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Abstract

Learning classifiers that are robust to adversarial examples has received a great deal
of recent attention. A major drawback of the standard robust learning framework
is there is an artificial robustness radius r that applies to all inputs. This ignores
the fact that data may be highly heterogeneous, in which case it is plausible that
robustness regions should be larger in some regions of data, and smaller in others. In
this paper, we address this limitation by proposing a new limit classifier, called the
neighborhood optimal classifier, that extends the Bayes optimal classifier outside
its support by using the label of the closest in-support point. We then argue that this
classifier maximizes the size of its robustness regions subject to the constraint of
having accuracy equal to the Bayes optimal. We then present sufficient conditions
under which general non-parametric methods that can be represented as weight
functions converge towards this limit, and show that both nearest neighbors and
kernel classifiers satisfy them under certain conditions.

1 Introduction

Adversarially robust classification, that has been of much recent interest, is typically formulated
as follows. We are given data drawn from an underlying distribution D, a metric d, as well as a
pre-specified robustness radius r. We say that a classifier c is r-robust at an input x if it predicts the
same label on a ball of radius r around x. Our goal in robust classification is to find a classifier c that
maximizes astuteness, which is defined as accuracy on those examples where c is also r-robust.

While this formulation has inspired a great deal of recent work, both theoretical and empirical
[5, 17, 19, 20, 26, 15, 18, 21, 22, 23, 30], a major limitation is that enforcing a pre-specified
robustness radius r may lead to sub-optimal accuracy and robustness. To see this, consider what
would be an ideally robust classifier the example in Figure 1. For simplicity, suppose that we know
the data distribution. In this case, a classifier that has an uniformly large robustness radius r will
misclassify some points from the blue cluster on the left, leading to lower accuracy. This is illustrated
in panel (a), in which large robustness radius leads to intersecting robustness regions. On the other
hand, in panel (b), the blue cluster on the right is highly separated from the red cluster, and could
be accurately classified with a high margin. But this will not happen if the robustness radius is set
small enough to avoid the problems posed in panel (a). Thus, enforcing a fixed robustness radius that
applies to the entire dataset may lead to lower accuracy and lower robustness.

In this work, we propose an alternative formulation of robust classification that ensures that in the
large sample limit, there is no robustness-accuracy trade off, and that regions of space with higher
separation are classified more robustly. An extra advantage is that our formulation is achievable by
existing methods. In particular, we show that two very common non-parametric algorithms – nearest
neighbors and kernel classifiers – achieve these properties in the large sample limit.

Our formulation is built on the notion of a new large-sample limit. In the standard statistical learning
framework, the large-sample ideal is the Bayes optimal classifier that maximizes accuracy on the
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(a) Large robustness radii (b) Small robustness radii

Figure 1: A data distribution demonstrating the difficulties with fixed radius balls for robustness
regions. The red represents negatively labeled points, and the blue positive. If the robustness radius is
set too large (panel (a)), then the regions of A and B intersect leading to a loss of accuracy. If the
radius is set too small (panel (b)), this leads to a loss of robustness at point C where in principle it
should be possible to defend against a larger amount of adversarial attacks.

data distribution, and is undefined outside. Since this is not always robust with radius r, prior work
introduces the notion of an r-optimal classifier [31] that maximizes accuracy on points where it is also
r-robust. However, this classifier also suffers from the same challenges as the example in Figure 1.

We depart from both by introducing a new limit that we call the neighborhood preserving Bayes
optimal classifier, described as follows. Given an input x that lies in the support of the data distribution
D, it predicts the same label as the Bayes optimal. On an x outside the support, it outputs the
prediction of the Bayes Optimal on the nearest neighbor of x within the support of D. The first
property ensures that there is no loss of accuracy – since it always agrees with the Bayes Optimal
within the data distribution. The second ensures higher robustness in regions that are better separated.
Our goal is now to design classifiers that converge to the neighborhood preserving Bayes optimal in
the large sample limit; this ensures that with enough data, the classifier will have accuracy approaching
that of the Bayes optimal, as well as higher robustness where possible without sacrificing accuracy.

We next investigate how to design classifiers with this convergence property. Our starting point is
classical statistical theory [25] that shows that a class of methods known as weight functions will
converge to a Bayes optimal in the large sample limit provided certain conditions hold; these include
k-nearest neighbors under certain conditions on k and n, certain kinds of decision trees as well as
kernel classifiers. Through an analysis of weight functions, we next establish precise conditions
under which they converge to the neighborhood preserving Bayes optimal in the large sample limit.
As expected, these are stronger than standard convergence to the Bayes optimal. In the large sample
limit, we show that kn-nearest neighbors converge to the neighborhood preserving Bayes optimal
provided kn = ω(log n), and kernel classifiers converge to the neighborhood preserving Bayes
optimal provided certain technical conditions (such as the bandwidth shrinking sufficiently slowly).
By contrast, certain types of histograms do not converge to the neighborhood preserving Bayes
optimal, even if they do converge to the Bayes optimal. We round these off with a lower bound
that shows that for nearest neighbor, the condition that kn = ω(log n) is tight. In particular, for
kn = O(log n), there exist distributions for which kn-nearest neighbors provably fails to converge
towards the neighborhood preserving Bayes optimal (despite converging towards the standard Bayes
optimal).

In summary, the contributions of the paper are as follows. First, we propose a new large sample limit
the neighborhood preserving Bayes optimal and a new formulation for robust classification. We then
establish conditions under which weight functions, a class of non-parametric methods, converge to
the neighborhood preserving Bayes optimal in the large sample limit. Using these conditions, we
show that kn-nearest neighbors satisfy these conditions when kn = ω(log n), and kernel classifiers
satisfy these conditions provided the kernel function K has faster than polynomial decay, and the
bandwidth parameter hn decreases sufficiently slowly.

To complement these results, we also include negative examples of non-parametric classifiers that
do not converge. We provide an example where histograms do not converge to the neighborhood
preserving Bayes optimal with increasing n. We also show a lower bound for nearest neighbors, indi-
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cating that kn = ω(log n) is both necessary and sufficient for convergence towards the neighborhood
preserving Bayes optimal.

Our results indicate that the neighborhood preserving Bayes optimal formulation shows promise and
has some interesting theoretical properties. We leave open the question of coming up with other
alternative formulations that can better balance both robustness and accuracy for all kinds of data
distributions, as well as are achievable algorithmically. We believe that addressing this would greatly
help address the challenges in adversarial robustness.

2 Preliminaries

We consider binary classification over Rd × {±1}, and let ρ denote any distance metric on Rd. We
let µ denote the measure over Rd corresponding to the probability distribution over which instances
x ∈ Rd are drawn. Each instance x is then labeled as +1 with probability η(x) and −1 with
probability 1− η(x). Together, µ and η comprise our data distribution D = (µ, η) over Rd × {±1}.

For comparison to the robust case, for a classifier f : Rd → {±1} and a distribution D over
Rd × {±1}, it will be instructive to consider its accuracy, denoted A(f,D), which is defined as the
fraction of examples from D that f labels correctly. Accuracy is maximized by the Bayes Optimal
classifier: which we denote by g. It can be shown that for any x ∈ supp(µ), g(x) = 1 if η(x) ≥ 1

2 ,
and g(x) = −1 otherwise.

Our goal is to build classifiers Rd → {±1} that are both accurate and robust to small perturbations.
For any example x, perturbations to it are constrained to taking place in the robustness region of x,
denoted Ux. We will let U = {Ux : x ∈ Rd} denote the collections of all robustness regions.

We say that a classifier f : Rd → {±1} is robust at x if for all x′ ∈ Ux, f(x′) = f(x). Combining
robustness and accuracy, we say that classifier is astute at a point x if it is both accurate and robust.
Formally, we have the following definition.

Definition 1. A classifier f : Rd → {±1} is said to be astute at (x, y) with respect to robustness
collection U if f(x) = y and f is robust at x with respect to U . If D is a data distribution over
Rd × {±1}, the astuteness of f over D with respect to U , denoted AU (f,D), is the fraction of
examples (x, y) ∼ D for which f is astute at (x, y) with respect to U . Thus

AU (f,D) = P(x,y)∼D[f(x′) = y,∀x′ ∈ Ux].

Non-parametric Classifiers We now briefly review several kinds of non-parametric classifiers that
we will consider throughout this paper. We begin with weight functions, which are a general class of
non-parametric algorithms that encompass many classic algorithms, including nearest neighbors and
kernel classifiers.

Weight functions are built from training sets, S = {(x1, y1), (x2, y2, ), . . . , (xn, yn)} by assigning
a function wSi : Rd → [0, 1] that essentially scores how relevant the training point (xi, yi) is to
the example being classified. The functions wSi are allowed to depend on x1, . . . , xn but must be
independent of the labels y1, . . . , yn. Given these functions, a point x is classified by just checking
whether

∑
yiw

S
i (x) ≥ 0 or not. If it is nonnegative, we output +1 and otherwise −1. A complete

description of weight functions is included in the appendix.

Next, we enumerate several common Non-parametric classifiers that can be construed as weight
functions. Details can be found in the appendix.

Histogram classifiers partition the domain Rd into cells recursively by splitting cells that contain a
sufficiently large number of points xi. This corresponds to a weight function in which wSi (x) = 1

kx
if xi is in the same cell as x, where kx denotes the number of points in the cell containing x.

kn-nearest neighbors corresponds to a weight function in which wSi (x) = 1
kn

if xi is one of the kn
nearest neighbors of x, and wSi (x) = 0 otherwise.

Kernel-Similarity classifiers are weight functions built from a kernel function K : R≥0 → R≥0

and a window size (hn)∞1 such that wSi (x) ∝ K(ρ(x, xi)/hn) (we normalize by dividing by∑n
1 K((ρ(x, xi)/hn))).
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Figure 2: The decision boundary of the neighborhood preserving Bayes optimal classifier is shown in
green, and the neighborhood preserving robust region of x is shown in pink. The former consists of
points equidistant from µ+, µ−, and the latter consists of points equidistant from x, µ+.

3 The Neighborhood preserving Bayes optimal classifier

Robust classification is typically studied by setting the robustness regions, U = {Ux}x∈Rd , to be
balls of radius r centered at x, Ux = {x′ : ρ(x, x′) ≤ r}. The quantity r is the robustness radius, and
is typically set by the practitioner (before any training has occurred).

This method has a limitation with regards to trade-offs between accuracy and robustness. To increase
the margin or robustness, we must have a large robustness radius (thus allowing us to defend from
larger adversarial attacks). However, with large robustness radii, this can come at a cost of accuracy,
as it is not possible to robustly give different labels to points with intersecting robustness regions.

For an illustration, consider Figure 1. Here we consider a data distribution D = (µ, η) in which the
blue regions denote all points with η(x) > 0.5 (and thus should be labeled +), and the red regions
denote all points with η(x) < 0.5 (and thus should be labeled −). Observe that it is not possible to
be simultaneously accurate and robust at points A,B while enforcing a large robustness radius, as
demonstrated by the intersecting balls. While this can be resolved by using a smaller radius, this
results in losing out on potential robustness at point C. In principal, we should be able to afford a
large margin of robustness about C due to its relatively far distance from the red regions.

Motivated by this issue, we seek to find a formalism for robustness that allows us to simultaneously
avoid paying for any accuracy-robustness trade-offs and adaptively size robustness regions (thus
allowing us to defend against a larger range of adversarial attacks at points that are located in more
homogenous zones of the distribution support). To approach this, we will first provide an ideal limit
object: a classifier that has the same accuracy as the Bayes optimal (thus meeting our first criteria)
that has good robustness properties. We call this the the neighborhood preserving Bayes optimal
classifier, defined as follows.

Definition 2. Let D = (µ, η) be a distribution over Rd ×{±1}. Then the neighborhood preserving
Bayes optimal classifier of D, denoted gneighbor, is the classifier defined as follows. Let µ+ =
{x : η(x) ≥ 1

2} and µ− = {x : η(x) < 1
2}. Then for any x ∈ Rd, gneighbor(x) = +1 if

ρ(x, µ+) ≤ ρ(x, µ−), and gneighbor(x) = −1 otherwise.

This classifier can be thought of as the most robust classifier that matches the accuracy of the Bayes
optimal. We call it neighborhood preserving because it extends the Bayes optimal classifier into a
local neighborhood about every point in the support. For an illustration, refer to Figure 2, which plots
the decision boundary of the neighborhood preserving Bayes optimal for an example distribution.

Next, we turn our attention towards measuring its robustness, which must be done with respect to
some set of robustness regions U = {Ux}. While these regions Ux can be nearly arbitrary, we seek
regions Ux such that AU (gmax,D) = A(gbayes,D) (our astuteness equals the maximum possible
accuracy) and Ux are “as large as possible" (representing large robustness). To this end, we propose
the following regions.

Definition 3. Let D = (µ, η) be a data distribution over Rd × {±1}. Let µ+ = {x : η(x) > 1
2},

µ− = {x : η(x) < 1
2}, and µ1/2 = {x : η(x) = 1

2}. For x ∈ µ+, we define the neighborhood
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preserving robustness region, denoted Vx, as

Vx = {x′ : ρ(x, x′) < ρ(µ− ∪ µ 1
2 , x′)}.

It consists of all points that are closer to x than they are to µ− ∪ µ1/2 (points oppositely labeled from
x). We can use a similar definition for x ∈ µ−. Finally, if x ∈ µ1/2, we simply set Vx = {x}.

These robustness regions take advantage of the structure of the neighborhood preserving Bayes
optimal. They can essentially be thought of as regions that maximally extend from any point x in the
support of D to the decision boundary of the neighborhood preserving Bayes optimal. We include an
illustration of the regions Vx for an example distribution in Figure 2.

As a technical note, for x ∈ supp(D) with η(x) = 0.5, we give them a trivial robustness region. The
rational for doing this is that η(x) = 0.5 is an edge case that is arbitrary to classify, and consequently
enforcing a robustness region at that point is arbitrary and difficult to enforce.

We now formalize the robustness and accuracy guarantees of the max-margin Bayes optimal classifier
with the following two results.
Theorem 4. (Accuracy) Let D be a data distribution. Let V denote the collection of neighborhood
preserving robustness regions, and let g denote the Bayes optimal classifier. Then the neighborhood
preserving Bayes optimal classifier, gneighbor, satisfies AV(gneighbor,D) = A(g,D), where A(g,D)
denotes the accuracy of the Bayes optimal. Thus, gneighbor maximizes accuracy.
Theorem 5. (Robustness) Let D be a data distribution, let f be a classifier, and let U be a set of
robustness regions. Suppose that AU (f,D) = A(g,D), where g denotes the Bayes optimal classifier.
Then there exists x ∈ supp(D) such that Vx 6⊂ Ux, where Vx denotes the neighborhood preserving
robustness region about x. In particular, we cannot have Vx be a strict subset of Ux for all x.

Theorem 4 shows that the neighborhood preserving Bayes classifier achieves maximal accuracy,
while Theorem 5 shows that achieving a strictly higher robustness (while maintaining accuracy)
is not possible; while it is possible to make accurate classifiers which have higher robustness than
gneighbor in some regions of space, it is not possible for this to hold across all regions. Thus, the
neighborhood preserving Bayes optimal classifier can be thought of as a local maximum to the
constrained optimization problem of maximizing robustness subject to having maximum (equal to
the Bayes optimal) accuracy.

3.1 Neighborhood Consistency

Having defined the neighborhood preserving Bayes optimal classifier, we now turn our attention
towards building classifiers that converge towards it. Before doing this, we must precisely define
what it means to converge. Intuitively, this consists of building classifiers whose robustness regions
“approach" the robustness regions of the neighborhood preserving Bayes optimal classifier. This
motivates the definition of partial neighborhood preserving robustness regions.
Definition 6. Let 0 < κ < 1 be a real number, and let D = (µ, η) be a data distribution over
Rd × {±1}. Let µ+ = {x : η(x) > 1

2}, µ
− = {x : η(x) < 1

2}, and µ1/2 = {x : η(x) = 1
2}. For

x ∈ µ+, we define the neighborhood preserving robustness region, denoted Vx, as

Vx = {x′ : ρ(x, x′) < κρ(µ− ∪ µ 1
2 , x′)}.

It consists of all points that are closer to x than they are to µ− ∪ µ1/2 (points oppositely labeled from
x) by a factor of κ. We can use a similar definition for x ∈ µ−. Finally, if η(x) = 1

2 , we simply set
V κx = {x}.

Observe that V κx ⊂ Vx for all 0 < κ < 1, and thus being robust with respect to V κx is a milder
condition than Vx. Using this notion, we can now define margin consistency.
Definition 7. A learning algorithm A is said to be neighborhood consistent if the following holds
for any data distribution D. For any 0 < ε, δ, κ < 1, there exists N such that for all n ≥ N , with
probability at least 1− δ over S ∼ Dn,

AVκ(AS , D) ≥ A(g,D)− ε,
where g denotes the Bayes optimal classifier and AS denotes the classifier learned by algorithm A
from dataset S.
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This condition essentially says that the astuteness of the classifier learned by the algorithm converges
towards the accuracy of the Bayes optimal classifier. Furthermore, we stipulate that this holds as
long as the astuteness is measured with respect to some Vκ. Observe that as κ→ 1, these regions
converge towards the neighborhood preserving robustness regions, thus giving us a classifier with
robustness effectively equal to that of the neighborhood preserving Bayes optimal classifier.

4 Neighborhood Consistent Non-Parametric Classifiers

Having defined neighborhood consistency, we turn to the following question: which non-parametric
algorithms are neighborhood consistent? Our starting point will be the standard literature for the
convergence of non-parametric classifiers with regard to accuracy. We begin by considering the
standard conditions for kn-nearest neighbors to converge (in accuracy) towards the Bayes optimal.

kn-nearest neighbors is consistent if and only if the following two conditions are met: limn→∞ kn =
∞, and limn→∞

kn
n = 0. The first condition guarantees that each point is classified by using an

increasing number of nearest neighbors (thus making the probability of a misclassification small),
and the second condition guarantees that each point is classified using only points very close to it. We
will refer to the first condition as precision, and the second condition as locality. A natural question is
whether the same principles suffice for neighborhood consistency as well. We began by showing that
without any additional constraints, the answer is no.

Theorem 8. Let D = (µ, η) be the data distribution where µ denotes the uniform distribution over
[0, 1] and η is defined as: η(x) = x. Over this space, let ρ be the euclidean distance metric. Suppose
kn = O(log n) for 1 ≤ n < ∞. Then kn-nearest neighbors is not neighborhood consistent with
respect to D.

The issue in the example above is that for smaller kn, kn-nearest neighbors lacks sufficient precision.
For neighborhood consistnecy, points must be labeled using even more training points than are needed
accuracy. This is because the classifier must be uniformly correct across the entirety of V κx . Thus, to
build neighborhood consistent classifiers, we must bolster the precision from the standard amount
used for standard consistency. To do this, we begin by introducing splitting numbers, a useful tool for
bolstering the precision of weight functions.

4.1 Splitting Numbers

We will now generalize beyond nearest neighbors to consider weight functions. Doing so will allow us
to simultaneously analyze nearest neighbors and kernel classifiers. To do so, we must first rigorously
substantiate our intuitions about increasing precision into concrete requirements. This will require
several technical definitions.

Definition 9. Let µ be a probability measure over Rd. For any x ∈ Rd, the probability radius
rp(x) is the smallest radius for which B(x, rp(x)) has probability mass at least p. More precisely,
rp(x) = inf{r : µ(B(x, r)) ≥ p}.
Definition 10. Let W be a weight function and let S = {x1, x2, . . . , xn} be any finite subset of
Rd. For any x ∈ Rd, α ≥ 0, and 0 ≤ β ≤ 1, let Wx,α,β = {i : ρ(x, xi) ≤ α,wSi (x) ≥ β}. Then
the splitting number of W with respect to S, denoted as T (W,S) is the number of distinct subsets
generated by Wx,αβ as x ranges over Rd, α ranges over [0,∞), and β ranges over [0, 1]. Thus
T (W,S) = |{Wx,α,β : x ∈ Rd, 0 ≤ α, 0 ≤ β ≤ 1}|.

Splitting numbers allow us to ensure high amounts of precision over a weight function. To prove
neighborhood consistency, it is necessary for a classifier to be correct at all points in a given region.
Consequently, techniques that consider a single point will be insufficient. The splitting number
provides a mechanism for studying entire regions simultaneously. For more details on splitting
numbers, we include several examples in the appendix.

4.2 Sufficient Conditions for Neighborhood Consistency

We now state our main result.
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Theorem 11. Let W be a weight function, D a distribution over Rd × {±1}, U a neighborhood
preserving collection, and (tn)∞1 be a sequence of positive integers such that the following four
conditions hold.

1. W is consistent (with resp. to accuracy) with resp. to D.

2. For any 0 < p < 1, limn→∞ES∼Dn [supx∈Rd
∑n

1 w
S
i (x)1ρ(x,xi)>rp(x)] = 0.

3. limn→∞ES∼Dn [tn supx∈Rd w
S
i (x)] = 0.

4. limn→∞ES∼Dn
log T (W,S)

tn
= 0.

Then W is neighborhood consistent with respect to D.

Remarks: Condition 1 is necessary because neighborhood consistency implies standard consistency
– or, convergence in accuracy to the Bayes Optimal. Standard consistency has been well studied for
non-parametric classifiers, and there are a variety of results that can be used to ensure it – for example,
Stone’s Theorem (included in the appendix).

Conditions 2. and 3. are stronger version of conditions 2. and 3. of Stone’s theorem. In particular,
both include a supremum taken over all x ∈ Rd as opposed to simply considering a random point
x ∼ D. This is necessary for ensuring correct labels on entire regions of points simultaneously.
We also note that the dependence on rp(x) (as opposed to some fixed r) is a key property used for
adaptive robustness. This allows the algorithm to adjust to potential differing distance scales over
different regions in Rd. This idea is reminiscent of the analysis given in [6], which also considers
probability radii.

Condition 4. is an entirely new condition which allows us to simultaneously consider all T (W,S)
subsets of S. This is needed for analyzing weighted sums with arbitrary weights.

Next, we apply Theorem 11 to get specific examples of margin consistent non-parametric algorithms.

4.3 Nearest Neighbors and Kernel Classifiers

We now provide sufficient conditions for kn-nearest neighbors to be neighborhood consistent.

Corollary 12. Suppose (kn)∞1 satisfies (1) limn→∞
kn
n = 0, and (2) limn→∞

logn
kn

= 0. Then
kn-nearest neighbors is neighborhood consistent.

As a result of Theorem 8, corollary 12 is tight for nearest neighbors. Thus kn nearest neighbors is
neighborhood consistent if and only if kn = ω(log n).

Next, we give sufficient conditions for a kernel-similarity classifier.

Corollary 13. Let W be a kernel classifier over Rd × {±1} constructed from K : R+ → R+ and
hn. Suppose the following properties hold.

1. K is decreasing, and satisfies
∫
Rd K(||x||)dx <∞.

2. limn→∞ hn = 0 and limn→∞ nhdn =∞.

3. For any c > 1, limx→∞
K(cx)
K(x) = 0.

4. For any x ≥ 0, limn→∞
n

lognK( x
hn

) =∞.

Then W is neighborhood consistent.

Observe that conditions 1. 2. and 3. are satisfied by many common Kernel functions such as the
Gaussian or Exponential kernel (K(x) = exp(−x2)/ K(x) = exp(−x)). Condition 4. can be
similarly satisfied by just increasing hn to be sufficiently large. Overall, this theorem states that
Kernel classification is neighborhood consistent as long as the bandwidth shrinks slowly enough.

4.4 Histogram Classifiers

Having discussed neighborhood consistent nearest-neighbors and kernel classifier, we now turn
our attention towards another popular weight function, histogram classifiers. Recall that histogram
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Figure 3: we have a histogram classifier being applied to the blue and red regions. The classifier will
be unable to construct good labels in the cells labeled A,B,C, and consequently will not be robust
with respect to V κx for sufficiently large κ.

classifiers operate by partitioning their input space into increasingly small cells, and then classifying
each cell by using a majority vote from the training examples within that cell (a detailed description
can be found in the appendix). We seek to answer the following question: is increasing precision
sufficient for making histogram classifiers neighborhood consistent? Unfortunately, the answer this
turns out not to be no. The main issue is that histogram classifiers have no mechanism for performing
classification outside the support of the data distribution.

For an example of this, refer to Figure 3. Here we see a distribution being classified by a histogram
classifier. Observe that the cell labeled A contains points that are strictly closer to µ+ than µ−, and
consequently, for sufficiently large κ, V κx will intersect A for some point x ∈ µ+. A similar argument
holds for the cells labeled B and C.. However, since A,B,C are all in cells that will never contain
any data, they will never be labeled in a meaningful way. Because of this, histogram classifiers are
not neighborhood consistent.

5 Validation

(a) exponential kernel (b) polynomial kernel

Figure 4: Plots of astuteness against the training sample size. In both panels, accuracy is plotted
in red, and the varying levels of robustness regions (κ = 0.1, 0.3, 0.5) are givne in blue, green and
purple. In panel (a), observe that as sample size increases, every measure of astuteness converges
towards 0.8 which is as predicted by Corollary 13. In panel (b), although the accuracy appears to
converge, none of the robustness measure. In fact, they get progressively worse the larger κ gets.

To complement our theoretical large sample results for non-parametric classifiers, we now include
several experiments to understand their behavior for finite samples. We seek to understand how
quickly non-parametic classifiers converge towards the neighborhood preserving Bayes optimal.

We focus our attention on kernel classifiers and use two different kernel similarity functions: the first,
an exponential kernel, and the second, a polynomial kernel. These classifiers were chosen so that the
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former meets the conditions of Corollary 13, and the latter does not. Full details on these classifiers
can be found in the appendix.

To be able to measure performance with increasing data size, we look at a simple synthetic dataset
over overlayed circles (see Figure 5 for an illustration) with support designed so that the data is
intrinsically multiscaled. In particular, this calls for different levels of robustness in different regions.
For simplicity, we use a global label noise parameter of 0.2, meaning that any sample drawn from
this distribution is labeled differently than its support with probability 0.2. Further details about our
dataset are given in section D.

Performance Measure. For a given classifier, we evaluate its astuteness at a test point x with respect
to the robustness region V κx (Definition 6). While these regions are not computable in practice due to
their dependency on the support of the data distribution, we are able to approximate them for this
synthetic example due to our explicit knowledge of the data distribution. Details for doing this can be
found in the appendix. To compute the empirical astuteness of a kernel classifier WK about test point
x, we perform a grid search over all points in V κx to ensure that all points in the robustness region are
labeled correctly.

For each classifier, we measure the empirical astuteness by using three trials of 20 test points and
taking the average. While this is a relatively small amount of test data, it suffices as our purpose is
to just verify that the algorithm roughly converges towards the optimal possible astuteness. Recall
that for any neighborhood consistent algorithm, as n→∞, AVκ should converge towards A∗, the
accuracy of the Bayes optimal classifier, for any 0 < κ < 1. Thus, to verify this holds, we use
κ = 0.1, 0.3, 0.5. For each of these values, we plot the empirical astuteness as the training sample
size n gets larger and larger. As a baseline, we also plot their standard accuracy on the test set.

Results and Discussion: The results are presented in Figure 4; the left panel is for the exponential
kernel, while the right one is for the polynomial kernel. As predicted by our theory, we see that in all
cases, the exponential kernel converges towards the maximum astuteness regardless of the value of κ:
the only difference is that the rate of convergence is slower for larger values of κ. This is, of course,
expected because larger values of κ entail larger robustness regions.

By contrast, the polynomial kernel performs progressively worse for larger values of κ. This kernel
was selected specifically to violate the conditions of Corollary 13, and in particular fails criteria 3.
However, note that the polynomial kernel nevertheless performs will with respect to accuracy thus
giving another example demonstrating the added difficulty of neighborhood consistency.

Our results bridge the gap between our asymptotic theoretical results and finite sample regimes. In
particular, we see that kernel classifiers that meet the conditions of Corollary 13 are able to converge
in astuteness towards the neighborhood preserving Bayes optimal classifier, while classifiers that do
not meet these conditions fail.

6 Related Work

There is a wealth of literature on robust classification, most of which impose the same robustness
radius r on the entire data. [5, 17, 19, 20, 26, 15, 16, 18, 21, 22, 23], among others, focus primarily
on neural networks, and robustness regions that are `1, `2, or `∞ norm balls of a given radius r.

[7] and [12] show how to train neural networks with different robustness radii at different points by
trading off robustness and accuracy; their work differ from ours in that they focus on neural networks,
their robustness regions are still norm balls, and that their work is largely empirical.

Our framework is also related to large margin classification – in the sense that the robustness regions
U induce a margin constraint on the decision boundary. The most popular large margin classifier
is the Support Vector Machine[9, 3, 14] – a large margin linear classifier that minimizes the worst-
case margin over the training data. Similar ideas have also been used to design classifiers that are
more flexible than linear; for example, [27] shows how to build large margin Lipschitz classifiers
by rounding globally Lipschitz functions. Finally, there has also been purely empirical work on
achieving large margins for more complex classifiers – such as [13] for deep neural networks that
minimizes the worst case margin, and [29] for metric learning to find large margin nearest neighbors.
Our work differs from these in that our goal is to ensure a high enough local margin at each x, (by
considering the neighborhood preserving regions Vx) as opposed to optimizing a global margin.
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Finally, our analysis builds on prior work on robust classification for non-parametric methods in the
standard framework. [1, 24, 28, 31] provide adversarial attacks on non-parametric methods. Wang
et. al. [28] develops a defense for 1-NN that removes a subset of the training set to ensure higher
robustness. Yang et. al [31] proposes the r-optimal classifier – which is the maximally astute classifier
in the standard robustness framework – and proposes a defense called Adversarial Pruning.

Theoretically, [4] provide conditions under which weight functions converge towards the r-optimal
classifier in the large sample limit. They show that for r-separated distributions, where points from
different classes are at least distance 2r or more apart, nearest neighbors and kernel classifiers satisfy
these conditions. In the more general case, they use Adversarial Pruning as a preprocessing step to
ensure that the training data is r-separated, and show that this preprocessing step followed by nearest
neighbors or kernel classifiers leads to solutions that are robust and accurate in the large sample
limit. Our result fundamentally differs from theirs in that we analyze a different algorithm, and our
proof techniques are quite different. In particular, the fundamental differences between the r-optimal
classifier and the neighborhood preserving Bayes optimal classifier call for different algorithms and
different analysis techniques.

In concurrent work, [8] proposes a similar limit to the neighborhood preserving Bayes optimal which
they refer to as the margin canonical Bayes. However, their work then focuses on a data augmentation
technique that leads to convergence whereas we focus on proving the neighborhood consistency of
classical non-parametric classifiers.
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A Further Details of Definitions and Theorems

A.1 Non-Parametric Classifiers

In this section, we precisely define weight functions, histogram classifiers and kernel classifiers.
Definition 14. [11] A weight functionW is a non-parametric classifier with the following properties.

1. Given input S = {(x1, y1), (x2, y2, ), . . . , (xn, yn)} ∼ Dn, W constructs functions
wS1 , w

S
2 , . . . , w

S
n : Rd → [0, 1] such that for all x ∈ Rd,

∑n
1 w

S
i (x) = 1. The functions wSi

are allowed to depend on x1, x2, . . . xn but must be independent of y1, y2, . . . , yn.

2. W has output WS defined as

WS(x) =

{
+1

∑n
1 w

S
i (x)yi > 0

−1
∑n

1 w
S
i (x)yi ≤ 0

As a result, wSi (x) can be thought of as the weight that (xi, yi) has in classifying x.

Definition 15. A histogram classifier, H , is a non-parametric classification algorithm over Rd ×
{±1} that works as follows. For a distribution D over R× {±1}, H takes S = {(xi, yi) : 1 ≤ i ≤
n} ∼ Dn as input. Let ki be a sequence with limi→∞ ki =∞ and limi→∞

ki
i = 0. H constructs a

set of hypercubes C = {c1, c2, . . . , cm} as follows:

1. Initially C = {c}, where S ⊂ c.

2. For c ∈ C, if c contains more than kn points of S, then partition c into 2d equally sized
hypercubes, and insert them into C.

3. Repeat step 2 until all cubes in C have at most kn points.

For x ∈ R let c(x) denote the unique cell in C containing x. If c(x) doesn’t exist, then HS(x) = −1
by default. Otherwise,

HS(x) =

{
+1

∑
xi∈c(x) yi > 0

−1
∑
xi∈c(x) yi ≤ 0

.

Definition 16. A partitioning rule is a weight function W over X × {±1} constructed in the
following manner. Given S = {(xi, yi)} ∼ Dn, as a function of {x1, . . . , xn}, we partition Rd into
regions with A(x) denoting the region containing x. Then, for any x ∈ Rd we have

wSi (x) =

{
1 xi ∈ A(x)

0 otherwise
.

To achieve
∑
wSi (x) = 1, we can simply normalize weights for any x by

∑n
1 w

S
i (X).

Definition 17. A kernel classifier is a weight function W over Rd×{±1} constructed from function
K : R+ ∪ {0} → R+ and some sequence {hn} ⊂ R+ in the following manner. Given S =
{(xi, yi)} ∼ Dn, we have

wSi (x) =
K(ρ(x,xi)hn

)∑n
j=1K(

ρ(x,xj)
hn

)
.

Then, as above, W has output

WS(x) =

{
+1

∑n
1 w

S
i (x)yi > 0

−1
∑n

1 w
S
i (x)yi ≤ 0

A.2 Splitting Numbers

We begin by restating definitions 9 and 10.
Definition 9. Let µ be a probability measure over Rd. For any x ∈ Rd, the probability radius
rp(x) is the smallest radius for which B(x, rp(x)) has probability mass at least p. More precisely,
rp(x) = inf{r : µ(B(x, r)) ≥ p}.
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Definition 10. Let W be a weight function and let S = {x1, x2, . . . , xn} be any finite subset of
Rd. For any x ∈ Rd, α ≥ 0, and 0 ≤ β ≤ 1, let Wx,α,β = {i : ρ(x, xi) ≤ α,wSi (x) ≥ β}. Then
the splitting number of W with respect to S, denoted as T (W,S) is the number of distinct subsets
generated by Wx,αβ as x ranges over Rd, α ranges over [0,∞), and β ranges over [0, 1]. Thus
T (W,S) = |{Wx,α,β : x ∈ Rd, 0 ≤ α, 0 ≤ β ≤ 1}|.

The main idea behind splitting numbers is that they allow us to ensure uniform convergence properties
over a weight function. To prove neighborhood consistency, it is necessary for a classifier to be
correct at all points in a given region. Consequently, techniques that consider a single point will be
insufficient. The splitting number provides a mechanism for studying entire regions simultaneously.
For clarity, we include a quick example in which we bound the splitting number for a given weight
function.

Example: Let W denote any kernel classifier corresponding such that K : R≥0 → R≥0 is a
decreasing function. For any S ∼ Dn, observe that the conditionwSi (x) ≥ β precisely corresponds to
ρ(x, xi) ≤ γ for some value of γ. This is because wSi (x) > wSj (x) if and only if ρ(x, xi) < ρ(x, xj).
Thus, the regions Wx,α,β correspond to {i : ρ(x, xi) ≤ γ}, where γ is a positive real number that
depends on x, α, β. These sets precisely correspond to subsets of S that are contained within B(x, γ).
Since balls have VC dimension at most d+2, by Sauer’s lemma, the number of subsets of S that can be
obtained in this manner is O(nd+2). Therefore, we have that T (W,S) = O(nd+2) for all S ∼ Dn.

A.3 Stone’s Theorem

Theorem 18. [25] Let W be weight function over Rd × {±1}. Suppose the following conditions
hold for any distribution D over Rd ×{±1}. Let X be a random variable with distribution DRd , and
S = {(x1, y1), (x2, y2), . . . , (xn, yn)} ∼ Dn. All expectations are taken over X and S.

1. There is a constant c such that, for every nonnegative measurable function f satisfying E[f(X)] <
∞, and E[

∑n
1 w

S
i (X)f(xi)] ≤ cE[f(x)].

2. ∀a > 0, limn→∞ E[
∑n

1 w
S
i (x)I||xi−X||>a||] = 0.

3. limn→∞ E[max1≤i≤n w
S
i (X)] = 0.

Then W is consistent.

B Proofs

Notation:

• We let ρ denote our distance metric over Rd. For sets X1, X2 ⊂ Rd, we let ρ(X1, X2) =
infx1∈X1,x2∈X2

ρ(x1, x2).

• For any x ∈ Rd, B(x, a) = {x : ρ(x, x′) ≤ a}.

• For any measure over Rd, µ, we let supp(µ) = {x : µ(B(x, a)) > 0 for all a > 0}.

• Given some measure µ over Rd and some x ∈ Rd, we let rp(x) denote the probability radius
(Definition 9) of x with probability p. that is, rp(x) = inf{r : µ(B(x, r)) ≥ p}.
• For weight functionW and training sample S, we letWS denote the weight function learned

by W from S.

B.1 Proofs of Theorems 4 and 5

Proof. (Theorem 4) Let D = (µ, η) be a data distribution, and let µ+, µ− be as described in section
??. Observe that for any x ∈ µ+, the Bayes optimal classifier and the neighborhood preserving Bayes
optimal both have the same output, and furthermore the neighborhood preserving Bayes gives this
output (by definition) throughout the entirety of Vx, the neighborhood preserving robustness region of
x. It follows that the neighborhood preserving Bayes optimal has optimal astuteness, as desired.
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Proof. (Theorem 5) Let D = (µ, η) be a data distribution, and assume towards a contradiction that
there exists classifier f which has maximal astuteness with respect towards some set of robustness
regions U = {Ux} such that Vx ⊆ Ux for all x. The key observation is that because f has maximal
astuteness, we must have f(x) = g(x) for almost all points x ∼ µ (where g is the Bayes optimal
classifier). Furthermore, for those values of x, we must have g be robust at x (meaning it uniformly
outputs the same output through Ux).

In order for Ux to be strictly larger than Vx for some x, it necessarily must intersect with Ux′ for
some x′ with g(x′) 6= g(x), and this is what causes the contradiction: f cannot be astute at both x
and x′ if they are differently labeled and their robustness regions intersect.

B.2 Proof of Theorem 8

Let D = (µ, η) be the distribution with µ being the uniform distribution over [0, 1] and η : [0, 1]→
[0, 1] be η(x) = x. For example, if (x, y) ∼ D, then Pr[y = 1|x = 0.3] = 0.3.

We desire to show that kn-nearest neighbors is not neighborhood consistent with respect to D. We
begin with the following key lemma.

Lemma 19. For any n > 0, let fn denote the kn-nearest neighbor classifier learned from S ∼ Dn.
There exists some constant ∆ > 0 such that for all sufficiently large n, with probability at least 1

2

over S ∼ Dn, there exists x ∈ [0, 1] with 1
2 −∆ ≤ x ≤ 1

2 −
3∆
4 and fn(x) = +1.

Proof. Let C be a constant such that kn ≤ C log n for all 2 ≤ n <∞. Set ∆ as

1

2
log2

1

1− 2∆
+

1

2
log2

1

1 + 2∆
<

1

C
. (1)

Let A ⊂ [0, 1] denote the interval [ 1
2 −∆, 1

2 −
3∆
4 ]. For S ∼ Dn, with high probability, there exist at

least ∆n
8 instances xi that are in A. Let us relabel these xi as x1, x2, . . . , xm as

1

2
−∆ ≤ x1 < x2 < · · · < xm ≤

1

2
− 3∆

4
.

Next, suppose that for some i, at least half of yi, yi+1, . . . , yi+kn−1 are +1. Then it follows
that fn(x) = +1 for x =

xi+kn+xi
2 because the kn nearest neighbors of x are precisely

xi, xi+1, . . . xi+kn−1 (as a technical note we make x just slightly smaller to break the tie between xi
and xi+kn). To lower bound the probability that this occurs for some i, we partition y1, y2, . . . ym
into at least m

2kn
disjoint groups each containing kn consecutive values of yi. We then bound the

probability that each group will have at least kn/2 +1s.

Consider any group of kn yis. We have that Pr[yi] = +1 = η(xi) = xi ≥ 1
2 −∆. Since the variables

yi are independent (even conditioning on xi), it follows that the probability that at least half of them
are +1 is at least Pr[Bin(kn,

1
2 −∆) ≥ kn

2 ]. For simplicity, assume that kn is even. Then using a
standard lower bound for the tail of a binomial distribution (see, for example, Lemma 4.7.2 of [2]),
we have that

Pr[Bin(kn,
1

2
−∆) ≥ kn

2
] ≥ 1√

2kn
exp(−knD(

1

2
||(1

2
−∆)),

where D( 1
2 ||(

1
2 −∆)) = 1

2 log2
1

1−2∆ + 1
2 log2

1
1+2∆ .

To simplify notation, let D∆ = D( 1
2 ||(

1
2 −∆)). Then because we have m

2kn
independent groups of

yis, we have that

Pr
S∼Dn

[∃x ∈ [
1

2
−∆,

1

2
− 3∆

4
] s.t. fn(x) = +1] ≥ 1− (1− 1√

2kn
exp(−knD∆))

m
2kn

≥ 1− exp(− m

2kn
√

2kn
e−knD∆)

≥ 1− exp(− n∆

(16C log n)3/2
e−CD∆ logn),
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with the inequalities holding because m ≥ n∆
8 and kn ≤ C log n. By equation 1, CD∆ < 1.

Therefore, limn→∞
n

(2C logn)3/2 e
−CD∆ logn =∞, which implies that for n sufficiently large,

Pr
S∼Dn

[∃x ∈ [
1

2
−∆,

1

2
− 3∆

4
] s.t. fn(x) = +1] ≥ 1

2
,

as desired.

We now complete the proof of Theorem 8.

Proof. (Theorem 8) Let ∆ be as described in Lemma 19, and let κ = 1
2 . For all x < 1

2 , we have that
[x, 2x

3 + 1
6 ] ⊆ V κx . This is because we can easily verify that all points inside that interval are closer

to x than they are to 1
2 (and consequently all points in µ+ ∪ µ1/2) by factor of 2. It follows that for

all x ∈ [ 1
2 −

7∆
8 ,

1
2 −∆],

[
1

2
−∆,

1

2
− 3∆

4
] ⊆ V κx .

However, applying Lemma 19, we know that with probability at least 1
2 , there exists some point

x′ ∈ [ 1
2 −∆, 1

2 −
3∆
4 ] such that fn(x′) = +1. It follows that with probability at least 1

2 , fn lacks
astuteness at all x ∈ [ 1

2 −
7∆
8 ,

1
2 −∆]. Since this set of points has total probability mass ∆/8, it

follows that with probability at least 1
2 , there is a fixed gap between AVκ(fn,D) and A(g,D) (as

they differ in a region of probability mass at least ∆/8). This implies that kn-nearest neighbors is not
neighborhood consistent.

B.3 Proof of Theorem 11

Let D = (µ, η) is a distribution over Rd × {±1}. We will use the following notation: let D+ =
{x : η(x) > 1

2}, D
− = {x : η(x) < 1

2 and D1/2 = {x : η(x) = 1
2}. In particular, we have that

D+ = µ+,D− = µ− and D1/2 = µ1/2. This notation serve will be convenient throughout this
section since it allows us to avoid overloading the symbol µ.

To show that an algorithm is neighborhood consistent with respect to D, we must show that for any
0 < κ < 1, the astuteness with respect to Vκ converges towards the accuracy of the Bayes optimal.
To this end, we fix any 0 < κ < 1 and consider Vκ.

For our proofs, it will be useful to have the additional assumption that the robustness regions, V κx are
closed. To obtain this, we let U = {Ux} where Ux = V κx . Each Ux is the closure of the corresponding
V κx , and in particular we have V κx ⊂ Ux. Because of this, it will suffice for us to consider AU as
opposed to AVκ since AU (f,D) ≤ AVκ(f,D) for all classifiers f .

We now begin by first proving several useful properties of U that we will use throughout this entire
section.

Lemma 20. The collection of sets U = {Ux} defined as Ux = V κx satisfies the following properties.

1. Ux is closed for all x.

2. if x ∈ D+, for all x′ ∈ Ux, ρ(x, x′) < ρ(D+ ∪ D1/2, x
′).

3. if x ∈ D−, for all x′ ∈ Ux, ρ(x, x′) < ρ(D− ∪ D1/2, x
′).

4. Ux = {x} for all x ∈ D1/2.

5. Ux is bounded for all x.

Here µ+, µ−, µ1/2 are as described in section ??.

Proof. Property (1) is given the by definition, and properties (2), (3) follow from the fact that κ is
strictly less than 1. In particular, the distance function ρ is continuous and consequently all limit
points of a set have distances that are limits of distances within the set. Property (4) is since V κx = {x}
for all x ∈ D1/2.
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Finally, property (5) follows from the fact that κ < 1. As x gets arbitrarily far away from x the ratio
of its distance to x with its distance to µ− gets arbitrarily close to 1, and consequently there is some
maximum radius R so that V κx ⊂ B(x,R). Since B(x,R) is closed, it follows that Ux ⊂ B(x,R)
as well.

Next, fix W as a weight function and tn is a sequence of positive integers such that the conditions of
Theorem 11 hold, that is:

1. W is consistent (with resp. to accuracy) with resp. to D.
2. For any 0 < p < 1, limn→∞ES∼Dn [supx∈Rd

∑n
1 w

S
i (x)1ρ(x,xi)>rp(x)] = 0.

3. limn→∞ES∼Dn [tn supx∈Rd w
S
i (x)] = 0.

4. limn→∞ES∼Dn
log T (W,S)

tn
= 0.

Finally, we will also make the additional assumption that D has infinite support. Cases where D
has finite support can be somewhat trivially handled: when the sample size goes to infinity, we will
have perfect labels for every point in the support, and consequently condition 2. will ensure that any
x′ ∈ V κx is labeled according to the label of x.

We also use the following notation. For any classifier f : Rd → {±1}, we let

D+
f = {x : f(x′ = +1 for all x′ ∈ Ux}, and D−f = {x : f(x′ = −1 for all x′ ∈ Ux}. (2)

These sets represent the examples that f robustly labels as +1 and −1 respectively. These sets are
useful since they allows us to characterize the astuteness of f , which we do with the following lemma.
Lemma 21. For any classifier f : Rd → {±1}, we have

AU (f,D) ≥ A(g,D)− µ(D+ \ D+
f )− µ(D− \ D−f ),

where g denotes the Bayes optimal classifier.

Proof. By property 4 of Lemma 20, Ux = {x} for all x ∈ D1/2. Consequently, if x ∈ D1/2, there is
a 1

2 chance that any classifier is astute at (x, y). Using this along with the definition of astuteness, we
see that

AU (f,D) = Pr
(x,y)∼D

[f(x′) = y for all x′ ∈ Ux]

= Pr
(x,y)∼D

[y = +1 and x ∈ (D+ ∩D+
f )] + Pr

(x,y)∼D
[y = −1 and x ∈ (D− ∩D−f )] +

1

2
Pr

(x,y)∼D
[x ∈ D1/2]

However, observe by the definitions of D+,D− and D1/2 that

A(g,D) = Pr
(x,y)∼D

[y = +1 and x ∈ D+] + Pr
(x,y)∼D

[y = −1 and x ∈ D−] +
1

2
Pr

(x,y)∼D
[x ∈ D1/2].

Substituting this, we find that

AU (f,D) ≥ A(g,D)− Pr
(x,y)∼D

[x ∈ (D+ \D+
f )]− Pr

(x,y)∼D
[x ∈ (D− \D−f )]

= A(g,D)− µ(D+ \ D+
f )− µ(D− \ D−f ),

as desired.

Lemma 21 shows that to understand how WS converges in astuteness, it suffices to understand
how the regions D+

WS
and D−WS

converge towards D+ and D− respectively. This will be our main
approach for proving Theorem 11. Due to the inherent symmetry between + and −, we will focus on
showing how the region D+

WS
converges towards D+. The case for − will be analogous. To that end,

we have the following key definition.
Definition 22. Let p,∆ > 0. We say x ∈ D+ is (p,∆)-covered if for all x′ ∈ Ux and for all
x′′ ∈ B(x′, rp(x

′)) ∩ supp(µ), η(x′′) > 1
2 + ∆. Here rp denotes the probability radius (Definition

9). We also let D+
p,∆ denote the set of all x ∈ D+ that are (p,∆)-covered.
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If x is (p,∆)-covered, it means that for all x′ ∈ Ux, there is a set of points with measure p around x′
that are both close to x′, and likely (with at least probability 1

2 + ∆) to be labeled as +1. Our main
idea will be to show that if x is (p,∆) covered and n is sufficiently large, x is likely to be in D+

WS
.

We begin this process by first showing that all x are (p,∆)-covered for some p,∆. To do so, it will
be useful to have one more piece of notation which we will also use throughout the rest of the section.
We let

D−1/2 = D− ∪ D1/2 = supp(µ) \ D+.

This set will be useful, since Lemma 20 implies that for all x ∈ D+ and for all x′ ∈ Ux, ρ(x, x′) <
ρ(D−1/2, x

′). We now return to showing that all x are (p,∆-covered for some p,∆.

Lemma 23. For any x ∈ D+, there exists p,∆ > 0 such that x is (p,∆)-covered.

Proof. Fix any x. Let f : Ux → R be the function defined as f(x′) = ρ(x′,D−1/2) − ρ(x′, x).
Observe that f is continuous. By assumption, Ux is closed and bounded, and consequently must
attain its minimum. However, by Lemma 20, we have that f(x′) > 0 for all x′ ∈ Ux. it follows that
minx′∈Ux f(x′) = γ where γ > 0.

Next, let p = µ(B(x, γ/2)). p > 0 since x ∈ supp(µ). Observe that for any x′ ∈ Ux,
rp(x

′) ≤ ρ(x, x′) + γ/2, where, rp(x′) denotes the probability radius of x′. This is because
B(x′, (ρ(x, x′) + γ/2)) contains B(x, γ/2) which has probability mass p. It follows that for any
x′ ∈ Ux, ρ(x′,D−1/2) ≥ rp(x′) + γ/2. Motivated by this observation, let A be the region defined as

A =
⋃

x′∈Ux

B(x′, rp(x
′)).

Then by our earlier observation, we have that ρ(A,D−1/2) ≥ γ
2 . Since distance is continuous, it

follows that ρ(A,D−1/2) ≥ γ
2 as well, where A denotes the closure of A.

This means that for any x′′ ∈ A ∩ supp(µ), η(x′′) > 1
2 , since otherwise ρ(A,D−1/2) would equal

0 (as the two sets would literally intersect). Finally, supp(µ) is a closed set (see Appendix C.1),
and thus A ∩ supp(µ) is closed as well. Since η is continuous (by assumption from Definition ??),
it follows that η must maintain its minimum value over A ∩ supp(µ). It follows that there exists
2∆ > 0 such that η(x′′) ≥ 1

2 + 2∆ > 1
2 + ∆ for all x′′ ∈ A ∩ supp(µ).

Finally, by the definition of A, for all x′ ∈ Ux, B(x′, rp(x
′)) ⊂ A. It consequently follows from the

definition that x is (p,∆)-covered, as desired.

While the previous lemma show that some p,∆ cover any x ∈ D+, this does not necessarily mean
that there are some fixed p,∆ that cover all x ∈ D+. Nevertheless, we can show that this is almost
true, meaning that there are some p,∆ that cover most x ∈ D+. Formally, we have the following
lemma.
Lemma 24. For any ε > 0, there exists p,∆ such that µ(D+ \ D+

p,∆) < ε, where D+
p,∆ is as defined

in Definition 22.

Proof. Observe that if x is (p,∆)-covered, then it is also (p′,∆′)-covered for any p′ < p and ∆′ < ∆.
This is because B(x′, rp′(x

′)) ⊂ B(x′, rp(x)) and 1
2 + ∆ > 1

2 + ∆′. Keeping this in mind, define

A = {D+
1/i,1/j : i, j ∈ N}.

For any x ∈ D+, by Lemma 23 and our earlier observation, there exists A ∈ A such that x ∈ A. It
follows that ∪A∈AA = D+. By applying Lemma 41, we see that there exists a finite subset of A,
{A1, . . . , Am} such that

µ(A1 ∪ · · · ∪Am}) > µ(D+)− ε.
Let Ak = D+

1/ik,1/jk
for 1 ≤ k ≤ m. From our previous observation once again, we see that

∪Ai ⊂ D+
1/I,1/J where I = max(ik) and J = max(jk). It follows that setting p = 1/I and

∆ = 1/J suffices.
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Recall that our overall goal is to show that if x is (p,∆)-covered, n is sufficiently large, then x is
very likely to be in D+

WS
(defined in equation 2). To do this, we will need to find sufficient conditions

on S for x to be in WS . This requires the following definitions, that are related to splitting numbers
(Definition 10).
Definition 25. Let x ∈ Rd be a point, and let S = {(x1, y1), . . . , (xn, yn)} be a training set sampled
from Dn. For 0 ≤ α, 0 ≤ β ≤ 1, and 0 < ∆ < 1

2 , we define

W∆,S
x,α,β = {i : ρ(x, xi) ≤ α,wSi (x) ≥ β, η(xi) >

1

2
+ ∆}.

Definition 26. Let 0 < ∆ < 1
2 , and let S = {(x1, y1), . . . , (xn, yn)} be a training set sampled from

Dn. Then we let
W∆,S = {W∆,S

x,α,β : x ∈ Rd, 0 ≤ α, 0 ≤ β ≤ 1}.

These convoluted looking sets will be useful for determining the behavior of Ws at some x ∈ D+
p,∆.

Broadly speaking, the idea is that if every set of indices R ⊂W∆,S is relatively well behaved (i.e.
the number of yis that are +1 is close to (|R|( 1

2 + ∆), the expected amount), then Ws(x
′) = +1 for

all x′ ∈ Ux. Before showing this, we will need a few more lemmas.
Lemma 27. Fix any δ > 0 and let 0 < ∆ < 1

2 . There exists N such that for all n > N the following
holds. With probability 1− δ over S ∼ Dn, for all R ∈W∆,S with |R| > tn, 1

|R|
∑
i∈R yi ≥ ∆

Proof. The key idea is to observe that the setW∆,S and the value T (W,S) are completely determined
by {x1, . . . , xn}. This is because weight functions choose their weights only through dependence on
x1, . . . , xn. Consequently, we can take the equivalent formulation of first drawing x1, . . . , xn ∼ µn,
and then drawing yi independently according to yi = 1 with probability η(x1) and 0 with probability
1−η(xi). In particular, we can treat y1, . . . , yn as independent fromW∆,S and T (W,S) conditioning
on x1, . . . , xn.

Fix any x1, . . . , xn. First, we see that |W∆,S | ≤ T (W,S). This is because W∆,S
x,α,β is a subset that is

uniquely defined by Wx,α,β (see Definitions 25 and 10). Second, for any R ∈W∆,S , observe that
for all i ∈ R, yi is a binary variable in [−1, 1] with expected value at least ( 1

2 + ∆)− ( 1
2 −∆) = 2∆

(again by the definition). It follows that if |R| ≥ tn, by Hoeffding’s inequality

Pr
y1...yn

[
∑
i∈R

yi < ∆] ≤ exp

(
−2|R|2∆2

4|R|

)
≤ exp

(
− tn∆2

2

)
.

Since there at most T (W,S) sets R, it follows that

Pr
y1...yn

[
∑
i∈R

yi < ∆ for some R ∈W∆,S with |R| > tn] ≤ T (W,S) exp

(
− tn∆2

2

)
.

However, by condition 4. of Theorem 11, it is not difficult to see that this quantity has expectation
that tends to 0 as n→∞ (unless T (W,S) uniformly equals 1, but this degenerate case can easily be
handled on its own). Thus, for any δ > 0, it follows that there exists N such that for all n > N , with
probability at least 1− δ

2 , T (W,S) exp
(
− tn∆2

2

)
≤ δ

2 . This value of N consequently suffices for
our lemma.

We now relate D+
WS

(Equation 2) to W∆,S as well as the conditions of Theorem 11.

Lemma 28. Let S = {(x1, y1), . . . , (xn, yn)} and let 0 < ∆ ≤ 1
2 and 0 < p < 1 such that the

following conditions hold.

1. For all R ∈W∆,S with |R| > tn, 1
|R|
∑
i∈R yi ≥ ∆.

2. supx∈Rd
∑n

1 w
S
i (x)1ρ(x,xi)>rp(x) <

∆
5 .

3. tn supx∈Rd w
S
i (x) < ∆

5 .

Then D+
p,∆ ⊆ D

+
WS

.
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Proof. Let x ∈ D+
p,∆, and let x′ ∈ Ux be arbitrary. It suffices to show that WS(x′) = +1 (as x, x′

were arbitrarily chosen). From the definition ofWS , this is equivalent to showing that
∑n

1 w
S
i (x′)yi >

0. Thus, our strategy will be to lower bound this sum using the conditions given in the lemma
statement.

We first begin by simplifying notation. Since S and x′ are both fixed, we use wi to denote wSi (x′).
Since n is fixed, we will also use t to denote tn. Next, suppose that |{x1, . . . , xn}∩B(x′, rp(x

′))| =
k. Without loss of generality, we can rename indices such that {x1, . . . , xn} ∩ B(x′, rp(x

′)) ∩
B(x′, rp(x

′)) = {x1, . . . , xk}, and w1 ≥ w2 ≥ · · · ≥ wk.

Let Yj =
∑j
i=1 yi. Our main idea will be to express the sum in terms of these Yjs as follows.

n∑
1

wiyi =

k∑
1

wiyi +

n∑
k+1

wiyi

= wkYk + (wk−1 − wk)Yk−1 + · · ·+ (wt+1 − wt+2)Yt+1 +

t∑
i=1

(wi − wt+1)yi +

n∑
k+1

wiyi

= wkYk +
k−1∑
i=t+1

(wi − wi+1)Yi︸ ︷︷ ︸
α

+

t∑
i=1

(wi − wt+1)yi︸ ︷︷ ︸
β

+

n∑
k+1

wiyi︸ ︷︷ ︸
τ

.

We now bound α, β and τ in terms of ∆ by using the conditions given in the lemma. We begin with
β and τ , which are considerably easier to handle.

For β, we have that

β =

t∑
i=1

(wi − wt+1)yi ≥
t∑
i=1

(wi − wt+1)(−1) ≥ −tw1.

By condition 2 of the lemma, we see that tw1 <
∆
5 , which implies that β ≥ −∆

5 .

For γ, we have that γ =
∑n
k+1 wiyi ≥ −

∑n
k+1 wi. However, for all k + 1 ≤ i ≤ n, by definition

of k, ρ(x′, xi) > rp(x
′). It follows from condition 3 of the lemma that γ ≥ −∆

5 .

Finally, we handle α. Recall that x is (p,∆)-covered. It follows that for all x′′ ∈ supp(µ) ∩
B(x′, rp(x

′)), η(x′′) > 1
2 + ∆. Thus, by the definition of k, η(xi) >

1
2 + ∆ for 1 ≤ i ≤ k. It

follows that if wi > wi+1 or i = k, then

W∆,S
x′,rp(x′),wi

= {j : ρ(x′, xj) ≤ rp(x′), wj ≥ wi, η(xj) >
1

2
+ ∆}

= {1, . . . , i}.

This implies that {1, . . . , i} ∈ W∆,S , and consequently that Yi ≥ i∆, from condition 1 of the
lemma. It follows that for all t < i ≤ k, (wi −wi+1)Yi ≥ i(wi −wi+1)∆, and that wkYk ≥ kwk∆.
Substituting these, we find that

α = wkYk +

k−1∑
i=t+1

(wi − wi+1)Yi

≥ kwk∆ +

k−1∑
i=t+1

i(wi − wi+1)∆

= wk∆ + wk−1∆ + · · ·+ wt+1∆ + (t+ 1)wt+1∆.

≥ (1−
∑
1t

wi −
n∑
k+1

wi)∆

≥ (1− 2∆

5
)∆

≥ (
4∆

5
),
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with the last inequalities holding from the arguments given for β and γ along with the fact that
0 < ∆ ≤ 1

2 . Finally, substituting these, we find that α + β + γ ≥ 4∆
5 −

2∆
5 = 2∆

5 > 0, as
desired.

We are now ready to prove the key lemma that forms one half of the main theorem (the other half
corresponding to D−WS

).

Lemma 29. Let δ, ε > 0. There exists N such that for all n > N , with probability 1 − δ over
S ∼ Dn, µ(D+ \ D+

WS
) < ε.

Proof. First, by Lemma 24, let 0 < p and 0 < ∆ be such that µ(D+ \ D+
p,∆) < ε. By combining

Lemma 27, condition 3 of Theorem 11, and condition 2 of Theorem 11 respectively, we see that there
exists N such that for all n > N , the following hold:

1. With probability at least 1 − δ
3 over S ∼ Dn, for all R ∈ W∆,S with |R| > tn,

1
|R|
∑
i∈R yi ≥ ∆.

2. With probability at least 1− δ
3 over S ∼ Dn, supx∈Rd

∑n
1 w

S
i (x)1ρ(x,xi)>rp(x) <

∆
5 .

3. With probability at least 1− δ
3 over S ∼ Dn, tn supx∈Rd w

S
i (x) < ∆

5 .

By a union bound, this implies that p,∆, S satisfy the conditions of Lemma 28 with probability at
least 1 − δ. Thus, applying the Lemma, we see that with probability 1 − δ, D+

p,∆ ⊂ D
+
WS

. This
immediately implies our claim.

By replicating all of the work in this section for D− and D−p,∆, we can similarly show the following:

Lemma 30. Let δ, ε > 0. There exists N such that for all n > N , with probability 1 − δ over
S ∼ Dn, µ(D− \ D−WS

) < ε.

Combining these two lemmas with Lemma 21 immediately implies that for all δ, ε > 0, there exists
N such that for all n > N , with probability 1− δ over S ∼ Dn,

AU (WS ,D) ≥ A(g,D)− ε.

Since V κx ⊂ Ux and since κ was arbitrary, this implies Theorem 11, which completes our proof.

B.4 Proof of Corollary 12

Recall that kn-nearest neighbors can be interpreted as a weight function, in which wSi (x) = 1
kn

if xi
is one of the kn closest points to x, and 0 otherwise. Therefore, it suffices to show that the conditions
of Theorem 11 are met.

We let W denote the weight function associated with kn-nearest neighbors.

Lemma 31. W is consistent.

Proof. It is well known (for example [6]) that kn-nearest neighbors is consistent for limn→∞ kn =∞
and limn→∞

kn
n = 0. These can easily be verified for our case.

Lemma 32. For any 0 < p < 1, limn→∞ ES∼Dn [supx∈Rd
∑n

1 w
S
i (x)1ρ(x,xi)>rp(x)] = 0.

Proof. It suffices to show that for n sufficiently large, all kn-nearest neighbors of x are located inside
B(x, rp(x)) for all x ∈ Rd. We do this by using a VC-dimension type argument to show that all balls
B(x, r) contain a number of points from S ∼ Dn that is close to their expectation.

For x ∈ Rd and r ≥ 0, let fx,r denote the 0 − 1 function defined as fx,r(x′) = 1x′∈B(x,r). Let
F = {fx,r : x ∈ Rd, r ≥ 0} denote the class of all such functions. It is well known that the VC
dimension of F is at most d+ 2.
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For f ∈ F , let Ef denote E(x′,y)∼Df(x′) and Enf denote 1
n

∑n
1 f(xi), where Enf is defined with

respect to some sample S ∼ Dn. By the standard generalization result of Vapnik and Chervonenkis
(see [10] for a proof), we have that with probability 1− δ over S ∼ Dn,

− βn
√

Ef ≤ Ef − Enf ≤ βn
√

Ef (3)

holds for all f ∈ F , where βn =
√

(4/n)((d+ 2) ln 2n+ ln(8/δ).

Suppose n is sufficiently large so that βn ≤ p
2 and kn

n < p
2 , and suppose that equation 3 holds. Pick

any x ∈ Rd and consider fx,r where r > rp(x). This implies Efx,r ≥ p. Then by equation 3, we
see that Enf ≥ p

2 . This implies that all kn nearest neighbors of x are in the ball B(x, r), and that
consequently

∑n
1 w

S
i (x)1ρ(x,xi)>r = 0. Because this holds for all x, r with x ∈ Rd and r > rp(x),

it follows that equation 2 implies that

sup
x∈X

n∑
1

wSi (x)1ρ(x,xi)>rp(x) = 0.

Because equation 3 holds with probability at least 1 − δ, and δ can be made arbitrarily small, the
desired claim follows.

Let tn =
√
dkn log n.

Lemma 33. limn→∞ES∼Dn [tn supx∈Rd w
S
i (x)] = 0.

Proof. Let S ∼ Dn. By the definition of kn nearest neighbors, supx∈Rd w
S
i (x) = 1

kn
. Therefore,

tn supx∈Rd w
S
i (x) =

√
d logn
kn

. By assumption 2. of corollary 12, limn→∞
d logn
kn

= 0, which
implies that

lim
n→∞

ES∼Dn [tn sup
x∈Rd

wSi (x)] = lim
n→∞

√
d log n

kn
= lim
n→∞

d log n

kn
= 0,

as desired.

Lemma 34. limn→∞ES∼Dn
log T (W,S)

tn
= 0.

Proof. For S ∼ Dn, recall that T (W,S) was defined as

T (W,S)|{Wx,α,β : x ∈ Rd, 0 ≤ α, 0 ≤ β ≤ 1}|,

where Wx,α,β denotes
Wx,α,β = {i : ρ(x, xi) ≤ α,wSi (x) ≥ β}.

Our goal will to be upper bound log T (W,S).

To do so, we first need a tie-breaking mechanism for kn-nearest neighbors. For each xi ∈ S, we
independently sample zi ∈ [0, 1] from the uniform distribution. We then tie break based upon the
value of zi, i.e. if ρ(x, xi) = ρ(x, xj), we say that xi is closer to x than xj if zi < zj . With
probability 1, no two values zi, zj will be equal, so this ensures that this method always works.

Let Ax,α = {i : ρ(x, xi) ≤ α} and let Bx,c = {i : zi ≤ c}. The key observation is that for any α, β,
Wx,α,β = Ax,α ∩ Bx,c for some value of c. This can be seen by noting that the nearest neighbors
of x are uniquely determined by ρ(x, xi) and zi. Therefore, it suffices to bound |A = Ax,α : x ∈
Rd, α ≥ 0}| and |B = {Bx,c : x ∈ Rd, c ≥ 0}|.

To bound |A|, observe that the set of closed balls in Rd has VC-dimension at most d + 2. Thus
by Sauer’s lemma, there are at most O(nd+2 subsets of {x1, x2, . . . , xn} that can be obtained from
closed balls. Thus |A| ≤ O(nd+2.

To bound |B|, we simply note that Bx,c consists of all i for which zi ≤ c. Since the zi can be sorted,
there are at most n+ 1 such sets. Thus |B| ≤ n+ 1.

23



Combining this, we see that T (W,S) ≤ |A||B| ≤ O(nd+3). Finally, we see that

lim
n→∞

log T (W,S)

tn
= lim
n→∞

O(d log n)√
knd log n

= lim
n→∞

√
O(d log n)

kn
= 0,

with the last inequality holding by condition 2. of Corollary 12.

Finally, we note that Corollary 12 is an immediate consequence of the previous 4 lemmas as we can
simply apply Theorem 11.

B.5 Proof of Corollary 13

Let W be a kernel classifier constructed from K and hn such that the conditions of Corollary 13
hold: that is,

1. K : [0,∞)→ [0,∞) is decreasing and satisfies
∫
Rd K(x)dx <∞.

2. limn→∞ hn = 0 and limn→∞ nhdn =∞.

3. For any c > 1, limx→∞
K(cx)
K(x) = 0.

4. For any x ≥ 0, limn→∞
n

lognK( x
hn

) =∞.

It suffices to show that the conditions of Theorem 11 are met for W . Before doing this, we will
describe one additional assumption we make for this case.

Additional Assumption: We assume thatD,U are such that there exists some compact setX ⊂ Rd
such that for all x ∈ supp(µ), Ux ⊂ X . This is primarily for convenience: observe that any distribu-
tion can be approximated arbitrarily closely by distributions satisfying these properties (as each Ux is
bounded by assumption). Importantly, because of this, we will note that it is possible for conditions 2.
and 3. of Theorem 11 to be relaxed to taking supremums overX rather than Rd. This is because in our
proof, we only ever used these conditions in their restriction to

⋃
x∈supp(µ)

⋃
x′ ∈ UxB(x′, rp(x

′)).

Using this assumption, we return to proving the corollary.
Lemma 35. W is consistent with respect to D.

Proof. Condition 1. of Corollary 13 imply that K is a regular kernel. This together with Condition 2.
implies that W is consistent: a proof can be found in [11].

To verify the second condition, it will be useful to have the following definition.
Definition 36. For any p, ε > 0 and x ∈ X , define rεp as

rεp(x) = sup{r : µ(B(x, r))− µ(B(x, rp(x)) ≤ ε}.

Lemma 37. For any p, ε > 0, there exists a constant cεp > 1 such that
rεp(x)

rp(x) ≥ cεp for all x ∈ X ,

where we set
rεp(x)

rp(x) =∞ if rp(x) = 0.

Proof. The basic idea is to use the fact that X is compact. Our strategy will be to analyze the behavior
of

rεp(x)

rp(x) over small balls B(x0, r) centered around some fixed x0, and then use compactness to pick

some finite set of balls B(x0, r). This must be done carefully because the function x→ rεp(x)

rp(x) is not
necessarily continuous.

Fix any x0 ∈ X . First, observe that rεp(x0) > rp(x0). This is because B(x0, rp(x0)) =
∩r>rp(x0)B(x0, r), and consequently limr↓rp(x0) µ(B(x0, r)) = µ(B(x0, rp(x))).

Next, define
sεp(x) = inf{r : µ(B(x, rp(x))− µ(B(x, r)) ≤ ε}.

24



We can similarly show that rp(x0) > sεp(x0).

Finally, define

r0 =
1

3
min(rεp(x0)− rp(x0), rp(x0)− sεp(x0)).

Consider any x ∈ Bo(x0, r0) where Bo denotes the open ball, and let α = ρ(x0, x). Then we have
the following.

1. rp(x) ≤ rp(x0) + α. This holds because B(x, rp(x0) + α) contains B(x0, rp(x0)), which
has probability mass at least p.

2. rp(x) ≥ rp(x0) − α. This holds because if rp(x) < rp(x0) − α, then there would exists
r < rp(x0) such that µ(B(x0, r)) ≥ p which is a contradiction.

3. B(x0, s
ε
p(x0)) ⊂ B(x, rp(x)). This is just a consequence of the definition of r0 and the

previous observation.

By the definitions of rεp and sεp, we see that µ(B(x0, r
ε
p(x0)) − µ(B(x0, s

ε
p(x0)) ≤ 2ε. By the

triangle inequality, B(x, rεp(x0)−α) ⊂ B(x0, r
ε
p(x0)) and B(x0, s

ε
p(x0)) ⊂ B(x, rp(x)). it follows

that
µ(B(x, rεp(x0)− α))− µ(B(x, rp(x))) ≤ 2ε,

which implies that r2ε
p (x) ≥ rεp(x0)− α. Therefore we have the for all x ∈ B(x0, r0),

r2ε
p (x)

rp(x)
≥
rεp(x0)− α
rp(x0) + α

≥
2rεp(x0) + rp(x0)

rεp(x0) + 2rp(x0)
.

Notice that the last expression is a constant that depends only on x0, and moreover, since rεp(x0) >

rp(x0), this constant is strictly larger than 1. Let us denote this as c(x0). Then we see that
r2ε
p (x)

rp(x) ≥
c(x0) for all x ∈ Bo(x0, r0).

Finally, observe that {Bo(x0, r0) : x0 ∈ X} forms an open cover of X and therefore has a finite

sub-cover C. Therefore, taking c = minBo(x0,r0)∈C c(x0), we see that
r2ε
p (x)

rp(x) ≥ c > 1 for all x ∈ X .
Because ε was arbitrary, the claim holds.

Lemma 38. For any 0 < p < 1, limn→∞ ES∼Dn [supx∈X
∑n

1 w
S
i (x)1ρ(x,xi)>rp(x)] = 0.

Proof. Fix p > 0, and fix any ε, δ > 0. Pick n sufficiently large so that the following hold.

1. Let cεp be as defined from Lemma 37.

sup
x∈X

K(cεprp(x)/hn)

K(rp(x)/hn)
< δ. (4)

This is possible because of conditions 2. and 3. of Corollary 13, and because the function
x→ rp(x) is continuous.

2. With probability at least 1− δ over S ∼ Dn, for all r > 0, and x ∈ X ,

|µ(B(x, r))− 1

n

n∑
1

1xi∈B(x,r)| ≤ ε. (5)

This is possible because the set of balls B(x, r) has VC dimension at most d+ 2.

We now bound ES∼Dn [supx∈X
∑n

1 w
S
i (x)1ρ(x,xi)>rp(x)] by dividing into cases where S satisfies

and doesn’t satisfy equation 5.

Suppose S satisfies equation 5. By condition 1. of Corollary 13, K is decreasing, and by Lemma 37,
rεp(x) ≥ cεprp(x). Therefore, we have that for any x ∈ X ,

n∑
1

K(ρ(x, xi)/hn)1ρ(x,xi)≥rεp(x) ≤
n∑
1

K(cεprp(x)/hn)

≤ nδK(rp(x)/hn)),
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where the second inequality comes from equation 4.

Next, by the definition of rεp(x), we have that µ(B(x, rεp(x))− µ(B(x, rp(x))) ≤ ε. Therefore, by
applying equation 5 two times, we see that for any x ∈ X

n∑
1

K(ρ(x, xi)/hn)1rp(x)<ρ(x,xi)≤rεp(x) ≤ 3nεK(rp(x)/hn).

Finally, we have that
n∑
1

wSi (x) ≥
n∑
1

K(rp(x)/hn)1ρ(x,xi)≤rp(x) ≥ n(p− ε)K(rp(x)/hn).

Therefore, using all three of our inequalities, we have that for any x ∈ X
n∑
1

wSi (x)1ρ(x,xi)>rp(x) =

n∑
1

wSi (x)1ρ(x,xi)>rεp(x) +

n∑
1

wSi (x)1rεp≥ρ(x,xi)>rp(x)

=

∑n
1 K(ρ(x, xi)/hn)1ρ(x,xi)>rεp(x) +

∑n
1 K(ρ(x, xi)/hn)1rεp≥ρ(x,xi)>rp(x)∑n

1 K(ρ(x, xi)/hn)

≤ nδK(rp(x)/hn)) + 3nεK(rp(x)/hn)

n(p− ε)K(rp(x)/hn).

=
δ + 3ε

p− ε
.

If S does not satisfy equation 5, then we simply have supx∈X
∑n

1 w
S
i (x)1ρ(x,xi)>rp(x) ≤ 1. Com-

bining all of this, we have that

ES∼Dn
n∑
1

wSi (x)1ρ(x,xi)>rp(x) ≤ δ(1) + (1− δ)δ + 3ε

p− ε
.

Since δ, ε can be made arbitrarily small, the result follows.

By assumption, X is compact and therefore has diameter D <∞. Define

tn =

√
n log nK(

D

hn
) for 1 ≤ n <∞.

Lemma 39. limn→∞ES∼Dn [tn supx∈X w
S
i (x)] = 0.

Proof. Because K is a decreasing function, we have that K(D/hn) ≤ K(ρ(x, xi)/hn) ≤ K(0). As
a result, we have that for any x ∈ X ,

tn sup
1≤i≤n

wSi (x) =
tn sup1≤i≤nK(ρ(x, xi)/hn)∑n

1 K(ρ(x, xi)/hn)

≤ tnK(0)

nK(D/hn)

= K(0)

√
n log nK(D/hn)

n2K(D/hn)2

= K(0)

√
log n

nK(D/hn)
.

However, by condition 4. of Corollary 13, limn→∞
n

lognK(D/hn) =∞. Therefore, since the above
inequality holds for all x ∈ X , we have that

lim
n→∞

ES∼Dn [tn sup
x∈X

wSi (x)] ≤ lim
n→∞

K(0)

√
log n

nK(D/hn)
= 0.
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Lemma 40. limn→∞ES∼Dn
log T (W,S)

tn
= 0.

Proof. For S ∼ Dn, recall that T (W,S) was defined as

T (W,S)|{Wx,α,β : x ∈ X , 0 ≤ α, 0 ≤ β ≤ 1}|,

where Wx,α,β denotes

Wx,α,β = {i : ρ(x, xi) ≤ α,wSi (x) ≥ β}.

Our goal will to be upper bound log T (W,S).

The key observation is that Wx,α,β is precisely the set of xi for which ρ(x, xi) ≤ r where r is some
threshold. This is because the restriction that wSi (x) ≥ β can be directly translated into ρ(x, xi) ≤ r
for some value of r, as K is a monotonically decreasing function. Thus, T (W,S) is the number of
subsets of S that can be obtained by considering the interior of some ball B(x, r) centered at x with
radius r.

We now observe that the set of closed balls in Rd has VC-dimension at most d+ 2. Thus by Sauer’s
lemma, there are at most O(nd+2 subsets of {x1, x2, . . . , xn} that can be obtained from closed balls.
Thus T (W,S) ≤ O(nd+2.

Finally, we see that

lim
n→∞

log T (W,S)

tn
= lim
n→∞

O(d log n)√
n log nK( Dhn )

≤ lim
n→∞

√
O(d log n)

nK( Dhn )
= 0,

with the last equality holding by condition 4. of Corollary 13.

Finally, we note that Corollary 13 is an immediate consequences of Lemmas 35, 38, 39, and 40, as
we can simply apply Theorem 11.

C Useful Technical Definitions and Lemmas

Lemma 41. Let µ be a measure over Rd, and letA denote a countable collections of measurable sets
Ai such that µ(

⋃
A∈AA) <∞. Then for all ε > 0, there exists a finite subset of A, {A1, . . . , Am}

such that
µ(A1 ∪A2 ∪ · · · ∪Am) > µ(

⋃
A∈A

A)− ε.

Proof. Follows directly from the definition of a measure.

C.1 The support of a distribution

Let µ be a probability measure over Rd.

Definition 42. The support of µ, supp(µ), is defined as all x ∈ Rd such that for all r > 0,
µ(B(x, r)) > 0.

From this definition, we can show that supp(µ) is closed.

Lemma 43. supp(µ) is closed.

Proof. Let x be a point such that B(x, r) ∩ supp(µ) 6= ∅ for all r > 0. It suffices to show that
x ∈ supp(µ), as this will imply closure.

Let x be such a point, and fix r > 0. Then there exists x′ ∈ B(x, r/2) such that x′ ∈ supp(µ). By
definition, we see that µ(B(x′, r/3)) > 0. However, B(x′, r/3) ⊂ B(x, r) by the triangle inequality.
it follows that µ(B(x, r)) > 0. Since r was arbitrary, it follows that x ∈ supp(µ).
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Figure 5: Our data distribution D = (µ, η) with µ+ shown in blue and µ− shown in red. Observe
that this simple distribution captures varying distances between the red and blue regions, which
necessitates having varying sizes for robustness regions.

D Experiment Details

Data Distribution Our data distribution D = (µ, η) is over R2 × {±1}, and is defined as follows.
We let µ+ consist of a uniform distribution over the circle x2 +y2 = 1, and µ− consist of the uniform
distribution over the circle (x− 0.5)2 + y2 = 0.04. The two distributions are weighted so that we
draw a point from µ+ with probability 0.7, and µ− with probability 0.3. Finally, we utilize label
noise 0.2 meaning that the label y matches that given by the Bayes optimal with probability 0.2. In
summary, D can be described with the following 4 cases:

1. With probability 0.7× 0.8, we select (x, y) with x ∈ µ+ and y = +1.

2. With probability 0.7× 0.2, we select (x, y) with x ∈ µ+ and y = −1.

3. With probability 0.3× 0.8, we select (x, y) with x ∈ µ− and y = −1.

4. With probability 0.3× 0.2, we select (x, y) with x ∈ µ− and y = +1.

We also include a drawing (Figure 5) of the support of D, with the positive portion µ+ shown in blue
and the negative portion, µ− shown in red.

Computing Robustness Regions Recall that in order to measure robustness, we utilize the so-
called partial neighborhood preserving regions V κx (Definition 6) for varying values of κ. In the
case of our data distribution D, V κx consists of points closer to x by a factor of κ than they are to
µ− (resp. µ+) when x ∈ µ+ (resp. µ−). To represent a region V κx , we simply use a function f that
verifies whether a given point x′ ∈ V κx . While this methodology is not sufficient for training general
classifiers (for a whole litany of reasons: to begin with it assumes full knowledge of the distribution),
it will suffice for our toy synthetic experiments.

Trained Classifiers We train two classifiers, both of which are kernel classifiers.

The first classifier is an exponential kernel classifier with bandwidth function hn = 1
10
√

logn
and

kernel function K(x) = e−x.

The second classifier is a polynomial kernel classifier with bandwidth function hn = 1
10n1/3 and

kernel function K(x) = 1
1+x2 .

Both of these kernels are regular kernels, and both bandwidths satisfy sufficient conditions for
consistency with respect to accuracy. In other words, both of these classifiers will converge towards
the accuracy of the Bayes optimal.

However, the first classifier is selected to satisfy the criterion of Corollary 13, whereas the second is
not. This distinction is reflected in our experiments.
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Verifying Robustness To verify the robustness of classifier f at point x (with respect to V κx ), we
simply do a grid search with grid parameter 0.01. We grid the entire regions into points with distance
at most 0.01 between them, and then verify that f has the desired value at all of those points. To
ensure proper robustness, we also simply verify that f cannot change enough within a distance of
0.01 by constructing an upper bound on how much f can possibly change. For kernel classifiers,
this is simple to do as there is a relatively straightforward upper bound on the gradient of a Kernel
classifier.
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