j∈Nκi , and r̃i,m have the same definition as them inMi,m,πεθ . In particular,
ρiNκi

is the marginal initial state distribution and defined as

ρiNκi (ziNκi ) =
∑
zi−Nκ

i

ρi(ziNκi , z
i
−Nκi ). (53)

By the definition ofMi,m,πεθ
Nκi

in (52), the value function Ṽ i,m,π
ε
θ

Nκi
(ziNκi

) is represented as

Ṽ
i,m,πεθ
Nκi

(ziNκi ) = Ṽ
i,m,πεθ
Nκi

(sNκi , ai) = Eπεθ
[ ∞∑
t=0

(γm)tr̃i,mt |sNκi ,0 = sNκi , ai,0 = ai

]
. (54)

In the localized stochastic approximation modelMi,m,πεθ , for each agent i ∈ N , define

Zii,t =
(
ziNκi ,t, z

i
Nκi ,t+1

)
, (55)

Fmi
(
Zii,t;w

m
i

)
=

1

N

∑
j∈Nκi

rmj,t + γmφi(sNκi ,t+1, ai,t+1)>wmi − φi(sNκi ,t, ai,t)
>wmi , (56)

F̄mi (wmi ) = E[Fmi
(
Zii,t;w

m
i

)
]. (57)

According to the definition of Fmi
(
Zii,t;w

m
i

)
in (56) and δi,t0 in (21), we have Fmi

(
Zii,t0 ;wmi,t0

)
=

δi,t0 . The mixing time of function {Fmi (Zii,t;w
m
i )}i∈N is introduction in the following.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Definition 6 For any δ > 0, the mixing time of function {Fmi (Zii,t;w
m
i )}i∈N with precision δ is

defined as

tm
′

δ = min{t ≥ 1|‖E[Fmi (Zii,t;w
m
i )]− F̄mi (wmi )‖2 ≤ δ(1 + γm)(‖wmi ‖2 + 1),∀i ∈ N}. (58)

In order to use the results of the localized stochastic approximation analysis in Zhou et al. (2023), we
will show that the Assumptions C.1, C.2, and C.3 in Zhou et al. (2023) are still satisfied in Markov
chainMi,m,πεθ .

Lemma 5 For any joint policy πεθ, agent i ∈ N , and objective m ∈ M, the Markov chain
{(st, ai,t)} induced byMi,m,πεθ is aperiodic and irreducible.

Proof. Let Prπ
ε
θ (s′,a′|s,a; t) as the probability of (s′,a′) occurring at time t in MOMARL with

initial state (s,a) and Pri,m,π
ε
θ (s′, a′i|s, ai; t) as the probability of (s′, a′i) occurring at time t in

Mi,m,πεθ with initial state (s, ai). Specially, Prπ
ε
θ (s′,a′|s,a; t) and Pri,m,π

ε
θ (s′, a′i|s, ai; t) are

represented as

Prπ
ε
θ (s′,a′|s,a; t) = Prπ

ε
θ (st = s′,at = a|s0 = s,a0 = a),

Pri,m,π
ε
θ (s′, a′i|s, ai; t) = Pri,m,π

ε
θ (st = s′, ai,t = ai|s0 = s, ai,0 = ai).

(i) Irreducible: By Lemma D.2 in Zhou et al. (2023), we have that for any joint policy πεθ, the
Markov chain {st,at} induced by MOMARL is aperiodic and irreducible. Hence, for any s, s′ ∈ S,
ai, a

′
i ∈ Ai, and a−i, a′−i ∈ A−i, there exists t > 0, such that Prπ

ε
θ (s′, a′i, a

′
−i|s, ai, a−i; t) > 0.

Let t0 = min{t|Prπ
ε
θ (s′, a′i, a

′
−i|s, ai, a−i; t) > 0,∀a−i, a′−i ∈ A−i}, we can obtain that

Pri,m,π
ε
θ (s′, a′i|s, ai; t0) =

∑
a−i

πεθ−i(a−i|s−i)
∑
a′−i

Prπ
ε
θ (s′, a′i, a

′
−i|s, ai, a−i; t0) > 0, (59)

where the inequality comes from the fact that πεθ−i(a−i|s−i) > 0 and

Prπ
ε
θ (s′, a′i, a

′
−i|s, ai, a−i; t0) > 0 for all a−i, a′−i ∈ A−i. Therefore,Mi,m,πεθ is irreducible.

(ii) Aperiodic: if Pri,m,π
ε
θ has period T ≥ 2, then for any time t not divisible by T and (s, ai), we

have

0 = Pri,m,π
ε
θ (s, ai|s, ai; t) =

∑
a−i

πεθ−i(a−i|s−i)
∑
a′−i

Prπ
ε
θ (s, ai, a

′
−i|s, ai, a−i; t). (60)

In (60), it is clearly evident that Prπ
ε
θ (s, ai, a−i|s, ai, a−i; t) = 0,∀a−i ∈ A−i, which implies

that the Markov chain {st,at} induced by MOMARL is periodic. This contradicts the fact that the
Markov chain {st,at} induced by MOMARL is aperiodic. Hence,Mi,m,πεθ is aperiodic. �

Lemma 6 In MOMARL, For any agent i ∈ N and objective m ∈M, we have that
(i) |Fmi (Zii,t;w

m
i )− Fmi (Zii,t;w

m′

i )| ≤ (1 + γm)‖wmi − wm
′

i ‖2,∀wmi , wm
′

i , Zii,t;
(ii) |Fmi (Zii,t;0di)| ≤ 1 + γm,∀Zii,t;
(iii) F̄mi (wmi ) has a unique zero point wm∗i ;
(iv) (wmi − wm∗i )>F̄mi (wmi ) ≤ −(1− γm)λm‖wmi − wm∗i ‖22;
(v) Q̂mi (sNκi , ai;w

m
i ) is 1-Lipschitz with respect to wmi .

Proof. (i) By the definition of Fmi
(
Zii,t;w

m
i

)
in (56), for all wmi , wm

′

i , Zii,t, we have that

|Fm(Zii,t;w
m
i )− Fm(Zii,t;w

m′

i )|

=|γmφi(sNκi ,t+1, ai,t+1)>(wmi − wm
′

i )− φi(sNκi ,t, ai,t)
>(wmi − wm

′

i )|

≤γm‖φi(sNκi ,t+1, ai,t+1)‖2‖(wmi − wm
′

i )‖2 + ‖φi(sNκi ,t, ai,t)‖2‖(w
m
i − wm

′

i )‖2
≤(1 + γm)‖wmi − wm

′

i ‖2 (61)

≤(R+ γm)‖wmi − wm
′

i ‖2 (62)
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where (61) is obtained from Assumption 3 and the last inequality comes from the fact that R > 1.
(ii) By the definition of Fmi

(
Zii,t;wi

)
in (56), we have

|Fmi (Zii,t;0di)| =
∣∣∣ 1

N

∑
j∈Nκi

rmj,t

∣∣∣ ≤ R < R+ γm.

(iii) ConsideringMi,m,πεθ as a SARL problem, based on Zhou et al. (2023) and Tsitsiklis & Roy
(1997), we can get that F̄Ci (wi) has a unique zero point wm∗i .
(iv) According to Lemma 9 in Tsitsiklis & Roy (1997), we have that (wmi − wm∗i )>F̄mi (wmi ) ≤
−(1− γm)‖Φ̃iwmi − Φ̃iw

m∗
i ‖Dπεθ ,m . By the definition of the Dπ

ε
θ,m, we can obtain

(wmi − wm∗i )>F̄mi (wmi ) ≤− (1− γm)‖Φ̃iwmi − Φ̃iw
m∗
i ‖Dπεθ ,m

≤− (1− γm)(wmi − wm∗i )>Φ̃>i D
πεθ,mΦ̃i(w

m
i − wm∗i )

≤− (1− γm)λm‖wmi − wm∗i ‖22, (63)

where the last inequality can be obtained by the definition of λm.
(v) By the definition of Q̂mi (sNκi , ai;w

m
i ) in (20), we have

|Q̂mi (sNκi , ai;w
m
i )− Q̂mi (sNκi , ai;w

m′

i )| =|φi(sNκi , ai)
>(wmi − wm

′

i )|

≤‖φi(sNκi , ai)‖2‖w
m
i − wm

′

i ‖2
≤‖wmi − wm

′

i ‖2, (64)

where the last inequality is obtained from Assumption 3. �

By Theorem D.1 in Zhou et al. (2023), we can obtain the following theorem.

Theorem 3 Suppose Assumptions 1-4 hold. In Algorithm 2, ηmw satisfies ηmw t
m′

ηmw
≤

min{ 1
4(R+γm) ,

(1−γm)λm

114(R+γm)2 } and K ≥ maxm∈M{tm
′

ηmw
}, then it holds that

εθcritic ≤4 sup
m∈M

[
cm∗1

(
1− (1− γm)λmηmw

)K−tm′ηmw + cm∗2

ηmw t
m′

ηmw

(1− γm)λm
+ ζmapp

]
, (65)

where cm∗1 =
(
1 + maxi ‖wm∗i ‖2

)2
, cm∗2 = 114(R + γm)2

(
1 + maxi ‖wm∗i ‖2

)2
, tm

′

ηmw
represents

the mixing time as defined in Definition 6, and ζmapp =
(

εmapp
(1−γ)ζmmin

)2
+
(

γm

1−γm

)2
+
(

6Nε
(1−γm)2

)2
with

εmapp = sup
πεθ

sup
i∈N

{
inf
wmi

sup
s,ai

∣∣∣Q̂i(sNκi , ai;wmi )− Q̂mi (s, ai;θ
ε)
∣∣∣}. (66)

Proof. Lemma 5 and Lemma 6 show that the Assumptions C.1, C.2, and C.3 in Zhou et al. (2023)
are still satisfied in Markov chainMi,m,πεθ . By Theorem D.1 in Zhou et al. (2023), if the learning
rate ηmw satisfies ηmw t

m′

ηmw
≤ min{ 1

4(R+γm) ,
(1−γm)λm

114(R+γm)2 }, then for all K ≥ tm′ηmw , then we have

sup
πθ

sup
i∈N

E
[

sup
s,ai

∣∣∣Q̂i(sNκi , ai;wmi,K)− Q̂mi (s, ai;θ)
∣∣∣2]

≤4
[
cm∗1

(
1− (1− γm)λmηmw

)K−tm′ηmw + cm∗2

ηmw t
m′

ηmw

(1− γm)λm
+
( εmapp

(1− γ)ζmmin

)2
+
( γm

1− γm
)2

+
( 6Nε

(1− γm)2

)2]
, (67)

where cm∗1 =
(
1 + maxi ‖wm∗i ‖2

)2
and cm∗2 = 114(R+ γm)2

(
1 + maxi ‖wm∗i ‖2

)2
.
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By the definition of εθcritic in (28), we have that

εθcritic = sup
m∈M

sup
i∈N

E
[

sup
s,ai

∣∣∣Q̂i(sNκi , ai;wmi,K)− Q̂mi (s, ai;θ)
∣∣∣2]

≤4 sup
m∈M

[
cm∗1

(
1− (1− γm)λmηmw

)K−tm′ηmw + cm∗2

ηmw t
m′

ηmw

(1− γm)λm
+
( εmapp

(1− γ)ζmmin

)2
+
( γm

1− γm
)2

+
( 6Nε

(1− γm)2

)2]
, (68)

which completes the proof. �

A.6 THE PROOF OF LEMMA 4

The detailed proof of Lemma 4 is provided in the following.

Proof. By the update of gmi,t(b+ 1) in (23) and gmi,t = gmi,t(B), we have

∇θiJm(θt)− gmi,t
=∇θiJm(θt)−∇θiJmapp,i(θt) +∇θiJmapp,i(θt)− gmi,t

=∇θiJm(θt)−∇θiJmapp,i(θt) +

∞∑
h=0

(γm)hE
[
∇θi log πθi,t(ai,h|si,h)Q̂mi (sh, ai,h;θt)

]
− 1

B

B−1∑
b=0

H−1∑
h=0

(γm)h∇θi log πθi,t(a
b
i,h|sbi,h)φi(s

b
Nκi ,h, a

b
i,h)>wi,t (69)

=∇θiJm(θt)−∇θiJmapp,i(θt)︸ ︷︷ ︸
T1

+

H−1∑
h=0

(γm)hE
[
∇θi log πθi,t(ai,h|si,h)Q̂mi (sh, ai,h;θt)

]
︸ ︷︷ ︸

T2

+

∞∑
h=H

(γm)hE
[
∇θi log πθi,t(ai,h|si,h)Q̂mi (sh, ai,h;θt)

]
︸ ︷︷ ︸

T3

− 1

B

B−1∑
b=0

H−1∑
h=0

(γm)h∇θi log πθi,t(a
b
i,h|sbi,h)Q̂mi (sbh, a

b
i,h;θt)︸ ︷︷ ︸

T4

+
1

B

B−1∑
b=0

H−1∑
h=0

(γm)h∇θi log πθi,t(a
b
i,h|sbi,h)

(
Q̂mi (sbh, a

b
i,h;θt)− φi(sbNκi ,h, a

b
i,h)>wi,t

)
︸ ︷︷ ︸

T5

, (70)

where the equality (69) can be obtained by the policy gradient theorem variant (i.e., Lemma F.1
in (Zhou et al., 2023)). Based on (70), we have

E[‖∇θiJm(θt)− gmi,t‖22]

=E[‖T1 + T2 + T3 − T4 + T5‖22]

≤4E[‖T1‖22 + ‖T2 − T4‖22 + ‖T3‖22 + ‖T5‖22]. (71)

≤ 8R2

(1− γm)4
(γm)2κ+2 +

32

(1− γm)2B
+

8(γm)2H

(1− γm)4
+

8εθtcritic
(1− γm)2

. (72)

where (72) can be obtained by (42) and the definition of εθtcritic in (28). �

A.7 THE PROOF OF THEOREM 2

Before proving Theorem 2, let’s first introduce some related lemmas. In the MOMARL problem,
for any i ∈ N , denote s−i = s \ si as the state of agents other than agent i and a−i = a \ ai as
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the action of agents other than agent i. For any joint policy πθ, denote dθ,mρ,i (si) and dθ,mρ,−i(s−i)
as the discounted state visitation distribution of si and s−i in m-objective, respectively. Define the
averaged value function, the averaged Q-function, and the averaged advantage function of agent
i ∈ N in the objective m ∈M as

V mi (si;θ) =
1

N

∑
s′−i

dθ,mρ,−i(s
′
−i)

∑
j∈N

V mj (si, s
′
−i;θ), (73)

Qmi (si, ai;θ) =
1

N

∑
s′−i,a

′
−i

dθ,mρ,−i(s
′
−i)πθ−i(a

′
−i|s′−i)

∑
j∈N

Qmj (si, s
′
−i, ai, a

′
−i;θ), (74)

Ami (si, ai;θ) = Qmi (si, ai;θ)− V mi (si;θ). (75)

Lemma 7 (Softmax policy gradient) In the MOMARL problem, for any joint policy πθ, agent i ∈
N , and objective m ∈M, the gradient of Jm(θ) with respect to θi,si,ai is represented as

∂Jm(θ)

∂θi,si,ai
=

1

1− γm
dθ,mρ,i (si)πθi(ai|si)Ami (si, ai;θ). (76)

Proof. According to the policy gradient lemma 1 and (6), we have

∂Jm(θ)

∂θi,si,ai
=

1

1− γm
∑
s′,a′

dθρ(s′)πθ(a′|s′)∂ logπθ(a′|s′)
∂θi,si,ai

( 1

N

N∑
j=1

Qmj (s′,a′;θ)
)

=
1

1− γm
∑
s′i,a

′
i

dθ,mρ,i (s′i)πθi(a
′
i|s′i)

∑
s′−i,a

′
−i

dθ,mρ,−i(s
′
−i)πθ−i(a

′
−i|s′−i)

(
1{s′i = si, a

′
i = ai}

− 1{s′i = si}πθi(ai|si)
) 1

N

(∑
j∈N

Qmj (si, s
′
−i, ai, a

′
−i;θ)

)
(77)

=
1

1− γm
dθ,mρ,i (si)πθi(ai|si)Qmi (si, ai;θ)

− 1

1− γm
dθ,mρ,i (si)πθi(ai|si)

∑
ai

πθi(ai|si)Qmi (si, ai;θ)

=
1

1− γm
dθ,mρ,i (si)πθi(ai|si)

(
Qmi (si, ai;θ)− V mi (si;θ)

)
=

1

1− γm
dθ,mρ,i (si)πθi(ai|si)Ami (si, ai;θ), (78)

where the second equality (77) comes from the fact that
∂ logπθ(a′|s′)

∂θi,si,ai
=
∂ log πθi(a

′
i|s′i)

∂θi,si,ai
= 1{s′i = si, a

′
i = ai} − 1{s′i = si}πθi(ai|si), (79)

and the last equality (78) can be obtained from the definition of the averaged advantage function
Ami (si, ai;θ). �

Lemma 8 (Smoothness) In the MOMARL problem, for any objective m ∈M, the objective Jm(θ)
is 6N

(1−γm)3 -smooth, i.e., for any different policies πθ and πθ′ , we have

‖∇θJm(θ′)−∇θJm(θ)‖2 ≤
6N

(1− γm)3
‖θ′ − θ‖2. (80)

Proof. Consider that for any different policies πθ and πθ′ , we have

‖∇θJm(θ′)−∇θJm(θ)‖22 ≤
N∑
i=1

‖∇θiJm(θ′)−∇θiJm(θ)‖22

≤
N∑
i=1

‖∇θiJm(θ′)−∇θiJm(θ)‖21. (81)
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By Lemmas 7, we have

‖∇θiJm(θ′)−∇θiJm(θ)‖1

=
1

1− γm
∑
si,ai

∣∣∣dθ′,mρ,i (si)πθ′i(ai|si)A
m
i (si, ai;θ

′)− dθ,mρ,i (si)πθi(ai|si)Ami (si, ai;θ)
∣∣∣

≤ 1

1− γm
∑
s,a

|dθ
′,m
ρ (s)πθ′(a|s)Am(s,a;θ′)− dθ,mρ (s)πθ(a|s)Am(s,a;θ)| (82)

≤ 1

1− γm
∑
s,a

(
|dθ
′,m
ρ (s)πθ′(a|s)− dθ,mρ (s)πθ(a|s)|

)
Am(s,a;θ′)

+ dθ,mρ (s)πθ(a|s)|Am(s,a;θ′)−Am(s,a;θ)|

≤ 1

1− γm
∑
s,a

1

1− γm
(
|dθ
′,m
ρ (s)πθ′(a|s)− dθ,mρ (s)πθ(a|s)|

)
+ max

s,a
|Am(s,a;θ′)−Am(s,a,θ)|, (83)

where the first inequality (82) can be obtained from the definition of Ami (si, ai;θ) in (75) and the
fact that |

∑N
i=1 xi −

∑N
i=1 yi| ≤

∑N
i=1 |xi − yi|,∀xi, yi ∈ R, and the last inequality (83) comes

from the fact that Am(s,a;θ) ≤ 1/(1− γm).
For the right side of (83), we can use Corollary 35 and Lemma 32 in Zhang et al. (2022) to further
obtain∑

s

|dθ
′,m
ρ (s)πθ′(a|s)− dθ,mρ (s)πθ(a|s)| ≤ 1

1− γm
max
s
‖πθ′(·|s)− πθ(·|s)‖1, (84)

|Am(s,a;θ′)−Am(s,a;θ)| ≤ 2

(1− γm)2
max
s
‖πθ′(·|s)− πθ(·|s)‖1. (85)

Substituting (84) and (85) into (83), we have

‖∇θiJm(θ′)−∇θiJm(θ)‖1 ≤
3

(1− γm)3
max
s
‖πθ′(·|s)− πθ(·|s)‖1

=
3

(1− γm)3

N∑
i=1

max
si
‖πθ′i(·|si)− πθi(·|si)‖1 (86)

≤ 6

(1− γm)3

N∑
i=1

‖θ′i − θi‖2, (87)

where the last inequality (87) is obtained from Corollary 37 in Zhang et al. (2022) that for any two
difference softmax policies πθi and πθ′i , and si ∈ Si, ‖πθi(·|si)− πθ′i(·|si)‖1 ≤ 2‖θi − θ′i‖2.
Combining (81) and (87), we further have

‖∇θJm(θ)−∇θJm(θ′)‖22 ≤
N∑
i=1

( 6

(1− γm)3

N∑
i=1

‖θ′i − θi‖2
)2

=
36N

(1− γm)6

( N∑
i=1

‖θ′i − θi‖2
)2

≤ 36N2

(1− γm)6

N∑
i=1

‖θ′i − θi‖22 (88)

≤ 36N2

(1− γm)6
‖θ′ − θ‖22, (89)

where the second inequality (88) is obtained from that
(∑N

i=1 xi
)2 ≤ N(

∑N
i=1 x

2
i ),∀xi ∈ R.

Hence, the proof is completed. �
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Denote LJ = maxm∈M
6N

(1−γm)3 , by Lemma 8, we can have that Jm(θ) is LJ -smooth for all
m ∈ M. Based on this property, the convergence result of the Algorithm 1 is presented in the
following theorem.

Proof. According to the smoothness of Jm(θ) in Lemma 8 and LJ = maxm∈M
6N

(1−γm)3 , we can
have

Jm(θt+1) ≥ Jm(θt) + 〈∇θJm(θt),θt+1 − θt〉 −
LJ
2
‖θt+1 − θt‖22,∀m ∈M. (90)

Taking λt weighted summation over (90), we have

λ>t J(θt+1) ≥λ>t J(θt) + 〈∇θJ(θt)
>λt,θt+1 − θt〉 −

LJ
2
‖θt+1 − θt‖22

=λ>t J(θt) + ηθ,t

〈
∇θJ(θt)

>λt,

M∑
m=1

λmt g
m
t

〉
−
LJη

2
θ,t

2

∥∥∥ M∑
m=1

λmt g
m
t

∥∥∥2
2

(91)

=λ>t J(θt) + ηθ,t

〈
∇θJ(θt)

>λt,

M∑
m=1

λmt
(
gmt −∇θJm(θt) +∇θJm(θt)

)〉
−
LJη

2
θ,t

2

∥∥∥ M∑
m=1

λmt g
m
t

∥∥∥2
2

=λ>t J(θt) + ηθ,t

〈
∇θJ(θt)

>λt,

M∑
m=1

λmt ∇θJm(θt)
〉

+ ηθ,t

〈
∇θJ(θt)

>λt,

M∑
m=1

λmt
(
gmt −∇θJm(θt)

)〉
−
LJη

2
θ,t

2

∥∥∥ M∑
m=1

λmt g
m
t

∥∥∥2
2

≥λ>t J(θt) +
ηθ,t
2
‖∇θJ(θt)

>λt‖22 −
ηθ,t
2

∥∥∥ M∑
m=1

λmt
(
gmt −∇θJm(θt)

)∥∥∥2
2

−
LJη

2
θ,t

2

∥∥∥ M∑
m=1

λmt
(
gmt −∇θJm(θt) +∇θJm(θt)

)∥∥∥2
2

(92)

≥λ>t J(θt) +
(ηθ,t

2
− LJη2θ,t

)
‖∇θJ(θt)

>λt‖22

−
(ηθ,t

2
+ LJη

2
θ,t

)∥∥∥ M∑
m=1

λmt
(
gmt −∇θJm(θt)

)∥∥∥2
2
, (93)

where the equality (91) comes from (27), the inequality (92) can be obtained by the fact that 〈x, y〉 ≥
− 1

2 (‖x‖2 + ‖y‖2),∀x, y ∈ R
∑N
i=1 |Si||Ai|, and the inequality (93) can be get by the fact that ‖x +

y‖22 ≤ 2(‖x‖22 + ‖y‖22),∀x, y ∈ R
∑N
i=1 |Si||Ai|. By (93), we have

‖∇θJ(θt)
>λt‖22 ≤

2
(
λ>t J(θt+1)− λ>t J(θt)

)
ηθ,t − 2η2θ,tLJ

+
ηθ,t + 2η2θ,tLJ

ηθ,t − 2η2θ,tLJ

∥∥∥ M∑
m=1

λmt
(
∇θJm(θt)− gmt

)∥∥∥2
2
. (94)

Consider that λ̂t is the optimal of problem (25), we have

‖∇θJ(θt)
>λ̂t‖22 ≤ ‖∇θJ(θt)

>λt‖22. (95)
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Using the setting of the learning rate as ηθ,t = 1
3LJ

and taking expectation on both side of (94), we
further have

E[‖∇θJ(θt)
>λ̂t‖22]

≤18LJE[λ>t J(θt+1)− λ>t J(θt)] + 5
( M∑
m=1

λmt
∥∥∇θJm(θt)− gmt

∥∥)2
2

≤18LJE[λ>t J(θt+1)− λ>t J(θt)]

+ 5 max
m∈M

( 8R2

(1− γm)4
(γm)2κ+2 +

32N

(1− γm)2B
+

8(γm)2HN

(1− γm)4
+

8εθtcriticN

(1− γm)2

)
, (96)

where the last inequality comes from Lemma 4. Taking average of (96) over T , we have

E[‖∇θJ(θT̂ )>λ̂T̂ ‖
2
2]

=
1

T

T∑
t=1

E[‖∇θJ(θt)
>λ̂t‖22]

≤ 1

T

T∑
t=1

18LJE[λ>t J(θt+1)− λ>t J(θt)]

+ 5 max
m∈M

( 8R2

(1− γm)4
(γm)2κ+2 +

32N

(1− γm)2B
+

8(γm)2HN

(1− γm)4
+

8 max1≤t≤T ε
θt
criticN

(1− γm)2

)
.

(97)

Considering that
T∑
t=1

E[λ>t J(θt+1)− λ>t J(θt)]

=E
[ T−1∑
t=1

(−λt+1 + λt)
>J(θt+1)− λ>1 J(θ1) + λ>T J(θT+1)

]
≤E
[ T−1∑
t=1

‖ − λt+1 + λt‖1‖J(θt+1)‖∞ + |λ1|1‖J(θ1)‖∞ + |λT |∞‖J(θT+1)‖∞
]

(98)

≤
T−1∑
t=1

[
ηλ,tE[‖λt − λ̂t‖1]

1

1− ‖γ‖∞

]
+

2

1− ‖γ‖∞
(99)

≤ 2

1− ‖γ‖∞

(
1 +

T∑
t=1

ηλ,t

)
, (100)

where the inequality (98) comes from the fact that x>y ≤ ‖x‖1‖y‖∞,∀x, y ∈ RM and the inequal-
ity (99) is obtained from the update of λt in (26).

Taking (100) into (97), we further have

E[‖∇θJ(θT̂ )>λ̂T̂ ‖
2
2]

≤ 36LJ
(1− ‖γ‖∞)T

(
1 +

T∑
t=1

ηλ,t

)
+ 5 max

m∈M

( 8R2

(1− γm)4
(γm)2κ+2 +

32N

(1− γm)2B
+

8(γm)2HN

(1− γm)4
+

8 max1≤t≤T ε
θt
criticN

(1− γm)2

)
.

Hence, the proof is completed. �

A.8 CENTRALIZED ALGORITHM FOR THE NMARL PROBLEM

In this section, we propose a centralized exact policy gradient algorithm for achieving a ε-Pareto-
stationarity of MOMARL problem.
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In an ideal scenario, assuming all agents possess comprehensive knowledge of MOMARL prob-
lem, including the model of state transition probability functions and reward functions. The design
process of the centralized exact policy gradient algorithm is as follows.

At time t, for a given joint policy πθt with θt = (θ>1,t, · · · , θ>N,t)>, the policy gradient ∇θiJm(θt)
of agent i in m-th objective can be calculated by (10) and represented as

∇θiJm(θt) =
1

1− γm
E
s∼dθt,mρ ,a∼πθt

[∇θi log πθi,t(ai|si)Qm(s,a;θ)],∀m ∈M. (101)

Denote ∇θJm(θt) =
((
∇θ1Jm(θt)

)>
, · · · ,

(
∇θNJm(θt)

)>)>
and let λ̂cent =

(λ̂cen,1t , · · · , λ̂cen,Mt )> ∈ RM be the solution of the following quadratic programming prob-
lem:

min
λcent =(λcen,1t ,··· ,λcen,Mt )>∈RM

∥∥∥ M∑
m=1

λcen,mt ∇θJm(θt)
∥∥∥2
2

s.t. λcent ≥ 0, ‖λcent ‖1 = 1. (102)

After computing λ̂cent , we update the weight λcent as

λcent = (1− ηcenλ,t )λcent−1 + ηcenλ,t λ̂
cen
t , (103)

where ηcenλ,t is the learning rate of λcent at time t. Denote∇θJ̃(θt) =
∑M
m=1 λ

cen,m
t ∇θJm(θt), the

update of θt+1 is designed as

θt+1 = θt + ηcenθ,t ∇θJ̃(θt), (104)

where ηcenθ,t is the learning rate of policy parameter at time t. In particular, the overall of the central-
ized exact policy gradient algorithm is illustrated in Algorithm 3.

Algorithm 3: Centralized exact policy gradient algorithm for MOMARL
Require: The Non-negative integers T , the learning-rates {ηcenλ,t }t∈{0,1,··· ,T−1} and
{ηcenθ,t }t∈{0,1,··· ,T−1};
Initialization: Initialize λcen−1 = 1

M 1M ∈ RM , the policy parameter θi,0 ∈ R|Si|×|Ai| to follow
Gaussian distribution for all i ∈ {1, 2, · · · , N};
for t = 0, 1, 2, · · · , T − 1 do

Each agent i ∈ N calculates the local exact policy gradient in the m-the objective∇θiJm(θt);

Let ∇θJm(θt) =
((
∇θ1Jm(θt)

)>
, · · · ,

(
∇θNJm(θt)

)>)>
in m-the objective;

Computing λ̂cent as the solution of problem (103);
Update the weight λcent as: λcent = (1− ηcenλ,t )λcent−1 + ηcenλ,t λ̂

cen
t ;

Update the policy parameter θt+1 as: θt+1 = θt + ηcenθ,t
∑M
m=1 λ

cen,m
t ∇θJm(θt);

end
Output: πθT

Denote LJ = maxm∈M
6N

(1−γm)3 , by Lemma 8, we can have that Jm(θ) is LJ -smooth for all
m ∈ M. Based on this property, the convergence result of the Algorithm 3 is presented in the
following theorem.

Theorem 4 Suppose Assumptions 1-2 hold. In Algorithm 3, let ηcenθ,t = 1
LJ

and T ≥
8LJ

ε(1−‖γ‖∞) max{1,
∑T
t=1 2ηcenλ,t }, for the policy parameter sequences {θt}Tt=0, it holds that

E[‖∇θJ(θT̂ )>λ̂cen
T̂
‖22] ≤ ε,

where T̂ is uniformly sampled among {1, 2, · · · , T}.
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Proof. By the LJ -smooth of Jm(θ), we have

Jm(θt+1) ≥ Jm(θt) + 〈∇θJm(θt),θt+1 − θt〉 −
LJ
2
‖θt+1 − θt‖22,∀m ∈M. (105)

Taking λcen,mt weighted summation over (105), we have

(λcent )>J(θt+1) ≥(λcent )>J(θt) + 〈∇θJ(θt)
>λcent ,θt+1 − θt〉 −

LJ
2
‖θt+1 − θt‖22

=(λcent )>J(θt) + ηcenθ,t

〈
∇θJ(θt)

>λcent ,

M∑
m=1

λcen,mt ∇θJm(θt)
〉

−
LJ(ηcenθ,t )2

2

∥∥∥ M∑
m=1

λcen,mt ∇θJm(θt)
∥∥∥2
2

(106)

≥(λcent )>J(θt) +
(
ηcenθ,t −

LJ(ηcenθ,t )2

2

)
‖∇θJ(θt)

>λcent ‖22. (107)

Substituting ηcenθ,t = 1
LJ

into (107), we have

‖∇θJ(θt)
>λcent ‖22 ≤2LJ

(
(λcent )>J(θt+1)− (λcent )>J(θt)

)
. (108)

Consider that λ̂cent is the optimal of problem (102), then we have

‖∇θJ(θt)
>λ̂cent ‖22 ≤ ‖∇θJ(θt)

>λcent ‖22. (109)
Combing (108) and (109), we have

‖∇θJ(θt)
>λ̂cent ‖22 ≤ 2LJ

(
(λcent )>J(θt+1)− (λcent )>J(θt)

)
. (110)

Taking average of (110) over T , we have

E[‖∇θJ(θT̂ )>λ̂cen
T̂
‖22] =

1

T

T∑
t=1

E[‖∇θJ(θt)
>λ̂cent ‖22]

≤ 1

T

T∑
t=1

2LJE[(λcent )>J(θt+1)− (λcent )>J(θt)], (111)

where T̂ is uniformly sampled among {1, 2, · · · , T}. Consider that
T∑
t=1

E[(λcent )>J(θt+1)− (λcent )>J(θt)]

=E
[ T−1∑
t=1

(−λcent+1 + λcent )>J(θt+1)− (λcen1 )>J(θ1) + (λcenT )>J(θT+1)
]

≤E
[ T−1∑
t=1

‖ − λcent+1 + λcent ‖1‖J(θt+1)‖∞ + |λcen1 |1‖J(θ1)‖∞ + |λcenT |∞‖J(θT+1)‖∞
]

(112)

≤
T−1∑
t=1

[
ηcenλ,t E[‖λcent − λ̂cent ‖1]

1

1− ‖γ‖∞

]
+

2

1− ‖γ‖∞
(113)

≤ 2

1− ‖γ‖∞

(
1 +

T∑
t=1

ηcenλ,t

)
, (114)

where the inequality (112) comes from the fact that x>y ≤ ‖x‖1‖y‖∞,∀x, y ∈ RM and the inequal-
ity (113) is obtained from the update of λcent in (103). Substituting (114) into (111), we further have

E[‖∇θJ(θT̂ )>λ̂cen
T̂
‖22] ≤ 4LJ

T (1− ‖γ‖∞)

(
1 +

T∑
t=1

ηcenλ,t

)
≤ε, (115)

where the last inequality can be obtained by the fact that T ≥ 8LJ
ε(1−‖γ‖∞) max{1,

∑T
t=1 2ηcenλ,t }. �
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