
Under review as a conference paper at ICLR 2021

A MODEL ARCHITECTURE DETAILS

A.1 IMPLEMENTATION WITH ASDL

To implement the “dummy node” mechanism, we utilize the ASDL “field”, which ensures the gram-
matical correctness of every edit. In ASDL, children of each tree node are grouped under different
fields, and each field has a cardinality property (single, optional ?, or sequential *) indicating the
number of nodes they can accept as grammatically valid children. For single-cardinality fields that
require exactly one child and optional-cardinality fields that require optionally zero or one child, we
attach one dummy node when they do not have a child. For example, at t = 1 in Fig. 1(b), when
the MethodCall-rooted subtree is deleted, we automatically attach a Dummy node to its parent field
so the new node ElementAccess can be added by selecting Dummy and replacing it with the new
node. Similarly, after deriving node ElementAccess at t = 2, we automatically add a Dummy node
to each of its two fields (i.e.obj and index). For sequential-cardinality fields that accept multiple
children, we always attach one dummy node as their rightmost child. Adding a new node in this
case is implemented by selecting the right sibling of the target position and then inserting the new
node to its left. For example, we extend the child list [A, B] to [A, B, Dummy]. Adding a new node to
the left of A can then be achieved by selecting A, and adding to the right of B is done by selecting
Dummy.

A.2 TREE EDIT DECODER

Our edit decoder predicts an action at using three components: an operator predictor, a node se-
lector, and a value predictor. At each time step t, the decoder’s operator predictor first decides
which operator opt 2 {Delete, Add, CopySubTree, Stop} to apply. Next, for operators other than
Stop, the node selector then predicts a node nt from the tree on which to apply opt. Finally, if
opt 2 {Add, CopySubTree}, the value predictor further determines additional arguments of those
operators (denoted as val t). For Add actions, val t denotes production rules or terminal tokens. For
CopySubTree, val t is the target subtree to copy. This is summarized as below:

p(at|st) = p(opt|st)p(nt|st, opt)p(val t|st, opt, nt).

Operator Prediction: The operator prediction is a 4-class classification problem. We calculate the
probability of taking operator opt 2 {Delete, Add, CopySubTree, Stop} at time step t as:

p(opt|st) = softmax(Wopst + bop),

where Wop , bop are model parameters.

Node Selection: Given a tree gt, there could exist an arbitrary number of tree nodes. Therefore, we
design the node selection module similar to a pointer network (Vinyals et al., 2015):

hnode,t = tanh(Wnode[st; emb(opt)] + bnode),

p(nt|st, opt) = softmax(hT
node,tnt),

where emb(opt) embeds the previously selected operator opt, nt is the node representation, and
Wnode, bnode are model parameters. The softmax is computed over all nodes nt 2 gt.

Value Prediction: After deciding the target position (inferred from the selected node), adding a new
node or subtree to the current tree can be viewed as expanding its parent node in typical tree-based
generation tasks (Yin & Neubig, 2017; Rabinovich et al., 2017; Yin & Neubig, 2018). We thus adapt
the tree-based semantic parsing model of Yin & Neubig (2018) as our value predictor.

Recall that the Add operator adds a new node to the tree by either applying a production rule (val =
rule) or predicting a terminal token (val = tok), and the CopySubTree operator copies a subtree
(val = subtree) to expand the tree. In all cases, we only consider candidates (e.g. production
rules or subtrees) that satisfy the underlying grammar constraints. The prediction probability is also
calculated via a pointer network in order to handle varying numbers of valid candidates in each
decision situation:

hval,t = tanh(Wval[st;nt; emb(pnt 7! nt)] + bval),

p(val t|st, opt, nt) = softmax
�
hT
val,tW emb(val t)

�
,

12

Under review as a conference paper at ICLR 2021

Algorithm 1 DAGGERSAMPING

Require: hf�, C�, C+i from training set, learn-
ing editor ⇡✓, expert policy ⇡⇤, � 2 [0, 1]

1: Let g1 = C�.
2: Let ⇡0 = �⇡⇤ + (1� �)⇡✓.
3: Sample a trajectory from ⇡0(f�, g1).
4: Collect and return {hs,⇡⇤(s)i} for all states s

visited by ⇡0.

Algorithm 2 POSTREFINESAMPING

Require: hf�, C�, C+i from training set,
learning editor ⇡✓, expert policy ⇡⇤

1: Let g1 = C�.
2: Sample a trajectory using ⇡✓(f�, g1). De-

note gT as the output tree by the editor.
3: if gT 6= C+ then
4: Sample a trajectory from ⇡⇤(f�, gT);
5: Return {hst,⇡⇤(st)i|t � T}.
6: else
7: Return empty collection.
8: end if

where Wval, bval and W are all model parameters, emb(pnt 7! nt) is the embedding of the edge
type between the parent node pnt and the child nt (e.g. AssignStmt

right��! ElementAccess), and
emb(val t) denotes the representation of the argument candidate: for production rules, it is their
learned embedding; for terminal tokens, it is their word embedding; for subtree candidates, we use
the representation of their root node.

B IMITATION LEARNING

We present DAGGERSAMPLING and POSTREFINESAMPLING in Algo. 1 and Algo. 2, respectively.

C DATASETS AND CONFIGURATIONS

For all datasets, we use the preprocessed version by Yin et al. (2019) for a fair comparison. The pre-
processing includes tokenizing each code snippet and converting it into a AST.6 For each hC�, C+i,
we run a dynamic programming algorithm to search for the shortest edit sequence from C� to
C+. The average length of gold edit sequences is 7.264 on GitHubEdits training set and 7.089 on
C#Fixers.

Since surrounding contexts around the edited program are also provided in all datasets, we addi-
tionally allow the value predictor (§ 3.1) to copy a terminal token from either the input tree’s code
tokens or the contexts. To this end, we introduce another bidirectional LSTM encoder to encode the
input code tokens as well as the contexts. The last hidden state is used to represent each token. The
same design is also adopted in the two baseline editors.

For the encoder of our neural editor, the dimension of word embedding and the tree node representa-
tion is set to 128. The dimension of the bidirectional LSTM encoder for encoding input code tokens
and contexts is set to 64. The hidden state for tracking tree history is set to 256 dimensions. In the
decoder side, the dimensions of the operator embedding, the field embedding, the production rule
embedding, and the hidden vector in value prediction are set to 32, 32, 128 and 256, respectively.

For a fair comparison, we follow Yin et al. (2019); Panthaplackel et al. (2020a) to encode a code
edit into a real-valued vector of 512 dimensions. For our TreeDiff Edit Encoder, each edit action is
encoded into a vector of 256 dimensions. The bidirectional LSTM also has a hidden state of 256
dimensions. When training Graph2Edit/Graph2Tree jointly with TreeDiff Edit Encoder, common
parameters that are designed for both the neural editor and the edit encoder (e.g. the operator/field
embedding) are shared.

In experiments, we reproduce and evaluate baselines by using implementations kindly provided by
their authors. This includes testing the baseline editors under exactly the same setting as they were
tested in their original paper (e.g. decoding using beam search of size 5 for Graph2Tree and 20 for
CopySpan).

6The ASDL grammar we used for C# can be found at: https://raw.githubusercontent.com/
dotnet/roslyn/master/src/Compilers/CSharp/Portable/Syntax/Syntax.xml..

13

https://raw.githubusercontent.com/dotnet/roslyn/master/src/Compilers/CSharp/Portable/Syntax/Syntax.xml.
https://raw.githubusercontent.com/dotnet/roslyn/master/src/Compilers/CSharp/Portable/Syntax/Syntax.xml.

Under review as a conference paper at ICLR 2021

Table 4: The nearest neighbors of given edit pairs based on their edit representations.
Example 1

C�: BoundsCheck(VAR0, VAR1);

C+: BoundsCheck(VAR1, VAR0);

Graph2Tree – Seq Edit Encoder
I C�: ReleasePooledConnectorInternal(VAR0, VAR1);

C+: ReleasePooledConnectorInternal(VAR2, VAR0);

I C�: UngetPooledConnector(VAR0, VAR1);

C+: UngetPooledConnector(VAR2, VAR0);

I C�: VAR0.Warn(LITERAL, VAR1);

C+: VAR0.Warn(VAR1, LITERAL);

Graph2Tree – TreeDiff Edit Encoder
I C�: InternalLogger.Error(LITERAL, VAR0);

C+: InternalLogger.Error(VAR0, LITERAL);

I C�: VAR0.Warn(LITERAL, VAR1);

C+: VAR0.Warn(VAR1, LITERAL);

I C�: AssertEqual(VAR0.Value, LITERAL);

C+: AssertEqual(LITERAL, VAR0.Value);

Graph2Edit – Seq Edit Encoder
I C�: ReleasePooledConnectorInternal(VAR0, VAR1);

C+: ReleasePooledConnectorInternal(VAR1, VAR0);

I C�: UngetPooledConnector(VAR0, VAR1);

C+: UngetPooledConnector(VAR2, VAR0);

I C�: ReportUnusedImports(VAR0, VAR1, VAR2);

C+: ReportUnusedImports(VAR2, VAR0, VAR1);

Graph2Edit – TreeDiff Edit Encoder
I C�: VAR0.Warn(LITERAL, VAR1);

C+: VAR0.Warn(VAR1, LITERAL);

I C�: InternalLogger.Error(LITERAL, VAR0);

C+: InternalLogger.Error(VAR0, LITERAL);

I C�: AssertEqual(VAR0.Value, LITERAL);

C+: AssertEqual(LITERAL, VAR0.Value);

Example 2
C�: var VAR0=GetEtagFromRequest();

C+: var VAR0=GetLongFromHeaders(LITERAL);

Graph2Tree – Seq Edit Encoder
I C�: var VAR0=new ProfileConfiguration();

C+: var VAR0=new Profile(LITERAL);

I C�: var VAR0=PrepareForSaveChanges();

C+: var VAR0=PrepareForSaveChanges(null);

I C�: bool VAR0=true;

C+: bool VAR0=CanBeNull(VAR1);

Graph2Tree – TreeDiff Edit Encoder
I C�: var VAR0=new ProfileConfiguration();

C+: var VAR0=new Profile(LITERAL);

I C�: CalcGridAreas();
C+: SetDataSource(VAR0, VAR1);

I C�: VAR0=new Win32PageFileBackedMemoryMappedPager();

C+: VAR0=new Win32PageFileBackedMemoryMappedPager(

LITERAL);

Graph2Edit – Seq Edit Encoder
I C�: var VAR0=new ProfileConfiguration();

C+: var VAR0=new Profile(LITERAL);

I C�: VAR0.Dispose();
C+: VAR0.Close(VAR1);

I C�: VAR0=VAR1(VAR2);
C+: VAR0=GetSpans(VAR2, VAR1);

Graph2Edit – TreeDiff Edit Encoder
I C�: var VAR0=new ProfileConfiguration();

C+: var VAR0=new Profile(LITERAL);

I C�: VAR0=Thread.GetDomain().DefineDynamicAssembly(VAR1,
,! AssemblyBuilderAccess.Run);

C+: VAR0=Thread.GetDomain().DefineDynamicAssembly(VAR1,
,! AssemblyBuilderAccess.RunAndSave, LITERAL);

I C�: new DocumentsCrud().EtagsArePersistedWithDeletes();

C+: new DocumentsCrud().PutAndGetDocumentById(LITERAL);

For the supervised learning, we train our Graph2Edit for 30 epoches on GitHubEdits training set,
where the best model parameters are selected based on the editor’s cross entropy loss on dev set.

D ADDITIONAL EXPERIMENTAL RESULTS

Tab. 4 shows the nearest neighbors of given edit pairs from GHE dev set, based on the cosine sim-
ilarity of their edit representations f�(C�, C+) calculated by different edit encoders. The edit in
Example 1 means to swap function arguments (e.g. from “(VAR0,VAR1)” to “(VAR1, VAR0)”).
Intuitively such structural changes can be easily captured by our tree-level edit encoder. This is
consistent with our results, which show that, for both Graph2Tree and Graph2Edit, TreeDiff Edit
Encoder learns more consistent edit representations for this edit, while Seq Edit Encoder may con-
fuse it with edits that replace the original argument with a new one (e.g. modifying “(VAR0,VAR1)”
to “(VAR2,VAR0)”). Our proposed edit encoder can also generalize from literals (e.g. swapping
between “(VAR0,VAR1)”) to more complex expressions (e.g. swapping between “(VAR0.Value,
LITERAL)”). On the other hand, when the intended edits can be easily expressed as token-level
editing (e.g. inserting an argument token), the two edit encoders perform comparably, as shown
in Example 2. However, we still observe that TreeDiff Edit Encoder works better at interpreting
the editing semantics of code snippets with complex structures (e.g. more complex edit pairs are
retrieved).

14

