
Reflexion: Language Agents with
Verbal Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language models (LLMs) have been increasingly used to interact with exter-1

nal environments (e.g., games, compilers, APIs) as goal-driven agents. However,2

it remains challenging for these language agents to quickly and efficiently learn3

from trial-and-error as traditional reinforcement learning methods require exten-4

sive training samples and expensive model fine-tuning. We propose Reflexion, a5

novel framework to reinforce language agents not by updating weights, but in-6

stead through linguistic feedback. Concretely, Reflexion agents verbally reflect7

on task feedback signals, then maintain their own reflective text in an episodic8

memory buffer to induce better decision-making in subsequent trials. Reflexion is9

flexible enough to incorporate various types (scalar values or free-form language)10

and sources (external or internally simulated) of feedback signals, and obtains11

significant improvements over a baseline agent across diverse tasks (sequential12

decision-making, coding, language reasoning). For example, Reflexion achieves13

a 91% pass@1 accuracy on the HumanEval coding benchmark, surpassing the14

previous state-of-the-art GPT-4 that achieves 80%. We also conduct ablation and15

analysis studies using different feedback signals, feedback incorporation methods,16

and agent types, and provide insights into how they affect performance.17

1 Introduction18

Recent works such as ReAct [30], SayCan [1], Toolformer [20], HuggingGPT [21], generative19

agents [17], and WebGPT [15] have demonstrated the feasibility of autonomous decision-making20

agents that are built on top of a large language model (LLM) core. These methods use LLMs to21

generate text and ‘actions‘ that can be used in API calls and executed in an environment. Since22

they rely on massive models with an enormous number of parameters, such approaches have been23

so far limited to using in-context examples as a way of teaching the agents, since more traditional24

optimization schemes like reinforcement learning with gradient descent require substantial amounts25

of compute and time.26

In this paper, we propose an alternative approach called Reflexion that uses verbal reinforcement27

to help agents learn from prior failings. Reflexion converts binary or scalar feedback from the28

environment into verbal feedback in the form of a textual summary, which is then added as additional29

context for the LLM agent in the next episode. This self-reflective feedback acts as a ‘semantic’30

gradient signal by providing the agent with a concrete direction to improve upon, helping it learn31

from prior mistakes to perform better on the task. This is akin to how humans iteratively learn to32

accomplish complex tasks in a few-shot manner – by reflecting on their previous failures in order to33

form an improved plan of attack for the next attempt. For example, in figure 1, a Reflexion agent34

learns to optimize its own behavior to solve decision-making, programming, and reasoning tasks35

through trial, error, and self-reflection.36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

<RX�DUH�LQ�WKH�PLGGOH�RI�D�URRP �
>���@�7DVN��FOHDQ�VRPH�SDQ�DQG�SXW �
LW�LQ�FRXQWHUWRS�

���'HFLVLRQ�PDNLQJ
7DVN��<RX�DUH�JLYHQ�D�OLVW�RI�WZR �
VWULQJV�>���@�RI�RSHQ�
�
�RU�FORVH �

�
�SDUHQWKHVHV�RQO\�>���@

���3URJUDPPLQJ
7DVN��:KDW�SURIHVVLRQ�GRHV�-RKQ �
/DQFKHVWHU�DQG�$ODQ�'HDQ�)RVWHU �
KDYH�LQ�FRPPRQ"

���5HDVRQLQJ

>���@�
$FWLRQ�WDNH�SDQ��IURP�VWRYHEXUQHU�
2EV�1RWKLQJ�KDSSHQV��>���@
$FWLRQ�FOHDQ�SDQ��ZLWK�VLQNEDVLQ�
2EV�1RWKLQJ�KDSSHQV��>���@

7KLQN��>���@�QRYHOLVW��MRXUQDOLVW� �
FULWLF�>���@�QRYHOLVW� �
VFUHHQZULWHU�>���@�FRPPRQ�LV �
QRYHOLVW�DQG�VFUHHQZULWHU�
$FWLRQ��²QRYHOLVW��VFUHHQZULWHU³

GHI�PDWFKBSDUHQV�OVW��
����LI�V��FRXQW�
�
��� �
V��FRXQW�
�
�� �V��FRXQW�
�
��� �
V��FRXQW�
�
���>���@
����UHWXUQ�
1R

6HOI�JHQHUDWHG�XQLW�WHVWV�IDLO��
DVVHUW�PDWFKBSDUHQV�����

(QYLURQPHQW�%LQDU\�5HZDUG��
�

5XOH�/0�+HXULVWLF��
+DOOXFLQDWLRQ��

>���@�IDLOHG�EHFDXVH�,�LQFRUUHFWO\ �
DVVXPHG�WKDW�WKH\�ERWK�KDG�WKH �
VDPH�PXOWLSOH�SURIHVVLRQV�>���@ �
DFFXUDWHO\�LGHQWLI\LQJ�WKHLU �
SURIHVVLRQV�

>���@�ZURQJ�EHFDXVH�LW�RQO\�FKHFNV �
LI�WKH�WRWDO�FRXQW�RI�RSHQ�DQG �
FORVH�SDUHQWKHVHV�LV�HTXDO�>���@ �
RUGHU�RI�WKH�SDUHQWKHVHV�>���@

>���@�WULHG�WR�SLFN�XS�WKH�SDQ�LQ �
VWRYHEXUQHU���>���@�EXW�WKH�SDQ �
ZDV�QRW�LQ�VWRYHEXUQHU����>���@

>���@
����UHWXUQ�
<HV
�LI�FKHFN�6���RU �
FKHFN�6���HOVH�
1R

7KLQN��>���@�6R�WKH�SURIHVVLRQ �
-RKQ�/DQFKHVWHU�DQG�$ODQ�'HDQ �
)RVWHU�KDYH�LQ�FRPPRQ�LV�QRYHOLVW�
$FWLRQ��²QRYHOLVW³

>���@�$FWLRQ��WDNH�SDQ���IURP�
VWRYHEXUQHU��
>���@�2EV��<RX�SXW�WKH�SDQ���LQ �
FRXQWHUWRS���

�F��
(YDOXDWLRQ

�G��
5HIOHFWLRQ

�H��1H[W�
7UDMHFWRU\

�E��
7UDMHFWRU\

�D��7DVN

�LQWHUQDO���H[WHUQDO�

Figure 1: Reflexion works on decision-making 4.1, programming 4.3, and reasoning 4.2 tasks.

Generating useful reflective feedback is challenging since it requires a good understanding of where37

the model made mistakes (i.e. the credit assignment problem [23]) as well as the ability to generate38

a summary containing actionable insights for improvement. We explore three ways for doing39

this – simple binary environment feedback, pre-defined heuristics for common failure cases, and40

self-evaluation such as binary classification using LLMs (decision-making) or self-written unit41

tests (programming). In all implementations, the evaluation signal is amplified to natural language42

experience summaries which can be stored in long-term memory.43

Reflexion has several advantages compared to more traditional RL approaches like policy or value-44

based learning: 1) it is lightweight and doesn’t require finetuning the LLM, 2) it allows for more45

nuanced forms of feedback (e.g. targeted changes in actions), compared to scalar or vector rewards46

that are challenging to perform accurate credit assignment with, 3) it allows for a more explicit and47

interpretable form of episodic memory over prior experiences, and 4) it provides more explicit hints48

for actions in future episodes. At the same time, it does have the disadvantages of relying on the49

power of the LLM’s self-evaluation capabilities (or heuristics) and not having a formal guarantee for50

success. However, as LLM capabilities improve, we only expect this paradigm to get better over time.51

We perform experiments on (1) decision-making tasks to test sequential action choices over long52

trajectories, (2) reasoning tasks to test knowledge-intensive, single-step generation improvement,53

and (3) programming tasks to teach the agent to effectively use external tools such as compilers54

and interpreters. Across all three types of tasks, we observe Reflexion agents are better decision-55

makers, reasoners, and programmers. More concretely, Reflexion agents improve on decision-making56

AlfWorld [22] tasks over strong baseline approaches by an absolute 22% in 12 iterative learning57

steps, and on reasoning questions in HotPotQA [28] by 20%, and Python programming tasks on58

HumanEval [5] by as much as 11%.59

To summarize, our contributions are the following:60

• We propose Reflexion, a new paradigm for ‘verbal‘ reinforcement that parameterizes a61

policy as an agent’s memory encoding paired with a choice of LLM parameters.62

• We explore this emergent property of self-reflection in LLMs and empirically show that63

self-reflection is extremely useful to learn complex tasks over a handful of trials.64

• We introduce LeetcodeHardGym, a code-generation RL gym environment consisting of 4065

challenging Leetcode questions (‘hard-level‘) in 19 programming languages.66

• We show that Reflexion achieves improvements over strong baselines across several tasks,67

and achieves state-of-the-art results on various code generation benchmarks.68

2 Related work69

Reasoning and decision-making Self-Refine [12] employs an iterative framework for self-70

refinement to autonomously improve generation through self-evaluation. These self-evaluation71

2

Related work on reasoning and decision-making

Approach Self Hidden Decision Binary Memory
refine constraints making reward

Self-refine [12] ✓ ✗ ✗ ✗ ✗
Beam search [27] ✓ ✓ ✓ ✓ ✗
Reflexion (ours) ✓ ✓ ✓ ✓ ✓

Related work on programming

Approach Test Debugging Self-generated Multiple Self-reflection
Test execution execution tests languages

AlphaCode [11] ✓ ✗ ✗ ✓ ✗
CodeT [4] ✓ ✗ ✓ ✗ ✗
Self-debugging [6] ✓ ✓ ✗ ✗ ✗
CodeRL [10] ✓ ✓ ✗ ✗ ✗
Reflexion (ours) ✓ ✓ ✓ ✓ ✓

and self-improvement steps are conditioned on given task constraints, such as "How can this genera-72

tion be written in a more positive way". Self-Refine is effective but is limited to single-generation73

reasoning tasks. Pryzant et al. [19] performs a similar semantic prompt-writing optimization, but is74

also limited to single-generation tasks. Paul et al. [18] fine-tune critic models to provide intermediate75

feedback within trajectories to improve reasoning responses. Xie et al. [27] use stochastic beam76

search over actions to perform a more efficient decision-making search strategy which allows the77

agent to use foresight advantage due to its self-evaluation component. Yoran et al. [31] and Nair et al.78

[14] use decider models to reason over several generations. In this paper, we show that several of79

these concepts can be enhanced with self-reflection to build a persisting memory of self-reflective80

experiences which allows an agent to identify its own errors and self-suggest lessons to learn from its81

mistakes over time.82

Programming Several past and recent works employ variations of test-driven development or83

code debugging practices. AlphaCode [11] evaluates a set of generations on hidden test cases.84

CodeT [4] uses self-generated unit tests that are used to score generated function implementations.85

Self-Debugging [6] employs a debugging component that is used to improve existing implementations86

given feedback from a code execution environment. CodeRL [10] sets the problem in an RL frame-87

work using an actor-critic setup to debug programs given feedback from an execution environment.88

AlphaCode, Self-Debugging and CodeRL are effective in fixing less-complex program bugs, but they89

rely upon ground truth test cases that invalidate pass@1 eligibility, and do not use self-reflection to90

bridge the gap between error identification and implementation improvement. CodeT does not access91

hidden test cases but does not implement a self-learning step to improve code writing.92

Self-reflection Several recent works recognize new cognitive abilities exhibited by LLMs that93

were previously considered unique to humans. Kosinski [8] show notable performance on theory94

of mind (ToM) tasks at the level of young to middle-aged human children. However, Ullman [24]95

argue that ToM task completion accuracy is highly dependent on specific setup and will fail to96

complete trivial variations to the original problem. Moghaddam and Honey [13] show that ToM task97

accuracy can be improved using better prompting strategies. Wei et al. [25] introduce the concept of98

emergent properties in LLMs and discuss scaling predictions for future models. To the best of our99

knowledge, our work is the first to utilize self-reflection for practical use in autonomous behavior in100

language agents for reasoning, decision-making, and programming tasks. Empirically, we show that101

self-reflection steps are crucial to amplifying sparse feedback for iterative learning.102

3 Reflexion: reinforcement via verbal reflection103

We develop a modular formulation for Reflexion, utilizing three distinct models: an Actor, denoted as104

Ma, which generates text and actions; an Evaluator model, represented by Me, that scores the outputs105

produced by Ma; and a Self-Reflection model, denoted as Msr, which generates verbal reinforcement106

cues to assist the Actor in self-improvement. We provide a detailed description of each of these107

models and subsequently elucidate their collaborative functioning within the Reflexion framework.108

3

ActionObs / Reward

Trajectory
(short-term memory)

Experience
(long-term memory)

Self-reflection (LM)

Agent

Actor (LM)

Environment

Evaluator (LM)

External feedback

Internal
feedback

Reflective
text

Algorithm 1 Reinforcement via self-reflection

Initialize Actor, Evaluator, Self-Reflection:
Ma, Me, Msr

Initialize policy πθ(ai|si), θ = {Ma,mem}
Generate initial trajectory using πθ

Evaluate τ0 using Me

Generate initial self-reflection sr0 using Msr

Set mem← [sr0]
Set t = 0
while Me not pass or t < max trials do

Generate τt = [a0, o0, . . . ai, oi] using πθ

Evaluate τt using Me

Generate self-reflection srt using Msr

Append srt to mem
Increment t

end while
return

Figure 2: (a) Diagram of Reflexion. (b) Reflexion reinforcement algorithm

Actor The Actor is built upon a large language model (LLM) that is specifically prompted to109

generate the necessary text and actions conditioned on the state observations. Analogous to traditional110

policy-based RL setups, we sample an action or generation, at, from the current policy πθ at time111

t, receive an observation from the environment ot. We explore various Actor models, including112

Chain of Thought [26] and ReAct [30]. These diverse generation models allow us to explore different113

aspects of text and action generation within the Reflexion framework, providing valuable insights114

into their performance and effectiveness. In addition, we also add a memory component mem that115

provides additional context to this agent (details on how this is populated are provided below).116

Evaluator The Evaluator component of the Reflexion framework plays a crucial role in assessing117

the quality of the generated outputs produced by the Actor. It takes as input a generated trajectory118

and computes a reward score that reflects its performance within the given task context. Defining119

effective value and reward functions that apply to semantic spaces is difficult, so we investigate120

several variants of the Evaluator model. For reasoning tasks, we explore reward functions based121

on exact match (EM) grading, ensuring that the generated output aligns closely with the expected122

solution. In decision-making tasks, we employ pre-defined heuristic functions that are tailored to123

specific evaluation criteria. Additionally, we experiment with using a different instantiation of an124

LLM itself as an Evaluator, generating rewards for decision-making and programming tasks. This125

multi-faceted approach to Evaluator design allows us to examine different strategies for scoring126

generated outputs, offering insights into their effectiveness and suitability across a range of tasks.127

Self-reflection The Self-Reflection model instantiated as an LLM, plays a crucial role in the128

Reflexion framework by generating verbal self-reflections to provide valuable feedback for future129

trials. Given a sparse reward signal, such as a binary success status (success/fail), the current trajectory,130

and its persistent memory mem, the self-reflection model generates nuanced and specific feedback.131

This feedback, which is more informative than scalar rewards, is then stored in the agent’s memory132

(mem). For instance, in a multi-step decision-making task, when the agent receives a failure signal, it133

can infer that a specific action ai led to subsequent incorrect actions ai+1 and ai+2. The agent can134

then verbally state that it should have taken a different action, a′i, which would have resulted in a′i+1135

and a′i+2, and store this experience in its memory. In subsequent trials, the agent can leverage its past136

experiences to adapt its decision-making approach at time t by choosing action a′i. This iterative137

process of trial, error, self-reflection, and persisting memory enables the agent to rapidly improve its138

decision-making ability in various environments by utilizing informative feedback signals.139

Memory Core components of the Reflexion process are the notion of short-term and long-term140

memory. At inference time, the Actor conditions its decisions on short and long-term memory, similar141

to the way that humans remember fine-grain recent details while also recalling distilled important142

4

experiences from long-term memory. In the RL setup, the trajectory history serves as the short-term143

memory while outputs from the Self-Reflection model are stored in long-term memory. These two144

memory components work together to provide context that is specific but also influenced by lessons145

learned over several trials, which is a key advantage of Reflexion agents over other LLM action146

choice works.147

The Reflexion process Reflexion is formalized as an iterative optimization process in 1. In the148

first trial, the Actor produces a trajectory τ0 by interacting with the environment. The Evaluator then149

produces a score r0 which is computed as rt = Me(τ0). rt is only a scalar reward for trial t that150

improves as task-specific performance increases. After the first trial, to amplify r0 to a feedback form151

that can be used for improvement by an LLM, the Self-Reflection model analyzes the set of {τ0, r0}152

to produce a summary sr0 which is stored in the memory mem. srt is a verbal experience feedback153

for trial t. The Actor, Evaluator, and Self-Reflection models work together through trials in a loop154

until the Evaluator deems τt to be correct. As mentioned in 3, the memory component of Reflexion155

is crucial to its effectiveness. After each trial t, srt, is appended mem. In practice, we bound mem156

by a maximum number of stored experiences, Ω (usually set to 1-3) to adhere to max context LLM157

limitations.158

4 Experiments159

We evaluate various natural language RL setups on decision-making, reasoning, and code generation160

tasks. Specifically, we challenge an agent to perform search-based question answering on HotPotQA161

[28], multi-step tasks in common household environments in AlfWorld [22], and code writing tasks162

in competition-like environments with interpreters and compilers in HumanEval [5], MBPP [2],163

and LeetcodeHard, a new benchmark. Most notably, Reflexion improves performance over strong164

baselines by 22% in AlfWorld, 20% in HotPotQA, and 11% on HumanEval.165

4.1 Sequential decision making: ALFWorld166

AlfWorld is a suite of text-based environments that challenge an agent to solve multi-step tasks167

in a variety of interactive environments based on TextWorld [7]. Following Yao et al. [30], we168

run the agent in 134 AlfWorld environments across six different tasks, including finding hidden169

objects (e.g., finding a spatula in a drawer), moving objects (e.g., moving a knife to the cutting170

board), and manipulating objects with other objects (e.g., chilling a tomato in the fridge). We use171

ReAct [30] as the action generator as Yao et al. [30] has shown success in long trajectory decision-172

making using explicit intermediate thoughts. AlfWorld tasks naturally require a self-evaluation step173

as the environment can only signal if a task is complete. To achieve fully autonomous behavior,174

we implement two self-evaluation techniques: natural language classification using an LLM and a175

hand-written heuristic. The heuristic is simple: if the agent executes the same action and receives the176

same response for more than 3 cycles, or if the number of actions taken in the current environment177

exceeds 30 (inefficient planning), we self-reflect. In the baseline runs, if self-reflection is suggested,178

we skip the self-reflection process, reset the environment, and start a new trial. In the Reflexion runs,179

the agent uses self-reflection to find its mistake, update its memory, reset the environment, and start a180

new trial. To avoid very long prompt windows that may exceed the maximum limit, we truncate the181

agent’s memory to the last 3 self-reflections (experiences).182

To avoid syntactic errors, we provide two domain-specific few-shot trajectories to the agent. We use183

the same few-shot trajectory examples as Yao et al. [30] with GPT-3 for the LLM. AlfWorld tasks,184

ReAct few-shot prompts, and Reflexion examples are included in the appendix.185

Results ReAct + Reflexion significantly outperforms ReAct by completing 130 out of 134 tasks186

using the simple heuristic to detect hallucinations and inefficient planning. Further, ReAct + Reflexion187

learns to solve additional tasks by learning in 12 consecutive trials. In the ReAct-only approach, we188

see that performance increase halts between trials 6 and 7.189

Analysis A common error in baseline failed AlfWorld trajectories is when an agent thinks that it190

has possession of an item but does not actually have the item. The agent proceeds to execute several191

actions in a long trajectory and is not able to backtrack its actions to find the mistake. Reflexion192

eliminates almost all of these cases by using self-reflection to distill long, failed trajectories into193

5

0 2 4 6 8 10
Trial Number

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

or
ti

on
 o

f S
ol

ve
d

En
vi

ro
nm

en
ts

(a) ALFWorld Success Rate
ReAct only
ReAct + Reflexion (Heuristic)
ReAct + Reflexion (GPT)

0 2 4 6 8 10
Trial Number

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
ti

on
 o

f E
nv

ir
on

m
en

ts

(a) ALFWorld Success Rate
ReAct only - hallucination
ReAct only - inefficient planning
ReAct + Reflexion - hallucination
ReAct + Reflexion - inefficient planning

Figure 3: (a) AlfWorld performance across 134 tasks showing cumulative proportions of solved tasks
using self-evaluation techniques of (Heuristic) and (GPT) for binary classification. (b) Classification
of AlfWorld trajectories by reason of failure.

relevant experiences that can are used as "self-hints" in the future. There are two main cases in which194

long-term memory helps an agent in AlfWorld: 1) An early mistake in a long trajectory can be easily195

identified. The agent can suggest a new action choice or even a new long-term plan. 2) There are too196

many surfaces/containers to check for an item. The agent can exploit its experience memory over197

several trials to thoroughly search a room. In 3, the learning curve suggests that the learning process198

occurs over several experiences, meaning that the agent is successfully balancing cases 1 and 2 shown199

in the immediate spike in the improvement between the first two trials, then a steady increase over200

the next 11 trials to a near-perfect performance. On the other hand, 3 shows a ReAct-only agent201

converging at a hallucination rate of 22% with no signs of long-term recovery.202

4.2 Reasoning: HotpotQA203

HotPotQA [28] is a Wikipedia-based dataset with 113k question-and-answer pairs that challenge204

agents to parse content and reason over several supporting documents. To test improvement in205

reasoning only ability, we implement Reflexion + Chain-of-Thought (CoT) [26] for step-by-step206

Q→ A and Q, Cgt → A implementations, where Q is the question, Cgt is the ground truth context207

from the dataset, and A is the final answer. Since CoT is not a multi-step decision-making technique,208

we give Cgt to the agent so that we can isolate the reasoning behavior over large sections of the209

provided text. To test holistic question and answering ability, which requires reasoning and action210

choice, we implement a Reflexion + ReAct [30] agent that can retrieve relevant context using a211

Wikipedia API and infer answers using step-by-step explicit thinking. For CoT implementations, we212

use 6-shot prompting; for ReAct, we use 2-shot prompting, and for self-reflection, we use 2-shot213

prompting. All examples can be found in the appendix.214

Robustly evaluating natural language answers is a long-standing problem in NLP. Therefore, between215

trials, we use exact match answer grading using the environment to give a binary success signal to216

the agent. After each trial, the self-reflection loop is employed to amplify the binary signal, similar to217

the decision-making setup 4.1 in AlfWorld with a memory size of 3 experiences.218

Results Reflexion outperforms all baseline approaches by significant margins over several learning219

steps. Furthermore, ReAct-only, CoT-only, and CoT (GT)-only implementations fail to probabilisti-220

cally improve on any tasks, meaning that no failed tasks from the first trial from any of the baseline221

approaches were able to be solved in subsequent trials using a temperature of 0.7 In the Reflexion runs,222

we allowed the agent to gather experience and retry on failed tasks until it produced 3 consecutive223

failed attempts on the particular task. Naturally, the CoT (GT) achieved higher accuracy scores as it224

was given access to the ground truth context of the question. Still, the CoT (GT) agent is unable to225

correctly infer the correct answer for 39% of the questions, but Reflexion helps the agent to correct226

its mistakes without access to the ground truth answer to improve its accuracy by 14%.227

6

0 2 4 6
Trial Number

0.2

0.4

0.6

0.8

Pr
op

or
ti

on
 o

f S
ol

ve
d

Ta
sk

s (a) HotPotQA Success Rate
CoT only
ReAct only
CoT + Reflexion
ReAct + Reflexion

0 1 2 3 4 5 6 7
Trial Number

0.4

0.6

0.8

1.0

Pr
op

or
ti

on
 o

f S
ol

ve
d

Ta
sk

s (b) HotPotQA CoT (GT)
CoT (GT) only
CoT (GT) + Reflexion

0 1 2 3 4
Trial Number

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

or
ti

on
 o

f S
ol

ve
d

Ta
sk

s (c) HotPotQA Episodic Memory

CoT (GT) only
CoT (GT) EPM
CoT (GT) EPM + Reflexion

Figure 4: Chain-of-Thought (CoT) and ReAct. Reflexion improves search, information retrieval,
and reasoning capabilities on 100 HotPotQA questions. (a) Reflexion ReAct vs Reflexion CoT (b)
Reflexion CoT (GT) for reasoning only (c) Reflexion vs episodic memory ablation.

Analysis We perform an ablation experiment to isolate the advantage of the self-reflective step for228

reasoning using CoT (GT) as the baseline approach 4. Recall that CoT (GT) uses Chain-of-Thought229

reasoning with provided ground truth context, which tests reasoning ability over long contexts. Next,230

we add an element of episodic memory (EPM) by including the most recent trajectory. For the231

Reflexion agent, we implement the standard self-reflection step as a final pass. Intuitively, we test if232

the agent is iteratively learning more effectively by using verbal explanation using language written233

in the first person. 4 shows that self-reflection improves learning by an 8% absolute boost over234

the episodic memory learning advantage. This result supports the argument that refinement-only235

approaches are not as effective as self-reflection-guided refinement approaches.236

4.3 Programming237

We evaluate the baseline and Reflexion approaches on Python and Rust code writing on MBPP238

[2], HumanEval [5], and LeetcodeHardGym, our new dataset. MBPP and HumanEval measure239

function body generation accuracy given natural language descriptions. We use a benchmark language240

compiler, MultiPL-E [3], to translate subsets of HumanEval and MBPP to the Rust language. MultiPL-241

E is a collection of small compilers that can be used to translate Python benchmark questions to 18242

other languages. We include experiments for Rust code generation to demonstrate that Reflexion243

implementations for code generation are language-agnostic and can be used for interpreted and244

compiled languages. Lastly, we introduce a new benchmark, LeetcodeHardGym, which is an245

interactive programming gym that contains 40 Leetcode hard-rated questions that have been released246

after October 8, 2022, which is the pre-training cutoff date of GPT-4 [16].247

The task of programming presents a unique opportunity to use more grounded self-evaluation practices248

such as self-generated unit test suites. Thus, our Reflexion-based programming task implementation is249

eligible for pass@1 accuracy reporting. To generate a test suite, we use Chain-of-Thought prompting250

[26] to produce diverse, extensive tests with corresponding natural language descriptions. Then, we251

filter for syntactically valid test statements by attempting to construct a valid abstract syntax tree252

(AST) for each proposed test. Finally, we sample n tests from the collection of generated unit tests253

to produce a test suite T , denoted as {t0, t1, . . . , tn}. We set n to a maximum of 6 unit tests. Aside254

from the unit test suite component, the setup for the learning loop for a Reflexion programming agent255

is identical to the reasoning and decision-making agents with a max memory limit of 1 experience.256

Benchmark + Language Prev SOTA Pass@1 SOTA Pass@1 Reflexion Pass@1
HumanEval (PY) 65.8 (CodeT [4] + GPT-3.5) 80.1 (GPT-4) 91.0
HumanEval (RS) – 60.0 (GPT-4) 68.0
MBPP (PY) 67.7 (CodeT [4] + Codex [5]) 80.1 (GPT-4) 77.1
MBPP (RS) – 70.9 (GPT-4) 75.4
Leetcode Hard (PY) – 7.5 (GPT-4) 15.0

Table 1: Pass@1 accuracy for various model-strategy-language combinations. The base strategy is a
single code generation sample. All instruction-based models follow zero-shot code generation.

7

Benchmark + Language Base Reflexion TP FN FP TN
HumanEval (PY) 0.80 0.91 0.99 0.40 0.01 0.60
MBPP (PY) 0.80 0.77 0.84 0.59 0.16 0.41
HumanEval (RS) 0.60 0.68 0.87 0.37 0.13 0.63
MBPP (RS) 0.71 0.75 0.84 0.51 0.16 0.49

Table 2: Overall accuracy and test generation performance for HumanEval and MBPP. For Rust,
HumanEval is the hardest 50 problems from HumanEval Python translated to Rust with MultiPL-E
[3]. TP: unit tests pass, solution pass; FN: unit tests fail, solution pass; FP: unit tests pass, solution
fail; TN: unit tests fail, solution fail.

Results Reflexion outperforms all baseline accuracies and sets new state-of-the-art standards on257

all benchmarks for Python and Rust except for MBPP Python 1. We further investigate the inferior258

performance of Reflexion on MBPP Python.259

Analysis We acknowledge that self-reflecting code-generation agents are bound to their ability to260

write diverse, comprehensive tests. Therefore, in the case in which the model generates a flaky test261

suite, it is possible that all tests pass on an incorrect solution and lead to a false positive label on a262

code completion [9]. On the other hand, if the model produces an incorrectly written test suite, it263

is possible for some of the tests to fail on a correct solution, leading to a self-reflection generation264

that is conditioned on a false negative code completion. Given the implementation of Reflexion,265

false negatives are preferred over false positives as the agent may be able to use self-reflection to266

identify the incorrect test(s) and prompt itself to keep the original code completion intact. On the267

other hand, if an invalid test suite returns a false positive completion (all internal test cases pass268

but the implementation is incorrect), the agent will prematurely report an invalid submission. In 2,269

various conditions are measured to analyze performance beyond pass@1 accuracy. Previously, we270

displayed the inferior performance of Reflexion to the baseline GPT-4 on MBPP Python. In 2, we271

observe a notable discrepancy between the false positive labels produced by internal test execution,272

P(not pass@1 generation correct | tests pass). That is, the probability that a submission will fail given273

that it passes all unit tests. For HumanEval and MBPP Python, the baseline pass@1 accuracies are274

relatively similar, 82% and 80%, respectively. However, the false positive test execution rate for275

MBPP Python is 16.3% while the rate for HumanEval Python is a mere 1.4%, leading to 91% overall276

accuracy 1.277

Approach Test Generation Self-reflection Pass@1 (Acc)
Base model False False 0.60
Test generation omission False True 0.52
Self-reflection omission True False 0.60
Reflexion True True 0.68

Table 3: Pass@1 accuracy for various compromised approaches on the Reflexion approach using
GPT-4 as the base model on HumanEval Rust - 50 hardest problems

Ablation study We test the composite approach of Reflexion for test generation and self-reflection278

cooperation on a subset of the 50 hardest HumanEval Rust problems. Our Rust compiler environment279

provides verbose error logs and helpful debugging hints, therefore serving as a good playground280

for compromised approaches. First, we omit internal test generation and execution steps, which281

test the agent to self-reflect without guidance from current implementations. 3 shows an inferior282

52% vs 60% (baseline) accuracy, which suggests that the agent is unable to determine if the current283

implementation is correct without unit tests. Therefore, the agent must participate in all iterations of284

the run without the option to return early, performing harmful edits to the implementation.285

Next, we test self-reflection contribution by omitting the natural language explanation step following286

failed unit test suite evaluations. Intuitively, this challenges the agent to combine the tasks of287

error identification and implementation improvement across all failed unit tests. Interestingly, the288

compromised agent does not improve performance over the baseline run. We observe that the test289

generation and code compilation steps are able to catch syntax and logic errors, but the implementation290

fixes do not reflect these indications. These empirical results suggest that several recent works that291

8

propose blind trial and error debugging techniques without self-reflection are ineffective on harder292

tasks such as writing complex programs in Rust.293

5 Limitations294

At its core, Reflexion is an optimization technique that uses natural language to do policy optimization.295

Policy optimization is a powerful approach to improve action choice through experience, but it may296

still succumb to non-optimal local minima solutions. In this study, we limit long-term memory to297

a sliding window with maximum capacity, but we encourage future work to extend the memory298

component of Reflexion with more advanced structures such as vector embedding databases or299

traditional SQL databases. Specific to code generation, there are many practical limitations to test-300

driven development in specifying accurate input-output mappings such as non-deterministic generator301

functions, impure functions that interact with APIs, functions that vary output according to hardware302

specifications, or functions that invoke parallel or concurrent behavior that may be difficult to predict.303

6 Broader impact304

Large language models are increasingly used to interact with external environments (e.g. the Internet,305

software, robotics, etc.) and humans. Our work has the potential of reinforcing and empowering306

these agents toward greater automation and work efficiency, but it also amplifies the risks when these307

agents were put into misuse. We believe that this direction of research will need more effort in safety308

and ethical considerations.309

On the other hand, reinforcement learning has suffered from its black-box policy and optimiza-310

tion setups in which interpretability and alignment have been challenging. Our proposed “verbal”311

reinforcement learning might address some of the issues and turn autonomous agents more inter-312

pretable and diagnosable. For example, in the case of tool-usage that may be too hard for humans to313

understand, self-reflections could be monitored to ensure proper intent before using the tool.314

7 Conclusion315

In this work, we present Reflexion, an approach that leverages verbal reinforcement to teach agents316

to learn from past mistakes. We empirically show that Reflexion agents significantly outperform317

currently widely-used decision-making approaches by utilizing self-reflection. In future work,318

Reflexion could be used to employ more advanced techniques that have been thoroughly studied in319

traditional RL settings, such as value learning in natural language or off-policy exploration techniques.320

8 Reproducibility321

We highly advise others to use isolated execution environments when running autonomous code322

writing experiments as the generated code is not validated before execution.323

9

References324

[1] Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O., David, B., Finn, C., Gopalakrishnan,325

K., Hausman, K., Herzog, A., et al. (2022). Do as i can, not as i say: Grounding language in326

robotic affordances. arXiv preprint arXiv:2204.01691.327

[2] Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., Jiang, E., Cai, C.,328

Terry, M., Le, Q., et al. (2021). Program synthesis with large language models. arXiv preprint329

arXiv:2108.07732.330

[3] Cassano, F., Gouwar, J., Nguyen, D., Nguyen, S., Phipps-Costin, L., Pinckney, D., Yee, M.-H., Zi,331

Y., Anderson, C. J., Feldman, M. Q., Guha, A., Greenberg, M., and Jangda, A. (2022). Multipl-e:332

A scalable and extensible approach to benchmarking neural code generation.333

[4] Chen, B., Zhang, F., Nguyen, A., Zan, D., Lin, Z., Lou, J.-G., and Chen, W. (2022). Codet: Code334

generation with generated tests. arXiv preprint arXiv:2207.10397.335

[5] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H., Burda, Y.,336

Joseph, N., Brockman, G., et al. (2021). Evaluating large language models trained on code. arXiv337

preprint arXiv:2107.03374.338

[6] Chen, X., Lin, M., Schärli, N., and Zhou, D. (2023). Teaching large language models to339

self-debug. arXiv preprint arXiv:2304.05128.340

[7] Côté, M.-A., Kádár, A., Yuan, X., Kybartas, B., Barnes, T., Fine, E., Moore, J., Hausknecht, M.,341

El Asri, L., Adada, M., et al. (2019). Textworld: A learning environment for text-based games. In342

Computer Games: 7th Workshop, CGW 2018, Held in Conjunction with the 27th International343

Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, July 13, 2018, Revised344

Selected Papers 7, pages 41–75. Springer.345

[8] Kosinski, M. (2023). Theory of mind may have spontaneously emerged in large language models.346

arXiv preprint arXiv:2302.02083.347

[9] Lam, W., Winter, S., Wei, A., Xie, T., Marinov, D., and Bell, J. (2020). A large-scale longitudinal348

study of flaky tests. Proc. ACM Program. Lang., 4(OOPSLA).349

[10] Le, H., Wang, Y., Gotmare, A. D., Savarese, S., and Hoi, S. C. H. (2022). Coderl: Mastering350

code generation through pretrained models and deep reinforcement learning. Advances in Neural351

Information Processing Systems, 35:21314–21328.352

[11] Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling,353

J., Gimeno, F., Dal Lago, A., et al. (2022). Competition-level code generation with alphacode.354

Science, 378(6624):1092–1097.355

[12] Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon, U., Dziri, N.,356

Prabhumoye, S., Yang, Y., et al. (2023). Self-refine: Iterative refinement with self-feedback. arXiv357

preprint arXiv:2303.17651.358

[13] Moghaddam, S. R. and Honey, C. J. (2023). Boosting theory-of-mind performance in large359

language models via prompting. arXiv preprint arXiv:2304.11490.360

[14] Nair, V., Schumacher, E., Tso, G., and Kannan, A. (2023). Dera: Enhancing large language361

model completions with dialog-enabled resolving agents. arXiv preprint arXiv:2303.17071.362

[15] Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., Hesse, C., Jain, S., Kosaraju, V.,363

Saunders, W., et al. (2021). Webgpt: Browser-assisted question-answering with human feedback.364

arXiv preprint arXiv:2112.09332.365

[16] OpenAI (2023). Gpt-4 technical report. ArXiv.366

[17] Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R., Liang, P., and Bernstein, M. S. (2023).367

Generative agents: Interactive simulacra of human behavior. arXiv preprint arXiv:2304.03442.368

10

[18] Paul, D., Ismayilzada, M., Peyrard, M., Borges, B., Bosselut, A., West, R., and Faltings,369

B. (2023). Refiner: Reasoning feedback on intermediate representations. arXiv preprint370

arXiv:2304.01904.371

[19] Pryzant, R., Iter, D., Li, J., Lee, Y. T., Zhu, C., and Zeng, M. (2023). Automatic prompt372

optimization with" gradient descent" and beam search. arXiv preprint arXiv:2305.03495.373

[20] Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli, M., Zettlemoyer, L., Cancedda, N.,374

and Scialom, T. (2023). Toolformer: Language models can teach themselves to use tools. arXiv375

preprint arXiv:2302.04761.376

[21] Shen, Y., Song, K., Tan, X., Li, D., Lu, W., and Zhuang, Y. (2023). Hugginggpt: Solving ai377

tasks with chatgpt and its friends in huggingface. arXiv preprint arXiv:2303.17580.378

[22] Shridhar, M., Yuan, X., Côté, M.-A., Bisk, Y., Trischler, A., and Hausknecht, M. (2021).379

ALFWorld: Aligning Text and Embodied Environments for Interactive Learning. In Proceedings380

of the International Conference on Learning Representations (ICLR).381

[23] Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. The MIT382

Press, second edition.383

[24] Ullman, T. (2023). Large language models fail on trivial alterations to theory-of-mind tasks.384

arXiv preprint arXiv:2302.08399.385

[25] Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M.,386

Zhou, D., Metzler, D., et al. (2022a). Emergent abilities of large language models. arXiv preprint387

arXiv:2206.07682.388

[26] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le, Q., and Zhou, D. (2022b). Chain of389

thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903.390

[27] Xie, Y., Kawaguchi, K., Zhao, Y., Zhao, X., Kan, M.-Y., He, J., and Xie, Q. (2023). Decomposi-391

tion enhances reasoning via self-evaluation guided decoding. arXiv preprint arXiv:2305.00633.392

[28] Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W., Salakhutdinov, R., and Manning, C. D.393

(2018). HotpotQA: A dataset for diverse, explainable multi-hop question answering. In Conference394

on Empirical Methods in Natural Language Processing (EMNLP).395

[29] Yao, S., Chen, H., Yang, J., and Narasimhan, K. (preprint). Webshop: Towards scalable396

real-world web interaction with grounded language agents. In ArXiv.397

[30] Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., and Cao, Y. (2023). ReAct:398

Synergizing reasoning and acting in language models. In International Conference on Learning399

Representations (ICLR).400

[31] Yoran, O., Wolfson, T., Bogin, B., Katz, U., Deutch, D., and Berant, J. (2023). Answering401

questions by meta-reasoning over multiple chains of thought. arXiv preprint arXiv:2304.13007.402

11

A Additional Information and Examples403

B Decision-making404

Environment: You are in the middle of a room. Looking quickly around you, you see a bed 1, a desk
2, a desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a garbagecan 1, a
laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2, and a shelf 1.
Task: examine the mug with the desklamp.
Trial #1
> think: To solve the task, I need to find and take a mug, then find and use a desklamp.
> think: First I need to find a mug. A mug is more likely to appear in drawer (1-6), desk (1-2), shelf
(1-6), garbagecan (1), laundryhamper (1). I can check one by one, starting with drawer 1.
> go to drawer 1
The drawer 1 is closed.
. . .
> open drawer 6
You open the drawer 6. The drawer 6 is open. In it, you see a keychain 2.
> go to desk 1
On the desk 1, you see a creditcard 3, a desklamp 1, a laptop 2, a mug 1, a pen 1, and a pencil 1.
> think: Now I find a mug (1). Next, I need to take it.
> take mug 1 from desk 1
You pick up the mug 1 from the desk 1.
> think: Now I take a mug (1). Next, I need to find a desklamp. A desklamp is more likely to appear
in desk (1-2), sidetable (1-2), shelf (1-6), bed (1), drawer (1-6). I can check one by one, starting with
desk 1.
> go to desk 1
Nothing happens.
> go to desk 2
On the desk 2, you see a alarmclock 1, a bowl 1, a mug 3, a pencil 3, and a pencil 2.
> think: Now I find a desklamp (1). Next, I need to use it.
> use desklamp 1
Nothing happens.
> use desklamp 1
Nothing happens.
Status: Fail
Reflection: In this environment, my plan was to find a mug then find and use a desklamp. However,
the task says to examine the mug with the desklamp. I should have looked for the desklamp first, then
looked for the mug. I noticed that the desklamp was found on desk 1. In the next trial, I will go to
desk 1, find the lamp, then look for the mug and examine it with the desklamp.
Trial #2
> go to desk 1
On the desk 1, you see a creditcard 3, a desklamp 1, a laptop 2, a mug 1, a pen 1, and a pencil 1.
> think: To solve the task, I need to find and take a mug, then find and use a desklamp.
> take mug 1 from desk 1
You pick up the mug 1 from the desk 1.
> think: To solve the task, I need to find and take a mug, then find and use a desklamp.
> use desklamp 1
You turn on the desklamp 1.
Status: Success

Figure 5: [Top] An AlfWorld trajectory in which the agent failed due to inefficient planning. In the
reflection, the agent recognizes that it should have looked for the desklamp then the mug, not the mug
then the desklamp. [Bottom] The agent is able to correct its reasoning trace and execute a sequence
of actions in a concise manner.

12

B.1 WebShop Limitation405

In 5, we briefly state that Reflexion struggles to overcome local minima choices that require extremely406

creative behavior to escape. We observe this shortcoming in an experiment on WebShop [29].407

WebShop is a web-based problem-solving benchmark that tests agents to navigate an e-commerce408

website to locate and purchase products given requests from clients. We test a two-shot ReAct +409

Reflexion agent in 100 environments. However, after only four trials, we terminate the runs as the410

agent does not show signs of improvement 6. Further, the agent does not generate helpful, intuitive411

self-reflections after failed attempts. We conclude that Reflexion is unable to solve tasks that require412

a significant amount of diversity and exploration. In AlfWorld, the agent is able to adequately explore413

new environments because the permissible actions can be seen in the observations. In HotPotQA,414

the agent faces a similar WebShop search query task but is more successful as the search space for415

Wikipedia articles is more diverse and requires less precise search queries. A common problem for416

e-commerce search engines is properly handling ambiguity in natural language search interpretations.417

Thus, WebShop presents a task that requires very diverse and unique behavior from a Reflexion agent.418

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Trial Number

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Pr
op

or
ti

on
 o

f S
ol

ve
d

En
vi

ro
nm

en
ts

WebShop Success Rate
ReAct only
ReAct + Reflexion

Figure 6: Reflexion vs React performance on WebShop across 100 customer shopping requests.
ReAct + Reflexion fails to significantly outperform ReAct.

C Programming419

Programming LLM calls require strict instructions to produce function bodies only, due to the420

extensive dialogue training of the LLMs. A few programming examples are reported below with421

instructions highlighted in blue and templates. See the full implementation at https://github.422

com/noahshinn024/reflexion.423

C.0.1 Programming function implementation example (HumanEval Python)424

Sample function signature:425

426

427
1 def minSubArraySum(nums):428

2 """429

3 Given an array of integers nums , find the minimum sum of430

any431

4 non -empty sub -array of nums.432

5 Example433

6 minSubArraySum ([2, 3, 4, 1, 2, 4]) == 1434

13

https://github.com/noahshinn024/reflexion
https://github.com/noahshinn024/reflexion
https://github.com/noahshinn024/reflexion

7 minSubArraySum ([-1, -2, -3]) == -6435

8 """436437

Sample function body implementation:438

439

440
1 min_sum = float(’inf’)441

2 for i in range(len(nums)):442

3 current_sum = 0443

4 for j in range(i, len(nums)):444

5 current_sum += nums[j]445

6 if current_sum < min_sum:446

7 min_sum = current_sum447

8 return min_sum448449

C.0.2 Reflexion Actor instruction450

You are a Python writing assistant. You will be given your previous implementation of a function,451

a series of unit tests results, and your self-reflection on your previous implementation. Apply the452

necessary changes below by responding only with the improved body of the function. Do not include453

the signature in your response. The first line of your response should have 4 spaces of indentation so454

that it fits syntactically with the user provided signature. You will be given a few examples by the455

user.456

Reflexion Actor generations follow the form:457

(Instruction)458

(Function implementation)459

(Unit test feedback)460

(Self-reflection)461

(Instruction for next function implmentation)462

Full examples are shown in https://github.com/noahshinn024/reflexion463

C.0.3 Reflexion Self-reflection instruction and example464

You are a Python writing assistant. You will be given your previous implementation of a function,465

a series of unit tests results, and your self-reflection on your previous implementation. Apply the466

necessary changes below by responding only with the improved body of the function. Do not include467

the signature in your response. The first line of your response should have 4 spaces of indentation so468

that it fits syntactically with the user provided signature. You will be given a few examples by the469

user. Reflexion Self-Reflection generations follow the form:470

(Instruction)471

(Function implementation)472

(Unit test feedback)473

474

C.0.4 Reflexion programming no Self-Reflection ablation example475

Reflexion no Self-Reflection ablation Actor generations follow the form:476

(Instruction)477

(Function implementation)478

(Unit test feedback)479

(Self-reflection)480

(Instruction for next function implmentation)481

C.0.5 Reflexion programming no test generation ablation example482

Reflexion no test generation ablation Actor generations follow the form:483

(Instruction)484

14

https://github.com/noahshinn024/reflexion

(Function implementation)485

(Unit test feedback)486

(Self-reflection)487

(Instruction for next function implmentation)488

15

D Reasoning489

D.1 Full example490

Trial #1: Question: Grown-Ups starred the actor
who was best known for which role on "’Allo
’Allo!"?
Thought 1: I need to search Grown-Ups and

"’Allo ’Allo!", find the actor who starred in
Grown-Ups, then find the role he was best known
for in "’Allo ’Allo!".
Action 1: Search[Grown-Ups]
Observation 1: Grown-Ups is a 1980 British
BBC television film devised and directed by
Mike Leigh. It stars Lesley Manville, Philip
Davis, Brenda Blethyn, Janine Duvitski, Lindsay
Duncan and Sam Kelly. It was edited by Robin
Sales and produced by Louis Marks for the BBC,
and originally shown on BBC 2 on 28 November
1980.
Thought 2: Grown-Ups starred Lesley Manville,
Philip Davis, Brenda Blethyn, Janine Duvitski,
Lindsay Duncan and Sam Kelly. I need to search
"’Allo ’Allo!" and find which actor was best
known for which role.
Action 2: Search["’Allo ’Allo!"]
Observation 2: Could not find ["’Allo ’Allo!"].
Similar: ["’Allo ’Allo!", "List of ’Allo ’Allo!
characters", ’Gorden Kaye’, "’Allo ’Allo! (series
2)", ’Allô, allô’, ’Francesca Gonshaw’, "’Allo
’Allo! (series 4)", ’Kim Hartman’, "’Allo ’Allo!
(series 6)", ’Jeremy Lloyd’]
Thought 3: To find the actor who was best known
for which role on "’Allo ’Allo!", I can search
Gorden Kaye.
Action 3: Search[Gorden Kaye]
Observation 3: Gordon Irving Kaye (7 April
1941 – 23 January 2017), known profession-
ally as Gorden Kaye, was an English actor,
best known for playing womanising café owner
René Artois in the television comedy series ’Allo
’Allo!.
Thought 4: Gorden Kaye was best known for
playing womanising café owner René Artois in
the television comedy series "’Allo ’Allo!". So
the answer is Rene Artois.
Action 4: Finish[Rene Artois]

Observation 4: Answer is INCORRECT

Trial #2: Question: Grown-Ups starred the actor
who was best known for which role on "’Allo
’Allo!"?
Thought 1: I need to search the actor who was
best known for a role on "’Allo ’Allo!" and find
out what role they were best known for.
Action 1: Search[Grown-Ups]
Observation 1: Grown-Ups is a 1980 British
BBC television film devised and directed by
Mike Leigh. It stars Lesley Manville, Philip
Davis, Brenda Blethyn, Janine Duvitski, Lindsay
Duncan and Sam Kelly. It was edited by Robin
Sales and produced by Louis Marks for the BBC,
and originally shown on BBC 2 on 28 November
1980.
Thought 2: The paragraph does not mention the
actor who was best known for a role on "’Allo
’Allo!". I need to search the actor’s name instead.
Action 2: Search[Sam Kelly]

Observation 2: Roger Michael Kelly (19 Decem-
ber 1943 – 14 June 2014), known by the stage
name Sam Kelly, was an English actor who ap-
peared in film, television, radio and theatre. He
is best known for his roles as Captain Hans Geer-
ing in ’Allo ’Allo!, Warren in Porridge, Sam in
On the Up, and Ted Liversidge in Barbara.
Thought 3: Sam Kelly is best known for his role
as Captain Hans Geering in "’Allo ’Allo!", so
the answer is Captain Hans Geering.
Action 3: Finish[Captain Hans Geering]
Observation 3: Answer is CORRECT

Reflection: I searched the wrong title for the show, "’Allo ’Allo!", which resulted in no results. I
should have searched the show’s main character, Gorden Kaye, to find the role he was best known for
in the show.

Figure 7: Two HotPotQA trials within the same environment and task. The Reflexion + ReAct agent
uses self-reflection to determine a better search method for the next trial.

16

D.2 Chain-of-Thought + Reflexion491

Trial #1: Question: What profession does John
Lanchester and Alan Dean Foster have in com-
mon?
Thought 1: Let’s think step by step. John Lanch-
ester is a novelist, journalist, and critic. Alan
Dean Foster is a novelist and screenwriter. So
the profession John Lanchester and Alan Dean
Foster have in common is novelist and screen-
writer.
Action 1: Finish[novelist and screenwriter]
Observation 1: Answer is INCORRECT

Trial #2: Question: What profession does John
Lanchester and Alan Dean Foster have in com-
mon?
Thought 1: Let’s think step by step. John Lanch-
ester is a novelist, journalist, and financial jour-
nalist. Alan Dean Foster is a novelist and screen-
writer. So the profession John Lanchester and
Alan Dean Foster have in common is novelist.
Action 1: Finish[novelist]
Observation 1: Answer is CORRECT

Reflection: My reasoning for the profession John Lanchester and Alan Dean Foster have in common
failed because I incorrectly assumed that they both had the same profession. In the future, when
attempting this question, I should focus on better researching the individual backgrounds of both
authors to ensure that I am accurately identifying their professions. Additionally, I should consider
the possibility that they may have multiple professions in common.

D.3 HotPotQA Chain-of-Thought (GT) + Reflexion492

Context: The Battle of White Plains was a battle in the New York and New Jersey campaign of the
American Revolutionary War fought on October 28, 1776, near White Plains, New York. Following
the retreat ...
Trial #1: Question: What was a series of battles

during the Revolutionary War, for control of New
York City and the state of New Jersey, fought on
October 28, 1776 near White Plains, New York?
Thought 1: The question is asking about a se-

ries of battles during the Revolutionary War for
control of New York City and the state of New
Jersey, fought on October 28, 1776 near White
Plains, New York. From the context, I know that
this was the Battle of White Plains.
Action 1: Finish[Battle of White Plains]
Observation 1: Answer is INCORRECT

Trial #2: Question: What was a series of battles
during the Revolutionary War, for control of New
York City and the state of New Jersey, fought on
October 28, 1776 near White Plains, New York?
Thought 1: The question is asking for a series of
battles during the Revolutionary War, for control
of New York City and the state of New Jersey,
fought on October 28, 1776 near White Plains,
New York. Based on the context, I know that
this series of battles was the New York and New
Jersey campaign.
Action 1: Finish[The New York and New Jersey
campaign]
Observation 1: Answer is CORRECT

Reflection: Upon reflecting on the incorrect answer I provided, I realize that I may not have provided
enough context to accurately answer the question. The question asked for a series of battles, but I
only provided the name of one battle. To better answer this question in the future, I will make sure to
provide more context, such as the name of the campaign, which was the New York and New Jersey
campaign, and the fact that it was a series of battles. Additionally, I will make sure to include the
dates of the battles, as well as the locations, to ensure that my answer is comprehensive and accurate.

17

D.4 HotPotQA episodic memory (EPM) ablation prompts493

D.4.1 (EPM) Chain-of-Thought + Reflexion494

Trial #1: Question: Which of Jonny Craig and
Pete Doherty has been a member of more bands
?
Thought 1: Let’s think step by step. Jonny

Craig has been a member of six bands, including
Emarosa, Dance Gavin Dance, and Slaves. Pete
Doherty has been a member of seven bands, in-
cluding The Libertines, Babyshambles, and The
Puta Madres. So Pete Doherty has been a mem-
ber of more bands.
Action 1: Finish[Pete Doherty]

Observation 1: Answer is INCORRECT

Trial #2: Question: Which of Jonny Craig and
Pete Doherty has been a member of more bands
?
Thought 1: Let’s think step by step. I will re-
search the past and current bands of both musi-
cians to ensure that I am accurately comparing
their band memberships. After researching, I
have found that Jonny Craig has been a mem-
ber of seven bands, including Emarosa, Dance
Gavin Dance, and Slaves. Pete Doherty has been
a member of seven bands, including The Lib-
ertines, Babyshambles, and The Puta Madres. So
Jonny Craig has been a member of more bands.
Action 2: Finish[Jonny Craig]
Observation 2: Answer is CORRECT

Reflection: My reasoning for which musician has been a member of more bands failed because I did
not take into account that Jonny Craig has been a member of more bands in the past, even though Pete
Doherty is currently a member of more bands. In the future, when attempting this question, I should
focus on researching the past and current bands of both musicians to ensure that I am accurately
comparing their band memberships.

D.4.2 (EPM) Chain-of-Thought (GT) + Reflexion495

Context: Hari Bahadur Basnet is a Nepalese politician. He is the head of the Foreign Relations
Department of the Rastriya Janashakti Party. Basnet holds a M.Sc. in Engineering.
A Master of Science (Latin: "Magister Scientiae" ; abbreviated MS, M.S., MSc, M.Sc., MSci, M.Sci.,
ScM, Sc.M., SciM or Sci.M.) is a master’s degree in the field of science...
Trial #1: Question: The head of the Foreign

Relations Department of the Rastriya Janashakti
Party holds a degree that can be abbreviated MS,
M.S., or ScM, in what field?

(Previous trajectory)
Thought 1: The question is asking what field
of study the head of the Foreign Relations
Department of the Rastriya Janashakti Party
holds a degree in. From the context, I know
that the degree is a Master of Science degree,
which is typically granted for studies in sciences,
engineering, and medicine.
Action 1: Finish[Sciences, Engineering, and
Medicine]
Observation 1: Answer is INCORRECT

Trial #2: Question: The head of the Foreign Re-
lations Department of the Rastriya Janashakti
Party holds a degree that can be abbreviated MS,
M.S., or ScM, in what field?
(Previous trajectory)
Thought 1: The question is asking what field
of study the head of the Foreign Relations De-
partment of the Rastriya Janashakti Party holds
a degree in. From the context, I know that the
degree is a Master of Science degree, which is
typically granted for studies in sciences, engi-
neering, and medicine. However, the question
is asking for the field of study, not the degree.
Based on the context, I know that Hari Bahadur
Basnet holds a M.Sc. in Engineering.
Action 1: Finish[Engineering]
Observation 1: Answer is CORRECT

Reflection: For the first trial, I misunderstood the question. I thought the question was asking for a
category of degrees, rather than a specific degree. I learned from my mistake and in the second trial, I
focused more closely on the question to understand that it was asking for a specific field of study.

18

	Introduction
	Related work
	Reflexion: reinforcement via verbal reflection
	Experiments
	Sequential decision making: ALFWorld
	Reasoning: HotpotQA
	Programming

	Limitations
	Broader impact
	Conclusion
	Reproducibility
	Additional Information and Examples
	Decision-making
	WebShop Limitation

	Programming
	Programming function implementation example (HumanEval Python)
	Reflexion Actor instruction
	Reflexion Self-reflection instruction and example
	Reflexion programming no Self-Reflection ablation example
	Reflexion programming no test generation ablation example

	Reasoning
	Full example
	Chain-of-Thought + Reflexion
	HotPotQA Chain-of-Thought (GT) + Reflexion
	HotPotQA episodic memory (EPM) ablation prompts
	(EPM) Chain-of-Thought + Reflexion
	(EPM) Chain-of-Thought (GT) + Reflexion

