
A Derivation of the target shift equations

A.1 The partition function in terms of dual variables

Consider the general setting of Bayesian inference with Gaussian measurement noise (or equivalently
a DNN trained with MSE loss, weight decay, and white noise added to the gradients). Let {xµ, gµ}nµ=1

denote the inputs and targets on the training set and let x∗ ≡ xn+1 be the test point. Denote the
prior (or equivalently the equilibrium distribution of a DNN trained with no data) by P0(~f) where
fµ = f(xµ) ∈ R is the output of the model, and ~f ≡ (f1, . . . , fn, fn+1) ∈ Rn+1. The model’s
predictions (or equivalently the ensemble averaged DNN output) on the point xµ can be obtained by

∀µ ∈ {1, . . . , n+ 1} : 〈fµ〉 = ∂Jµ logZ
(
~J
) ∣∣∣∣

~J=~0

(A.1)

with the following partition function

Z
(
~J
)

=

∫
Rn+1

d~fP0

(
~f
)

exp

(
− 1

2σ2

n∑
µ=1

(fµ − gµ)
2

+
∑
µ

Jµfµ

)
(A.2)

where unless explicitly written otherwise, summations over µ run from 1 to n+ 1 (i.e. include the
test point). Here we commit to the MSE loss which facilitates the derivation, and in App. C we give
an alternative derivation that may also be applied to other losses such as cross-entropy. Our goal in
this appendix is to establish that the target shift equations are in fact saddle-point equations of the
partition function A.2 following some transformations on the variables of integration. To this end,
consider the cumulant generating function of the prior P0

(
~f
)

, given by the natural logarithm of the

characteristic function2

C
(
~t
)

= log

(∫
Rn+1

d~fei
∑
µ tµfµP0

(
~f
))

(A.3)

or expressed via the cumulant tensors:

C
(
~t
)

=

∞∑
r=2

1

r!

n+1∑
µ1,...,µr=1

κµ1,...,µr itµ1 · · · itµr (A.4)

where the sum over the cumulant tensors κµ1,...,µr does not include r = 1 since our DNN priors are

assumed to have zero mean. Notably one can re-express P0

(
~f
)

as the inverse Fourier transform of

eC(~t):

P0

(
~f
)
∝
∫
Rn+1

d~t exp

(
−i
∑
µ

tµfµ + C
(
~t
))

(A.5)

Plugging this in Eq. A.2 we obtain

Z
(
~J
)
∝
∫
Rn+1

∫
Rn+1

d~fd~t exp

(
− 1

2σ2

n∑
µ=1

(fµ − gµ)
2

+
∑
µ

(Jµ − itµ) fµ + C
(
~t
))

(A.6)

where for clarity we do not keep track of multiplicative π factors that have no effect on moments of
fµ. As the term in the exponent (the action) is quadratic in {fµ}nµ=1 and linear in fn+1 these can be
integrated out to yield an equivalent partition function phrased solely in terms of t1, ..., tn+1:

Z
(
~J
)
∝
∫
Rn
dt1 · · · dtne−S(

~t, ~J) (A.7)

where the action is now

S = −C (t1, . . . , tn,−iJn+1) +

n∑
µ=1

[
σ2

2
t2µ + itµgµ + Jµ

(
iσ2tµ − gµ

)
− σ2

2
J2
µ

]
(A.8)

2We use the characteristic function rather than the moment-generating function since the Fourier transform
and its inverse are more analytically tractable than the Laplace transform and its inverse.

14

The identification tn+1 = −iJn+1 arises from the delta function:

1

2π

∫ ∞
−∞

dfn+1e
−ifn+1(iJn+1+tn+1) = δ (iJn+1 + tn+1) (A.9)

Recall that 〈fµ〉 = ∂Jµ logZ
(
~J
) ∣∣∣

~J=~0
and notice that the first term in Eq. A.8 (the cumulant

generating function, C) depends on Jn+1 and not on {Jµ}nµ=1 whereas the rest of the action depends
on {Jµ}nµ=1 and not on Jn+1. Thus, for training points 〈fµ〉 amounts to the average of gµ − iσ2tµ,
and so we identify

∀µ ∈ {1, . . . , n} : 〈itµ〉 =
gµ − 〈fµ〉

σ2
≡ 〈δ̂gµ〉

σ2
(A.10)

where 〈· · · 〉 denotes an expectation value using Z(~J = ~0). We comment that the above relation
holds also for any (non-mixed) cumulants of itµ and δ̂gµ/σ2 except the covariance, where a constant
difference appears due to the O(J2) term in the action, namely

〈itµitν〉 − 〈itµ〉 〈itν〉 =
1

σ4

(〈
δ̂gµδ̂gν

〉
−
〈
δ̂gµ

〉〈
δ̂gν

〉)
− 1

σ2
δµν (A.11)

In the GP case the r.h.s. of Eq. A.11 would equal simply−K̃−1
µν , since on the training set the posterior

covariance of δ̂g is the same as that of f and for a GP takes the form

Σ = K −KK̃−1K (A.12)

= K −
(
K + σ2I − σ2I

)
K̃−1K

= σ2K̃−1K = σ2K̃−1
(
K + σ2I − σ2I

)
= σ2I − σ4K̃−1

namely Σµν = σ2δµν − σ4K̃−1
µν and thus 1

σ4 Σµν − 1
σ2 δµν = −K̃−1

µν . The reader should not be
alarmed by having a negative definite covariance matrix for itµ, since itµ cannot be understood as a
standard real random variable as its partition function contains imaginary terms.

To make contact with GPs it is beneficial to expand C(t1, . . . , tn,−iJn+1) in terms of its cumulants,
and split the second cumulant, describing the DNNs’ NNGP kernel, from the rest. Namely, using
Einstein summation

C (t1, . . . , tn,−iJn+1) =
1

2!
κµ1,µ2

itµ1
itµ2

+
1

3!
κµ1,µ2,µ3

itµ1
itµ2

itµ3
+O((it)4) (A.13)

κµ1,µ2 ≡ K(xµ1 ,xµ2)

C̃ (t1, . . . , tn,−iJn+1) ≡ C (t1, . . . , tn,−iJn+1) +
1

2
κµ1,µ2tµ1tµ2

Writing Eq. A.8 in this fashion gives the action:

S = −C̃
(
~t
)
− 1

2

∑
µ1,µ2

κµ1,µ2
itµ1

itµ2
+

n∑
µ=1

[
−σ

2

2
(itµ)

2
+ itµgµ + Jµ

(
iσ2tµ − gµ

)
− σ2

2
J2
µ

]
(A.14)

A.2 Saddle-point equation for the mean predictor

Having arrived at the action A.14, we can readily derive the saddle-point equations for the training
points by setting:

∀ν ∈ {1, . . . , n} : ∂itνS
(
~t, ~J
) ∣∣∣∣

~J=~0

= 0 (A.15)

This corresponds to treating the variables {itµ}nµ=1 as non-fluctuating quantities, i.e. replacing them
with their mean value: itµ → 〈itµ〉. Performing this for the training set ν ∈ {1, . . . , n} yields

n∑
µ=1

(
κµ,ν + σ2δµν

)
〈itµ〉 = gν −∆gν (A.16)

15

where

∆gν =

∞∑
r=3

1

(r − 1)!

n∑
µ1,...,µr−1=1

κν,µ1,...,µr−1 〈itµ1〉 · · ·
〈
itµr−1

〉
(A.17)

where this target shift is related to C of Eq. A.13 by

∆gν = ∂itν C̃ (t1, . . . , tn, tn+1) (A.18)

Finally, we get the expression for the mean predictor at the test point by setting 〈f∗〉 =

∂J∗ logZ
(
~J
) ∣∣∣

~J=~0
and plugging in the SP values for itµ on the training set from Eq. A.16 and the

target shift ∆g from Eq. A.17. This gives

〈f∗〉 = ∆g∗ +

n∑
µ,ν

K∗µK̃
−1
µν (gν −∆gν) (A.19)

A.3 Posterior covariance

A.3.1 Posterior covariance on the test point

The posterior covariance on the test point is important for determining the average MSE loss on the
test-set, as the latter involves the MSE of the mean-predictor plus the posterior covariance. Concretely,
we wish to calculate ∂2

J∗
log(Z), express it as an expectation value w.r.t Z and calculate this using Z

with the self-consistent target shift. To this end, note that generally if Z(J) =
∫
e−S(J) then

∂2
J log(Z(J)) = 〈S ′(0)2〉Z(J=0) − 〈S ′(0)〉2Z(J=0) − 〈S

′′(0)〉Z(J=0) (A.20)

For the action in Eq. A.14 we have

S ′(0) = −κ∗νitν − ∂it∗ C̃︸ ︷︷ ︸
∆g∗

S ′′(0) = −κ∗∗ − ∂2
it∗ C̃ (A.21)

where an Einstein summation over ν = 1, . . . , n is implicit. Further recalling that on the training set
we have

〈itµ〉 =
∑
ν

K̃−1
µν (gν −∆gν) (A.22)

〈itµitν〉 − 〈itµ〉〈itν〉 = −K̃−1
µ,ν (A.23)

where here ∆g is the full quantity without any SP approximations

∆gν =

∞∑
r=3

1

(r − 1)!

n∑
µ1,...,µr−1=1

κν,µ1,...,µr−1itµ1 · · · itµr−1 (A.24)

We obtain

Σ∗∗ = K∗∗ +
〈
∂2
it∗ C̃ (it1, . . . , itn, it∗) |t∗=0

〉
+
〈

(κ∗νitν + ∆g∗)
2
〉
− 〈κ∗νitν + ∆g∗〉2

(A.25)

where we can unpack the last two terms as〈
(κ∗νitν + ∆g∗)

2
〉
− 〈κ∗νitν + ∆g∗〉2 (A.26)

= κ∗µκ∗ν (〈itµitν〉 − 〈itµ〉 〈itν〉) + 2 (〈∆g∗κ∗µitµ〉 − 〈∆g∗〉 〈κ∗µitµ〉) +
(〈

∆g2
∗
〉
− 〈∆g∗〉2

)
One can verify that for the GP case where C̃ = 0, Eq. A.25 simplifies to

Σ∗∗ = K∗∗ −K∗µK̃−1
µ,νK

∗
ν (A.27)

which is the standard posterior covariance of a GP [37].

The expressions in Eqs. A.25, A.26 are exact, but to evaluate them in a more compact form we
approximate the tµ distribution as a Gaussian centered around the SP value.

16

A.3.2 Posterior covariance on the training set

Our target shift approach at the saddle-point level allows a computation of the fluctuations of itµ
using the standard procedure of expanding the action at the saddle-point to quadratic order in the
deviation from the SP: δtµ ≡ tµ − tSP

µ . Due to the saddle-point being an extremum this leads to
S ≈ Ssaddle + 1

2

∑
µ,ν δtµA

−1
µν δtν and thus using the standard Gaussian integration formula, one

finds that Aµν is the covariance matrix of itµ. Performing such an expansion on the action of Eq.
A.14 one finds

A−1
µν = −

(
σ2δµν +Kµν + ∆Kµν

)
(A.28)

∆Kµν = ∂itµ ∂itν C̃ (it1, . . . , itn)︸ ︷︷ ︸
∆gν

where the itµ on the r.h.s. are those of the saddle-point. Recalling Eq. A.11 we have

Σµν = 〈fµfν〉 − 〈fµ〉 〈fν〉 = −σ4
[
σ2I +K + ∆K

]−1

µν
+ σ2δµν (A.29)

and the r.h.s. coincides with the posterior covariance of a GP with a kernel equal to K + ∆K.

A.4 A criterion for the saddle-point regime

Saddle-point approximations are commonly used in statistics [12] and physics and often rely on
having partition functions of the form Z =

∫
dte−nS(t) where n is a large number and S is O(1).

In our settings we cannot simply extract such a large factor from the action and make it O(1).
Nonetheless, we argue that expanding the action to quadratic order around the saddle-point is still a
good approximation at large n, with n being the training set size. Concretely we give the following
two consistency criteria based on comparing the saddle-point results with their leading order beyond-
saddle-point corrections. The first is given by the latter correction to the mean predictor over the
scale of the saddle-point prediction

1

2

[
∂itν∂itη∆gµ

]
K̃−1
µ0µK̃

−1
νη � O(g) (A.30)

where an Einstein summation over the training-set is implicit and the derivatives are evaluated
at the saddle-point value. This criterion can be calculated for any specific model to verify the
appropriateness of the saddle-point approach. We further provide a simpler criterion

n

(
δ̂g

σ2

)2

� 1 (A.31)

which however relies on heuristic assumptions. The main purpose of this heuristic criterion is to
provide a qualitative explanation for why we expect the first criterion to be small in many interesting
large n settings.

To this end we first obtain the leading (beyond quadratic) correction to the mean. Consider the
partition function in terms of it and its expansion around the saddle-point. As P0[f] is effectively
bounded (by the Gaussian tails of the finite set of weights), the corresponding characteristic function
(eC(t1,...,tn)) is well defined over the entire complex plane. Given this, one can deform the integration
contour, along each dimension (

∫∞
−∞ dtµ), which originally laid on the real axis, to

∫∞+tSP,µ
−∞+tSP,µ

dtµ

where tSP is purely imaginary and equals −iδ̂g/σ2 so it crosses the saddle-point (see also Ref. [12]).
Next we expand the action in the deviation from the SP value: δtµ = tµ − tSP,µ to obtain

Z =

∫ ∞
−∞

δt1 · · · δtn exp

(
−S0 −

1

2!
δtµSµνδtν −

1

3!
Sµνηδtµδtνδtη +O

(
δt4
))

(A.32)

where an Einstein summation over the training set is implicit and where we denoted for m ≥ 3

Sµ1...µm ≡ ∂tµ1 · · · ∂tµmS
∣∣∣∣
~t=~tSP

= − ∂tµ1 · · · ∂tµm C̃
∣∣∣∣
~t=~tSP

= i ∂tµ1 · · · ∂tµm−1
∆gµm

∣∣∣∣
~t=~tSP

(A.33)

17

Next we consider first order perturbation theory in the cubic term and calculate the correction to the
mean of itµ or equivalently δ̂gµ/σ2.

〈itµ0〉 ≈ 〈itµ0〉SP −
1

6
Sµνη〈iδtµ0δtµδtνδtη〉SP,connected (A.34)

=
δ̂gµ0

σ2
− i

2
SµνηK̃−1

µ0µK̃
−1
νη

=
δ̂gµ0

σ2
+

1

2
∂itν∂itη∆gµ|~t=~tSPK̃

−1
µ0µK̃

−1
νη

where here the kernel is shifted: K̃ = σ2I + K + ∆K, as in Eq. A.28 and 〈...〉SP,connected

means keeping terms in Wick’s theorem which connect the operator being averaged (iδtµ0) with the
perturbation, as standard in perturbation theory. Comparing the last term on the right hand side (i.e.
the correction) with the predictions which are O(g) gives the first criterion, Eq. A.30. Depending
on context, it may be more appropriate to compare this term with the discrepancy rather than the
prediction.

Next we turn to study the scaling of this correction with n. To this end we first consider a single
derivative of ∆g (∂itν∆gµ). Note that ∆gµ, by its definition, includes contributions from at least n3

different it’s. In many cases, one expects that the value of this sum will be dominated by some finite
fraction of the training set rather than by a vanishing fraction. This assumption is in fact implicit in
our EK treatment where we replaced all

∑
µ with n

∫
. Given so, the derivative ∂itν∆gµ, which can

be viewed as the sensitivity to changing itν , is expected to go as one over the size of that fraction of
the training set, namely as 1/n. Under this collectivity assumption we expect the scaling

∂itν∆gµ = O(it−1∆gn−1) (A.35)
Making a similar collectivity assumption on higher derivatives yields

∂itη∂itν∆gµ = O(it−2∆gn−2) (A.36)

Following this we count powers of n in Eq. A.34 and find a n−2 contribution from the second
derivative of ∆g and a contribution from the summation over

∑
ην . Despite containing two summa-

tions, we argue that the latter is in fact order n. To this end consider n2∂ν∂η∆gµ for fixed ν, η, as
an effective target function (Gµ(ν, η)) where we multiplied by the scaling of the second derivative
to make G order 1. The above summation appears then as

∑
η,ν K̃

−1
ην Gµ(ν, η). Next we recall

that itµ0
= K̃−1

µ0µgµ = δ̂gµ0
/σ2, and so multiplication of a vector with K̃−1 can be interpreted as

the discrepancy w.r.t. the Gµ target. Accordingly the above summation over µ can be viewed as
performing GP Regression on Gµ(ν, η) leading to train discrepancy (itµ[G(ν, η)]) which is order
Gµ(ν, η) and hence order 1. The remaining summation has now a summand of the order 1 and hence
is O(n) or smaller. We thus find that the correction to the saddle-point scales as

〈itµ0〉 − 〈itµ0〉SP = O

(
∆g

n(δ̂g/σ2)2

)
(A.37)

Generally we expect ∆g ≈ 0 at strong over-parameterization (as non-linear effects are suppressed by
C−1) and ∆g ∼ O(g) at good performances (as this implies good performance on the training set).
Thus we generally expect ∆g = O(g) = O(1) and hence large n(δ̂g/σ2)2 controls the magnitude of
the corrections. Considering the σ2 → 0 limit, we note in passing that δ̂g/σ2 typically remains finite.
For instance it is simply K−1g for a Gaussian Process.

Considering the linear CNN model of the main text, we estimate the above heuristic criterion for
n = 650 and C = 8 where ∆g = O(g) and δ̂g ≈ 0.1g. This then gives (6.5O(g)2)−1 as the small
factor dominating the correction. As we choose O(g) = 3 in that experiment, we find that the
correction is roughly 1/60. As the discrepancy is 0.1g = O(0.3) we expect roughly a 5% relative
error in predicting the discrepancy.

B Review of the Edgeworth expansion

In this section we give a review of the Edgeworth expansion, starting from the simplest case of a
scalar valued RV and then moving on vector valued RVs so we can write down the expansion for the
output of a generic neural network on a fixed set of inputs.

18

B.1 Edgeworth expansion for a scalar random variable

Consider scalar valued continuous iid RVs {Zi} and assume WLOG 〈Zi〉 = 0,
〈
Z2
i

〉
= 1, with

higher cumulants κZr for r ≥ 3. Now consider their normalized sum YN = 1√
N

∑N
i=1 Zi. Recall that

cumulants are additive, i.e. if Z1, Z2 are independent RVs then κr(Z1 +Z2) = κr(Z1)+κr(Z2) and
that the r-th cumulant is homogeneous of degree r, i.e. if c is any constant, then κr(cZ) = crκr(Z).
Combining additivity and homogeneity of cumulants we have a relation between the cumulants of Z
and Y

κr≥2 := κYr≥2 =
NκZr

(
√
N)r

=
κZr

Nr/2−1
(B.1)

Now, let ϕ(y) := (2π)−1/2e−y
2/2 be the PDF of the standard normal distribution. The characteristic

function of Y is given by the Fourier transform of its PDF P (y) and is expressed via its cumulants

P̂ (t) := F [P (y)] = exp

(∞∑
r=1

κr
(it)r

r!

)
= exp

(∞∑
r=3

κr
(it)r

r!

)
ϕ̂(t) (B.2)

where the last equality holds since κ1 = 0, κ2 = 1 and ϕ̂(t) = e−
t2

2 . From the CLT, we know
that P (y)→ ϕ(y) as N →∞. Taking the inverse Fourier transform F−1 has the effect of mapping
it 7→ −∂y thus

P (y) = exp

(∞∑
r=3

κr
(−∂y)r

r!

)
ϕ(y) = ϕ(y)

(
1 +

∞∑
r=3

κr
r!
Hr(y)

)
(B.3)

where Hr(y) is the rth probabilist’s Hermite polynomial, defined by

Hr(y) = (−)rey
2/2 d

r

dyr
e−y

2/2 (B.4)

e.g. H4(y) = y4 − 6y2 + 3.

B.2 Edgeworth expansion for a vector valued random variable

Consider now the analogous procedure for vector-valued RVs in Rn (see [31]). We perform an
Edgeworth expansion around a centered multivariate Gaussian distribution with covariance matrix
κi,j

ϕ(~y) =
1

(2π)d/2 det(κi,j)
exp

(
−1

2
κi,jy

iyj
)

(B.5)

where κi,j is the matrix inverse of κi,j and Einstein summation is used. The r’th order cumulant
becomes a tensor with r indices, e.g. the analogue of κ4 is κi,j,k,l. The Hermite polynomials are now
multi-variate polynomials, so that the first one is Hi = κi,jy

j and the fourth one is

Hijkl(~y) = e
1
2κi′,j′y

i′yj
′

∂i∂j∂k∂le
− 1

2κi′,j′y
i′yj
′

= HiHjHkHl −HiHjκk,l[6] + κi,jκk,l[3]
(B.6)

where the postscript bracket notation is simply a convenience to avoid listing explicitly all possible
partitions of the indices, e.g. κi,jκk,l[3] = κi,jκk,l + κi,kκj,l + κi,lκj,k

In our context we are interested in even distributions where all odd cumulants vanish, so the Edgeworth
expansion reads

P (~y) = exp

(
κi,j,k,l

4!
∂i∂j∂k∂l + . . .

)
ϕ(~y) = ϕ(~y)

(
1 +

κi,j,k,l

4!
Hijkl + . . .

)
(B.7)

B.3 Edgeworth expansion for the posterior of Bayesian neural network

Consider an on-data formulation, i.e. a distribution over a vector space - the NN output evaluated on
the training set and on a single test point, rather than a distribution over the whole function space:

f (x)→ ~f ≡ (f (x1) , . . . , f (xn) , f (xn+1)) ∈ Rn+1 xn+1 = x∗ (B.8)

19

where x∗ is the test point. Let κr denote the rth cumulant of the prior P0

(
~f
)

of the network over
this space:

[κr]µ1,...,µr
= 〈f (xµ1

) , . . . , f (xµr)〉 − ”disconnected averages” µ ∈ {1, . . . , n+ 1} (B.9)

Take the baseline distribution to be Gaussian PG
(
~f
)
∝ exp

(
− 1

2
~fTK−1 ~f

)
, around which we

perform the Edgeworth expansion, thus the characteristic function of the prior reads

P̂0

(
~t
)

= exp

(∞∑
r=4

κr
(
i~t
)r

r!

)
P̂G
(
~t
)

(B.10)

and thus

P0

(
~f
)

= exp

(∞∑
r=4

(−)
r
κr~∂

r

r!

)
PG

(
~f
)

(B.11)

where we used the shorthand notation:

κr~∂
r ≡

∑
µ1,...,µr

[κr]µ1,...,µr
∂fµ1 · · · ∂fµr (B.12)

and the indices range over both the train set and the test point µ ∈

1, . . . , n+ 1︸ ︷︷ ︸
∗

. In our case, all

odd cumulants vanish, thus

exp

(∞∑
r=4

(−)
r
κr~∂

r

r!

)
= exp

(∞∑
r=4

κr~∂
r

r!

)
(B.13)

Introducing the data term and a source term, the partition function reads (denote f (xµ) ≡
fµ, f (x∗) ≡ f∗)

Z (J) =

∫
d~f

(
exp

(∞∑
r=4

κr~∂
r

r!

)
PG

(
~f
))

exp

(
− 1

2σ2

n∑
µ=1

(gµ − fµ)
2

+

n+1∑
µ=1

Jµfµ

)
(B.14)

C Target shift equations - alternative derivation

Here we derive our self-consistent target shift equations from a different approach which does not
require the introduction of the itµ integration variables by transforming to Fourier space. While this
approach requires an additional assumption (see below) it also has the benefit of being extendable to
any smooth loss function comprised of a sum over training points. In particular, below we derive it
for both MSE loss and cross entropy loss.

To this end, we examine the Edgeworth expansion for the partition function given by Eq. B.14. By
using a series of integration by parts and noting the boundary terms vanish, one can shift the action of
the higher cumulants from the prior to the data dependent term

Z
(
~J
)

=

∫
d~fPG

(
~f
)[

exp

(∞∑
r=3

1

r!

n+1∑
µ1,...,µr=1

κµ1,...,µr∂fµ1 · · · ∂fµr

)
exp

(
− 1

2σ2

n∑
µ=1

(gµ − fµ)
2

+

n+1∑
µ=1

Jµfµ

)]
(C.1)

Doing so yields an equivalent viewpoint on the problem, wherein the Gaussian data term and the non-
Gaussian prior appearing in Eq. B.14 are replaced in Eq. C.1 by a Gaussian prior and a non-Gaussian
data term.

Next we argue that in the large n limit, the non-Gaussian data-term can be expressed as a Gaussian-
data term but on a shifted target. To this end we note that when n is large, most combinations of
derivatives in the exponents act on different data points. In such cases derivatives could simply be
replaced as ∂µi → σ−2δ̂gµi , where δ̂gµi ≡ gµi − fµi denotes the discrepancy on the training point
µi.

20

Consider next how fν on a particular training point (ν) is affect by these derivative terms. Following
the above observation, most terms in the exponent will not act on fν and a 1/n portion will contain a
single derivative. The remaining rarer cases, where two derivatives act on the same ν, are neglected.
For each fν we thus replace r − 1 derivatives in the order r term in C.1 by discrepancies, leaving a
single derivative operator that is multiplied by the following quantity

∆gν ≡
∞∑
r=3

1

(r − 1)!

n∑
µ1,...,µr−1

κν,µ1...µr−1
(σ−2δ̂gµ1

) · · · (σ−2δ̂gµr−1
) (C.2)

Note that the summation indices span only the training set, not the test point: µ1, ..., µr−1 ∈
{1, . . . , n}, whereas the free index spans also the test point ν ∈ {1, . . . , n+ 1}.
Recall that an exponentiated derivative operator acts as a shifting operator, e.g. for some constant
a ∈ R, any smooth scalar function ϕ obeys ea∂xϕ (x) = ϕ (x+ a). If this ∆g was a constant, the
differential operator could now readily act on the data term. Next we make again our collectivity
assumption: as ∆g involves a sum over many data-points, it will be a weakly fluctuating quantity in
the large n limit provided the contribution to ∆g comes from a collective effect rather than by a few
data points. We thus perform our second approximation, of the mean-field type, and replace ∆g by
its average ∆g, leading to

Z
(
~J ; ∆g

)
=

∫
d~fPG

(
~f
)

exp

(
− 1

2σ2

n∑
µ=1

(
gµ −∆gµ − fµ

)2
+

n+1∑
µ=1

Jµ
(
fµ + ∆gµ

))
(C.3)

Given a fixed ∆g, C.3 is the partition function corresponding to a GP with the train targets shifted by
∆gµ and the test target shifted by ∆g∗. Following this we find that ∆g depends on the discrepancy
of the GP prediction which in turn depends on ∆g. In other words we obtain our self-consistent
equation: ∆g = 〈∆gµ〉Z(~J;∆g).

The partition function C.3 reflects the correspondence between finite DNNs and a GP with its target
shifted by ∆g. To facilitate the analytic solution of this self-consistent equation, we focus on the case〈
δ̂gµδ̂gν

〉
�
〈
δ̂gµ

〉〈
δ̂gν

〉
at least for µ 6= ν. We note that this was the case for the two toy models

we studied.

Given this, the expectation value over ∆g using the GP defined by Z
(
~J ; ∆g

)
, which consists of

products of expectation values of individual discrepancies and correlations between two discrepancies,
can then be expressed using only the former. Omitting correlations within the GP expectation value,
one obtains a simplified self-consistent equation involving only the average discrepancies:

∀µ ∈ {1, . . . , n} : 〈δ̂gµ〉Z(~J;∆g) ≡ gµ−∆gµ−〈fµ〉Z(~J;∆g) = gµ−∆gµ−
n∑

ν,ρ=1

KµνK̃
−1
νρ

(
gρ −∆gρ

)
(C.4)

with δ̂gµ now understood as a number, also within C.2. Lastly, we plug the solution to these equations
to find the prediction on the test point: 〈f(x∗)〉Z(~J;∆g). These coincide with the self-consistent
equations derived via the saddle-point approximation in the main text.

Notably the above derivation did not hinge on having MSE loss. For any loss given as a sum over
training points, L =

∑n
µ Lµ(fµ), the above derivation should hold with σ−2δ̂gµ in ∆gν replaced by

∂fµLµ. In particular for the cross entropy loss where fν,i is the pre-softmax output of the DNN for
class i we will have

∂fν,iLν = −δiν ,i +
efν,i∑
j e
fν,j

(C.5)

where i and j run over all classes, iν is the class of xν . Neatly, the above r.h.s. is again a form
of discrepancy but this time in probability space. Namely it is pmodel(i|xν) − pdata(i|xν), where
pmodel is the distribution generated by the softmax layer, and pdata is the empirical distribution.
Following this one can readily derive self-consistent equations for cross entropy loss and solve them
numerically. Further analytical progress hinges on developing analogous of the EK approximation
for cross entropy loss.

21

D Review of the Equivalent Kernel (EK)

In this appendix we generally follow [37], see also [42] for more details. The posterior mean for GP
regression

f̄GP(x∗) =
∑
µ,ν

K∗µK̃
−1
µν yν (D.1)

can be obtained as the function which minimizes the functional

J [f] =
1

2σ2

n∑
α=1

(yα − f (xα))
2

+
1

2
||f ||2H (D.2)

where ||f ||H is the RKHS norm corresponding to kernel K. Our goal is now to understand the
behaviour of the minimizer of J [f] as n → ∞. Let the data pairs (xα, yα) be drawn from the
probability measure µ(x, y). The expectation value of the MSE is

E

[
n∑
α=1

(yα − f (xα))
2

]
= n

∫
(y − f (x))

2
dµ (x, y) (D.3)

Let g (x) ≡ E [y|x] be the ground truth regression function to be learned. The variance around g (x)

is denoted σ2 (x) =
∫

(y − g (x))
2
dµ (y|x). Then writing y − f = (y − g) + (g − f) we find that

the MSE on the data target y can be broken up into the MSE on the ground truth target g plus variance
due to the noise∫

(y − f (x))
2
dµ (x, y) =

∫
(g (x)− f (x))

2
dµ (x) +

∫
σ2 (x) dµ (x) (D.4)

Since the right term on the RHS of D.4 does not depend on f we can ignore it when looking for the
minimizer of the functional which is now replaced by

Jµ [f] =
n

2σ2

∫
(g (x)− f (x))

2
dµ (x) +

1

2
||f ||2H (D.5)

To proceed we project g and f on the eigenfunctions of the kernel with respect to µ(x) which
obey

∫
µ (x′)K (x,x′)ψs (x′) = λsψs (x). Assuming that the kernel is non-degenerate so that

the ψ’s form a complete orthonormal basis, for a sufficiently well behaved target we may write
g (x) =

∑
s gsψs (x) where gs =

∫
g (x)ψs (x) dµ (x), and similarly for f . Thus the functional

becomes

Jµ [f] =
n

2σ2

∑
s

(gs − fs)2
+

1

2

∑
s

f2
s

λs
(D.6)

This is easily minimized by taking the derivative w.r.t. each fs to yield

fs =
λs

λs + σ2/n
gs (D.7)

In the limit n→∞ we have σ2/n→ 0 thus we expect that f would converge to g. The rate of this
convergence will depend on the smoothness of g, the kernel K and the measure µ(x, y). From D.7
we see that if nλs � σ2 then fs is effectively zero. This means that we cannot obtain information
about the coefficients of eigenfunctions with small eigenvalues until we get a sufficient amount of
data. Plugging the result D.7 into f (x) =

∑
s fsψs (x) and recalling gs =

∫
g (x′)ψs (x′) dµ (x′)

we find

〈f (x)〉EK =
∑
s

λsgs
λs + σ2/n

ψs (x) =

∫ ∑
s

λsψs (x)ψs (x′)

λs + σ2/n︸ ︷︷ ︸
h(x,x′)

g (x′) dµ (x′) (D.8)

The term h(x,x′) it the equivalent kernel. Notice the similarity to the vector-valued equivalent kernel
weight function h (x∗) =

(
K + σ2I

)−1
k (x∗) where K denotes the n× n matrix of covariances

between the training points with entries K (xµ,xν) and k (x∗) is the vector of covariances with
elements K (xµ,x*). The difference is that in the usual discrete formulation the prediction was
obtained as a linear combination of a finite number of observations yi with weights given by hi(x)
while here we have instead a continuous integral.

22

E Additional technical details for solving the self-consistent equations

E.1 EK limit for the CNN toy model

In this subsection we show how to arrive at Eq. 16 in the main text, which is a self-consistent equation
for the proportionality constant, α, defined by δ̂g = αg. We first show that both the shift and the
discrepancy can be written as a proportionality factor times the target, and then derive the equation.

E.1.1 The shift and the discrepancy in terms of the target

Recall that we assume a linear target with a single channel:

g (x) =

N∑
k=1

a∗k (w∗ · x̃k) (E.1)

A useful relation in our context is

∫
dµ
(
x2
) (

x̃1
i · x̃2

j

)
g
(
x2
)

=

∫
dµ
(
x2
) (

x̃1
i · x̃2

j

) N∑
k=1

a∗k
(
w∗ · x̃2

k

)
(E.2)

=
(
x̃1
i

)T


N∑
k=1

a∗k

∫
dµ
(
x2
)
x̃2
j

(
x̃2
k

)T
︸ ︷︷ ︸

δjkIS

w∗

= a∗j
(
x̃1
i ·w∗

)
This integral is useful in our context since the general cumulant of order 2m in Eq. 14 involves such
inner products of the form

(
x̃1
i · x̃2

j

)
and in the EK limit each such inner product is integrated against

a discrepancy δ̂g(x). Thus, if it were the case that δ̂g(x) could be written in terms of g in a simple
way, the self-consistent equation could be simplified dramatically. Indeed, we argue here that the
discrepancy is related to the target by the simple relation:

δ̂g ≡ g − 〈f〉 = αg (E.3)

Note that α itself is the solution to an equation that is non-linear in g, hence it is also non-linear in g
so Eq. E.3 does not imply that δ̂g scales linearly with g. However, as mentioned in the main text, this
ansatz simplifies the self-consistent equation in the EK limit from a functional equation to a scalar
equation for the factor α.

One direct way to argue for this ansatz is to simply plug it in the self-consistent equation, solve it and
compare with a numerical simulation. This is indeed what we have done, arriving at Eq. 16, and the
very good match with experiments shown in Fig. 1 provides strong evidence for the validity of this
ansatz. We can also provide a more systematic argument to justify this ansatz. In the large data set
limit, the posterior over functions, constrained in this model to linear functions, becomes symmetric
to rotations of the inputs which preserve the target g. Following this, the average of f must be of the
form of Eq. E.3, as any function orthogonal to this would violate this symmetry.

Now we argue that the target shift also admits a similar relation to the target, with some other factor:
∆g = α∆g. As we show in the next sub-subsection, this factor of α∆ can be written in terms of
α thereby arriving at a single equation for α. Notice that the target shift has a form of a geometric
series. In the linear CNN toy model we are able to sum this entire series, whose first term is related to

23

(using the notation introduced in §F):∫
dµ
(
x2
)
dµ
(
x3
)
dµ
(
x4
)
κ4

(
x1,x2,x3,x4

)
g
(
x2
)
g
(
x3
)
g
(
x4
)

(E.4)

=
λ2

C

∫
dµ2:4

N∑
i,j=1

{(1i3j) [(2i4j) + (4i2j)] + (1i4j) [(2i3j) + (3i2j)] + (1i2j) [(3i4j) + (4i3j)]} g
(
x2
)
g
(
x3
)
g
(
x4
)

=
λ2

C

N∑
i,j=1

{
2a∗i

(
a∗j
)2 ‖w∗‖2 (x̃1

i ·w∗
)

+ 2a∗i
(
a∗j
)2 ‖w∗‖2 (x̃1

i ·w∗
)

+ 2a∗i
(
a∗j
)2 ‖w∗‖2 (x̃1

i ·w∗
)}

=
6λ2

C
‖w∗‖2

 N∑
j=1

(
a∗j
)2

︸ ︷︷ ︸
≈σ2

a

N∑
i=1

a∗i
(
x̃1
i ·w∗

)
︸ ︷︷ ︸

g(x1)

≈ 6λ2

C
σ2
a‖w∗‖

2
g
(
x1
)

For simplicity we can assume ‖w∗‖2 = 1 and σ2
a = 1, thus getting a simple proportionality constant

of 6λ2

C . If we were to trade g for δ̂g, as we have in ∆g, we would get a similar result, with an extra

factor of
(

α
σ2/n

)3

. The factor of 6 will cancel out with the factor of 1/(4 − 1)! appearing in the
definition of ∆g. Repeating this calculation for the sixth cumulant, one would arrive to the same

result multiplied by a factor of λ
C

(
α

σ2/n

)2

due to the general form of the even cumulants (Eq. F.20)

and the fact that there an extra two (σ2/n)−1δ̂g’s.

E.1.2 Self-consistent equation in the EK limit

Starting from the proportionality relations δ̂g = αg and ∆g = α∆g, we can now write the self-
consistent equation for the discrepancy as

δ̂g = (g −∆g)− q λ

λ+ σ2
n

(g −∆g) (E.5)

Dividing both sides by g we get a scalar equation

α = (1− α∆)− q λ

λ+ σ2
n

(1− α∆) (E.6)

=
λ+ σ2

n

λ+ σ2
n

− q λ

λ+ σ2
n

+

(
q

λ

λ+ σ2
n

− 1

)
α∆

=
σ2
n

λ+ σ2
n

+ (1− q) λ

λ+ σ2
n

+

(
q

λ

λ+ σ2
n

− 1

)
α∆

The factor α∆ can be calculated by noticing that ∆g has the form of a geometric series. To better
understand what follows next, the reader should first go over §F. The first term in this series is related

to contracting the fourth cumulant κ4 with three δ̂g’s thus yielding a factor of λ2

C

(
α

σ2/n

)3

(recall

that in the EK approximation we trade σ2 → σ2/n). The ratio of two consecutive terms in this series

is given by λ
C

(
α

σ2/n

)2

. Using the formula for the sum of a geometric series we have

α =
σ2/n

λ+ σ2/n
+

(1− q)λ
λ+ σ2/n

+

(
q

λ

λ+ σ2/n
− 1

)
λ2

C

(
α

σ2/n

)3
[

1− λ

C

(
α

σ2/n

)2
]−1

(E.7)

E.2 Corrections to EK and estimation of the qtrain factor in the main text

The EK approximation can be improved systematically using the field-theory approach of Ref. [11]
where the EK result is interpreted as the leading order contribution, in the large n limit, to the

24

average of the GP predictor over many data-set draws from the dataset measure. However, that work
focused on the test performance whereas for qtrain we require the performance on the training set. We
briefly describe the main augmentations needed here and give the sub-leading and sub-sub-leading
corrections to the EK result on the training set, enabling us to estimate qtrain analytically within
a 16.3% relative error compared with the empirical value. Further systematic improvements are
possible but are left for future work.

We thus consider the quantity
∑
µ ϕ(xµ)f̄(xµ) where xµ is drawn from the training set, f̄(xµ) is

the predictive mean of the GP on that specific training set, and ϕ(xµ) is some function which we will
later take to be the target function (ϕ(x) = g(x)). We wish to calculate the average of this quantity
over all training set draws of size n. We begin by adding a source term of the form J

∑
µ ϕ(xµ)f(xµ)

to the action and notice a similar term appearing in the GP action (−
∑
µ(f(xµ) − g(xµ))2) due

to the MSE loss. Examining this extra term one notices that it can be absorbed as a J dependent
shift to the target on training set (g(xµ) → g(xµ) + Jσ2

2 ϕ(xµ)) following which the analysis of
Ref. [11] carries through straightforwardly. Doing so, the general result for the leading EK term and
sub-leading correction are

n

∫
dµ(x)ϕ(x)〈f(x)〉EK −

n

σ2

∫
dµ(x)ϕ(x) [Cov(x,x)(〈f(x)〉EK − g(x))] (E.8)

where Cov(x,x) = 〈f(x)f(x)〉EK − 〈f(x)〉EK〈f(x)〉EK, 〈...〉EK means averaging with ZEK of
Ref. [11], and 〈f(x)〉EK is the EK prediction of the previous section, Eq. D.8.

Turning to the specific linear CNN toy model and carrying the above expansion up to an additional
term leads to

αtrain ≈ αEK

(
1− αEK

σ2
+

3

4

α2
EK

σ4

)
(E.9)

αEK =
σ2/n

σ2/n+ λ
=

σ2/n

σ2/n+ (NS)−1

Considering for instance n = 200, σ2 = 1.0, N = 30 and S = 30, we find αEK = 0.818 and so

αtrain ≈ 0.559 (E.10)

recalling that qtrain = λ+σ2/n
λ (1− αtrain) we have

qtrain ≈ 2.4255 (E.11)

whereas the empirical value here is 2.8995.

F Cumulants for a two-layer linear CNN

In this section we explicitly derive the leading (fourth and sixth) cumulants of the toy model of §4.1,
and arrive at the general formula for the even cumulant of arbitrary order.

F.1 Fourth cumulant

F.1.1 Fourth cumulant for a CNN with general activation function (averaging over the
readout layer)

For a general activation, we have in our setting for a 2-layer CNN

f (xµ) =

N∑
i=1

C∑
c=1

ai,cφ (wc · x̃µi) =:

N∑
i=1

C∑
c=1

ai,cφ
µ
i,c (F.1)

25

The kernel is

K
(
x1,x2

)
=
〈
f
(
x1
)
f
(
x2
)〉

(F.2)

=

〈
N∑

i,i′=1

C∑
c,c′=1

ai,cφ
1
i,cai′,c′φ

2
i′,c′

〉

=

N∑
i,i′=1

C∑
c,c′=1

〈ai,cai′,c′〉a︸ ︷︷ ︸
δii′δcc′σ

2
a/CN

〈
φ1
i,cφ

2
i′,c′
〉
w

=
σ2
a

CN

N∑
i=1

C∑
c=1

〈
φ1
i,cφ

2
i,c

〉
w

=
σ2
a

N

N∑
i=1

〈
φ1
i,cφ

2
i,c

〉
w

The fourth moment is〈
f
(
x1
)
f
(
x2
)
f
(
x3
)
f
(
x4
)〉

a,w
=
∑
i1:4

∑
c1:4

〈ai1,c1ai2,c2ai3,c3ai4,c4〉a
〈
φ1
i1,c1φ

2
i2,c2φ

3
i3,c3φ

4
i4,c4

〉
w

(F.3)
Averaging over the last layer weights gives

〈ai1,c1ai2,c2ai3,c3ai4,c4〉a =

(
σ2
a

CN

)2

(δi1i2δc1c2δi3i4δc3c4 + {(13) (24) + (14) (23)}) (F.4)

So this will always make two pairs out of four φ’s, each with the same i, c indices. Notice that,
regardless of the input indices, for different channels c 6= c′ we have〈

φµi,cφ
ν
i,cφ

µ′

j,c′φ
ν′

j,c′

〉
w

=
〈
φµi,cφ

ν
i,c

〉
w

〈
φµ
′

j,c′φ
ν′

j,c′

〉
w

(F.5)

so, e.g. the first term out of three is

∑
i1:4

∑
c1:4

δi1i2δc1c2δi3i4δc3c4
〈
φ1
i1,c1φ

2
i2,c2φ

3
i3,c3φ

4
i4,c4

〉
w

(F.6)

=
∑
i1,i3

∑
c1,c3

〈
φ1
i1,c1φ

2
i1,c1φ

3
i3,c3φ

4
i3,c3

〉
w

=
∑
i1,i3


∑
c

〈
φ1
i1,cφ

2
i1,cφ

3
i3,cφ

4
i3,c

〉
w

+
∑
c1, c3
c1 6= c3

〈
φ1
i1,c1φ

2
i1,c1

〉
w

〈
φ3
i3,c3φ

4
i3,c3

〉
w


where in the last line we separated the diagonal and off-diagonal terms in the channel indices. So

(
σ2
a

CN

)−2 〈
f
(
x1
)
f
(
x2
)
f
(
x3
)
f
(
x4
)〉

a,w
(F.7)

=
∑
i1,i2

∑
c

{〈
φ1
i1,cφ

2
i1,cφ

3
i2,cφ

4
i2,c

〉
w

+
〈
φ1
i1,cφ

3
i1,cφ

2
i2,cφ

4
i2,c

〉
w

+
〈
φ1
i1,cφ

4
i1,cφ

2
i2,cφ

3
i2,c

〉
w

}
+
∑
i1,i2

∑
c1, c2
c1 6= c2

{〈
φ1
i1,c1φ

2
i1,c1

〉
w

〈
φ3
i2,c2φ

4
i2,c2

〉
w

+
〈
φ1
i1,c1φ

3
i1,c1

〉
w

〈
φ2
i2,c2φ

4
i2,c2

〉
w

+
〈
φ1
i1,c1φ

4
i1,c1

〉
w

〈
φ2
i2,c2φ

3
i2,c2

〉
w

}

26

On the other hand〈
f1f2

〉 〈
f3f4

〉
(F.8)

=

(
σ2
a

CN

N∑
i=1

C∑
c=1

〈
φ1
i,cφ

2
i,c

〉
w

)(
σ2
a

CN

N∑
i′=1

C∑
c′=1

〈
φ3
i′,c′φ

4
i′,c′
〉
w

)

=

(
σ2
a

CN

)2 N∑
i,i′=1

C∑
c,c′=1

〈
φ1
i,cφ

2
i,c

〉
w

〈
φ3
i′,c′φ

4
i′,c′
〉
w

=

(
σ2
a

CN

)2 N∑
i,i′=1


C∑

c, c′ = 1
c 6= c′

〈
φ1
i,cφ

2
i,c

〉
w

〈
φ3
i′,c′φ

4
i′,c′
〉
w

+

C∑
c=1

〈
φ1
i,cφ

2
i,c

〉
w

〈
φ3
i′,cφ

4
i′,c

〉
w


Putting it all together, the off-diagonal terms in the channel indices cancel and we are left with(

σ2
a

CN

)−2

κ4 (x1,x2,x3,x4) (F.9)

=

(
σ2
a

CN

)−2 (〈
f1f2f3f4

〉
−
(〈
f1f2

〉 〈
f3f4

〉
+
〈
f1f3

〉 〈
f2f4

〉
+
〈
f1f4

〉 〈
f2f3

〉))
=
∑
i1,i2

∑
c

{〈
φ1
i1,cφ

2
i1,cφ

3
i2,cφ

4
i2,c

〉
w

+
〈
φ1
i1,cφ

3
i1,cφ

2
i2,cφ

4
i2,c

〉
w

+
〈
φ1
i1,cφ

4
i1,cφ

2
i2,cφ

3
i2,c

〉
w

}
−
∑
i1,i2

∑
c

{〈
φ1
i1,cφ

2
i1,c

〉
w

〈
φ3
i2,cφ

4
i2,c

〉
w

+
〈
φ1
i1,cφ

3
i1,c

〉
w

〈
φ2
i2,cφ

4
i2,c

〉
w

+
〈
φ1
i1,cφ

4
i1,c

〉
w

〈
φ2
i2,cφ

3
i2,c

〉
w

}

:=

N∑
i,j=1

C∑
c=1

{〈
φ1
i,cφ

2
i,cφ

3
j,cφ

4
j,c

〉
w
−
〈
φ1
i,cφ

2
i,c

〉
w

〈
φ3
j,cφ

4
j,c

〉
w

}
+ [(1i3i) (2j4j) + (1i4i) (2j3j)]

where in the last line we introduced a short-hand notation to compactly keep track of the combinations
of the indices.

F.1.2 Fourth cumulant for linear CNN

Here, φµi,c := wc · x̃µi =
∑S
s=1 w

(c)
s x̃

(µ,i)
s . The fourth moment is〈

φ1
i,cφ

2
i,cφ

3
j,cφ

4
j,c

〉
w

(F.10)

=

S∑
s1:4=1

〈(
w(c)
s1 x̃

(1,i)
s1

)(
w(c)
s2 x̃

(2,i)
s2

)(
w(c)
s3 x̃

(3,j)
s3

)(
w(c)
s4 x̃

(4,j)
s4

)〉
w

=

S∑
s1:4=1

〈
w(c)
s1 w

(c)
s2 w

(c)
s3 w

(c)
s4

〉
w︸ ︷︷ ︸

(σ2
w/S)2·δs1s2δs3s4 [3]

x̃(1,i)
s1 x̃(2,i)

s2 x̃(3,j)
s3 x̃(4,j)

s4

=

(
σ2
w

S

)2 S∑
s1:4=1

(δs1s2δs3s4 + δs1s3δs2s4 + δs1s4δs2s3) x̃(1,i)
s1 x̃(2,i)

s2 x̃(3,j)
s3 x̃(4,j)

s4

=

(
σ2
w

S

)2 {(
x̃1
i · x̃2

i

) (
x̃3
j · x̃4

j

)
+
(
x̃1
i · x̃3

j

) (
x̃2
i · x̃4

j

)
+
(
x̃1
i · x̃4

j

) (
x̃2
i · x̃3

j

)}
:=

(
σ2
w

S

)2

{(1i2i) (3j4j) + (1i3j) (2i4j) + (1i4j) (2i3j)}

27

Similarly(
σ2
w

S

)−2 〈
φ1
i,cφ

3
i,cφ

2
j,cφ

4
j,c

〉
w

= (1i3i) (2j4j) + (1i2j) (3i4j) + (1i4j) (3i2j) (F.11)(
σ2
w

S

)−2 〈
φ1
i,cφ

4
i,cφ

2
j,cφ

3
j,c

〉
w

= (1i4i) (3j2j) + (1i3j) (4i2j) + (1i2j) (4i3j)

Notice that the 2nd and 3rd terms have (ij) (ij) while the first term has (ii) (jj). The latter will
cancel out with the

〈
φµi,cφ

ν
i,c

〉
w

〈
φµ
′

j,cφ
ν′

j,c

〉
w

terms. Thus

[(((((((1i2i) (3j4j) + (1i3j) (2i4j) + (1i4j) (2i3j)] (F.12)
+ [(((((((1i3i) (2j4j) + (1i2j) (3i4j) + (1i4j) (3i2j)]

+ [(((((((1i4i) (3j2j) + (1i3j) (4i2j) + (1i2j) (4i3j)]

− [(((((((1i2i) (3j4j) +(((((((1i3i) (2j4j) +(((((((1i4i) (3j2j)]

= (1i3j) (2i4j) + (1i4j) (2i3j) + (1i2j) (3i4j) + (1i4j) (3i2j) + (1i3j) (4i2j) + (1i2j) (4i3j)

= (1i3j) [(2i4j) + (4i2j)] + (1i4j) [(2i3j) + (3i2j)] + (1i2j) [(3i4j) + (4i3j)]

Denote λ :=
σ2
a

N
σ2
w

S The fourth cumulant is

κ4 (x1,x2,x3,x4) (F.13)

=
λ2

C

N∑
i,j=1

{(1i2j) [(3i4j) + (4i3j)] + (1i3j) [(2i4j) + (4i2j)] + (1i4j) [(2i3j) + (3i2j)]}

Notice that all terms involve inner products between x̃’s with different indices i, j, i.e. mixing
different convolutional windows. This means that κ4, and also all higher order cumulants, cannot
be written in terms of the linear kernel, which does not mix different conv-window indices. This
is in contrast to the kernel (second cumulant) of this linear CNN which is identical to that of a
corresponding linear fully connected network (FCN): K (x,x′) =

σ2
aσ

2
w

NS xTx′ It is also in contrast
to the higher cumulants of the corresponding linear FCN, where all cumulants can be expressed in
terms of products of the linear kernel.

F.2 Sixth cumulant and above

The even moments in terms of cumulants for a vector valued RV with zero odd moments and
cumulants are (see [31]):

κµ1µ2 = κµ1,µ2 (F.14)
κµ1µ2µ3µ4 = κµ1,µ2,µ3,µ4 + κµ1,µ2κµ3,µ4 [3]

κµ1µ2µ3µ4µ5µ6 = κµ1,µ2,µ3,µ4,µ5,µ6 + κµ1,µ2,µ3,µ4κµ5,µ6 [15] + κµ1,µ2κµ3,µ4κµ5,µ6 [15]

where the moments are on the l.h.s. (indices with no commas) and the cumulants are on the r.h.s.
(indices are separated with commas). Thus, the sixth cumulant is

κµ1,µ2,µ3,µ4,µ5,µ6 = κµ1µ2µ3µ4µ5µ6 − κµ1,µ2,µ3,µ4κµ5,µ6 [15]− κµ1,µ2κµ3,µ4κµ5,µ6 [15] (F.15)

In the linear case, the analogue of κµ1,µ2,µ3,µ4κµ5,µ6 is (15 such pairings, where only the numbers
"move", not the i, j, k)

1

λ3
K (x1,x2)K (x3,x4)K (x5,x6) = (1i2i) (3j4j) (5k6k) (F.16)

and the analogue of κµ1,µ2κµ3,µ4κµ5,µ6 is

C

λ3
κ4 (x1,x2,x3,x4)K (x5,x6) (F.17)

= {(1i2j) [(3i4j) + (4i3j)] + (1i3j) [(2i4j) + (4i2j)] + (1i4j) [(2i3j) + (3i2j)]} (5k6k)

= {(1i2j) (3i4j) + (1i2j) (4i3j) + (1i3j) (2i4j) + (1i3j) (4i2j) + (1i4j) (2i3j) + (1i4j) (3i2j)} (5k6k)

28

Below, we found the 6th moment for a linear CNN to be〈
φ1
i,cφ

2
i,cφ

3
j,cφ

4
j,cφ

5
k,cφ

6
k,c

〉
(F.18)

= (1i2i) (3j4j) (5k6k) + (1i3j) (2i4j) (5k6k) + (1i4j) (2i3j) (5k6k)

+ (1i2i) (3j5k) (4j6k) + (1i3j) (2i5k) (4j6k) + (1i5k) (2i3j) (4j6k)

+ (1i2i) (4j5k) (3j6k) + (1i5k) (2i4j) (3j6k) + (1i4j) (2i5k) (3j6k)

+ (1i5k) (3j4j) (2i6k) + (1i3j) (4j5k) (2i6k) + (1i4j) (3j5k) (2i6k)

+ (2i5k) (3j4j) (1i6k) + (3j5k) (2i4j) (1i6k) + (4j5k) (2i3j) (1i6k)

Notice that for every blue term we have exactly 6 red terms, so all of the colored terms will exactly
cancel out and only the uncolored terms will survive. There are 8 such uncolored terms for each one
of the 15 pairings, thus we will ultimately have 120 such pairs, thus the sixth cumulant is

κ6 (x1, . . . ,x6) =
λ3

C2

N∑
i,j,k=1

(•i•j) (•i•k) (•j•k) [120] (F.19)

where the [120] stands for the number of ways to pair the numbers {1, ..., 6} into the form
(•i•j) (•i•k) (•j•k).

We can thus identify a pattern which holds for any even cumulant of arbitrary order 2m:

κ2m (x1, . . . ,x2m) =
λm

Cm−1

N∑
i1,...,im=1

(•i1 , •i2) · · ·
(
•im−2 , •im−1

) (
•im−1 , •im

)
· · · [(2m− 1)!]

(F.20)
where the indices i1, . . . , im obey the following:

1. Each index appears exactly twice in each summand.

2. Each index cannot be paired with itself, i.e. (•i1 , •i1) is not allowed.

3. The same pairing can appear more than once, e.g. (1i2j) (3i4j) (5k6`) (7k8`) is OK, in that
i, j are paired together twice, and so are k, `.

G Feature learning phase transition

G.1 Field theory derivation of the statistics of the hidden weights covariance

Although our main focus was on the statistics of the DNN outputs, our function-space formalism
can also be used to characterize the statistics of the weights of the intermediate hidden layers. Here
we focus on the linear CNN toy model given in the main text, where the learnable parameters of
the student are given by θ = {wc,s, ai,c}. Consider first a prior distribution in output space, where
throughout this section we denote: ~f ≡ (f1, . . . , fn), i.e. the vector of outputs on the training set
alone (without the test point). Since we are interested in the statistics of the hidden weights, we will
introduce an appropriate source term in weight space Jc,s

P0

[
~f, {Jc,s}

]
∝
∫
dw

∫
da exp

(
− 1

2σ2
w

∑
c,s

(
wc,s − σ2

wJc,s
)2)

P0 (a)

n∏
µ=1

δ (fµ − zθ,µ)

(G.1)
where zθ,µ is the of output of the CNN parameterized by θ on the µ’th training point. Given some
loss function L, the posterior is given by

P
[
~f, {Jc,s}

]
= P0

[
~f, {Jc,s}

]
e−L/σ

2

(G.2)

The posterior mean of the hidden weights is thus

∂Jc,s log

(∫
Rn
d~fP

[
~f, {Jc,s}

]) ∣∣∣∣
J=0

= 〈wc,s〉P [~f,{Jc,s}] − σ
2
wJc,s

∣∣∣∣
J=0

= 〈wc,s〉P [~f,{Jc,s}]

(G.3)

29

and the posterior covariance can be extracted from taking the second derivative, namely

∂Jc1,s1∂Jc2,s2 log

(∫
Rn
d~fP

[
~f, {Jc,s}

]) ∣∣∣∣
J=0

(G.4)

= 〈wc1,s1wc2,s2〉P [~f,{Jc,s}] + σ4
wJc1,s1Jc2,s2

∣∣∣∣
J=0

− σ2
wδs1s2δc1c2

= 〈wc1,s1wc2,s2〉 − σ2
wδs1s2δc1c2

Our next task is to rewrite these expectation values over weights under the posterior as expectation
values of DNN training outputs (f(xµ)) under the posterior. To this end we write down the kernel of
this simple CNN such that it depends on the source terms:

KJ (x,x′) =
∑

i,i′,c,c′,s,s′

〈
ai,cwc,sx̃i,sai′,c′wc′,s′ x̃

′
i′,s′
〉
P [~f,Jc,s]

(G.5)

=
∑

i,i′,c,c′

〈ai,cai′,c′〉a︸ ︷︷ ︸
δii′δcc′/CN

∑
s,s′

〈
wc,sx̃i,swc′,s′ x̃

′
i′,s′
〉
w,J

=
1

CN

∑
i,c

∑
s,s′

〈
wc,sx̃i,swc,s′ x̃

′
i,s′
〉
w,J

=
1

N

∑
i

∑
s,s′

1

C

∑
c

〈wc,swc,s′〉w,J︸ ︷︷ ︸
(1/S)δss′+(1/S2)JcsJcs′

x̃i,sx̃
′
i,s′

=
1

NS

1

C

∑
i

∑
s

∑
c

x̃i,sx̃
′
i,s +

1

NS2

∑
i

∑
s,s′

(
1

C

∑
c

JcsJcs′

)
︸ ︷︷ ︸

≡Bss′

x̃i,sx̃
′
i,s′

=
1

NS
xTx′ +

1

NS2

∑
i

x̃T
i Bx̃′i

where B ∈ RS×S . This can be written as (d = NS)

KJ (x,x′) =
1

NS
xT

Id +
1

S

B . . .
B


x′ (G.6)

We can now write the second mixed derivatives of KJ to leading order in J as

−∂Jc1,s1∂Jc2,s2K
−1
J (x,x′) = −NSxT

∂Jc1,s1∂Jc2,s2
Id +

1

S

B . . .
B



−1x′

(G.7)

= −NSxT

∂Jc1,s1∂Jc2,s2
Id − 1

S

B . . .
B



x′

=
N

C

∑
i

∑
s,s′

x̃i,sx̃
′
i,s′∂Jc1,s1∂Jc2,s2

∑
c

JcsJcs′

=
N

C
δc1c2

∑
i

∑
s,s′

x̃i,sx̃
′
i,s′ (δss2δs1s′ + δs′s2δs1s)

= 2
N

C
δc1c2

∑
i

x̃i,s1 x̃
′
i,s2

30

Next we take the large C limit and thus have a posterior of the form P [~f, J] = P0[~f, J]e−L/σ
2

where P0[~f] contains only K−1
J and none of the higher cumulants. Having the derivatives of K−1

J
w.r.t. J we can proceed in analyzing the derivatives of the log-partition function for the posterior w.r.t
J . In particular the covariance matrix of the weights averaged over the different channels is

1

C

∑
c1,c2

∂Jc1,s1∂Jc2,s2 log

(∫
Rn
d~fP

[
~f, J
])

(G.8)

= − 1

C

n∑
µ,ν=1

{∑
c1,c2

[
∂Jc1,s1∂Jc2,s2K

−1
J (xµ,xν)

] ∫Rn d~fP [~f]f (xµ) f (xν)∫
Rn d

~fP [~f]

}

= 2
N

C2

∑
i

n∑
µ,ν=1

x̃µi,s1 x̃
ν
i,s2

∫
Rn d

~fP [~f]f (xµ) f (xν)∫
Rn d

~fP [~f]

∑
c1,c2

δc1c2

= 2
N

C

∑
i

n∑
µ,ν=1

x̃µi,s1 x̃
ν
i,s2

∫
Rn d

~fP [~f]f (xµ) f (xν)∫
Rn d

~fP [~f]

The above result is one of the two main points of this appendix: we established a mapping between
expectation values over outputs and expectation values over hidden weights. Such a mapping can
in principle be extended to any DNN. On the technical level, it requires the ability to calculate the
cumulants as a function of the source terms, J . As we argue below, it may very well be that unlike in
the main text, only a few cumulants are needed here.

To estimate the above expectation values we use the EK limit, where the sums over the training set
are replaced by integrals over the measure µ(x), the f ’s are replaced as f (xµ)→ λ

λ+σ2/ng (x) and
we assume the input distribution is normalized as

∫
dµ (x)xixj = δij . Following this we find

2
N

C

(
λ

λ+ σ2/n

)2 ∫
dµ (x) dµ (x′) g (x) g (x′)

∑
i

x̃i,s1 x̃
′
i,s2 (G.9)

= 2
N

C

(
λ

λ+ σ2/n

)2∑
i

∫
dµ (x) g (x) x̃i,s1︸ ︷︷ ︸

a∗iw
∗
s1

∫
dµ (x′) g (x′) x̃′i,s2︸ ︷︷ ︸

a∗iw
∗
s2

= 2
N

C

(
λ

λ+ σ2/n

)2∑
i

(a∗i)
2

︸ ︷︷ ︸
1

w∗s1w
∗
s2

= 2
N

C

(
λ

λ+ σ2/n

)2

w∗s1w
∗
s2

Comparing this to our earlier result for the covariance Eq. G.4 we get

2
N

C

(
λ

λ+ σ2/n

)2

w∗s1w
∗
s2 =

1

C

∑
c1,c2

(
〈wc1,s1wc2,s2〉 − σ2

wδs1s2δc1c2
)

(G.10)

=
1

C

∑
c1,c2

〈wc1,s1wc2,s2〉 − σ2
wδs1s2

Multiplying by S = 1/σ2
w and recalling that λ = 1/NS we get〈

[ΣW]s1s2
〉

= δs1s2 +
2

C

λ

(λ+ σ2/n)
2w
∗
s1w
∗
s2 +O

(
1/C2

)
(G.11)

Repeating similar steps while also taking into account diagonal fluctuations yields another factor of(
1
λ + n

σ2

)−1
on the diagonal, thus arriving at the result as it appears in the main text:

〈
[ΣW]s1s2

〉
=

(
1 +

(
1

λ
+

n

σ2

)−1
)
δs1s2 +

2

C

λ

(λ+ σ2/n)
2w
∗
s1w
∗
s2 +O

(
1/C2

)
(G.12)

31

The above results capture the leading order correction in 1/C to the weights covariance matrix.
However the careful reader may be wary of the fact that the results in the main text require 1/C
corrections to all orders and so it is potentially inadequate to use such a low order expansion deep in
the feature learning regime, as we do in the main text. Here we note that not all DNN quantities need
to have the same dependence on C. In particular it was shown in Ref. [26], that the weight’s low order
statistics is only weakly affected by finite-width corrections whereas the output covariance matrix is
strongly affected by these. We conjecture that this is the case here and that only the cumulative effect
of many weights, as reflected in the output of the DNN, requires strong 1/C corrections.

This conjecture can be verified analytically by repeating the above procedure on the full prior (i.e. the
one that contains all cumulants), obtaining the operator in terms of f ’s corresponding the weight’s
covariance matrix, and calculating its average with respect to the saddle-point theory. We leave this
for future work.

G.2 A surrogate quantity for the outlier

Since we used moderate S values in our simulations (to maintain a reasonable compute time), we
aggregated the eigenvalues of many instances of ΣW across training time and across noise realizations.
Although the empirical histogram of the spectrum of ΣW agrees very well with the theoretical MP
distribution (solid smooth curves in Fig. 2A), there is a substantial difference between the two at
the right edge of the support λ+, where the empirical histogram has a tail due to finite size effects.
Thus it is hard to characterize the phase transition using the largest eigenvalue λmax averaged across
realizations. Instead, we use the quantity Q ≡ w∗TΣWw∗ as a surrogate which coincides with λmax

for C � Ccrit but behaves sensibly on both sides of Ccrit, thus allowing to characterize the phase
transition.

H Further details on the numerical experiments

H.1 Additional details for the CNN toy model

In our experiments, we used the following hyper-parameter values. Learning rates of η = 10−6, 3 ·
10−7 which yield results with no appreciable difference in almost all cases, when we scale the
amount of statistics collected (training epochs after reaching equilibrium) so that both η values have
the same amount of re-scaled training time: we used 10 training seeds for η = 10−6 and 30 for
η = 3 · 10−7. We used a gradient noise level of σ2 = 1.0, but also checked for σ2 ∈ {0.1, 0.01} and
got qualitatively similar results to those reported in the main text.

(A) (B) (C)

Figure 3: (A) The CNNs’ cosine distance α, defined by 〈f〉 = (1 − α)g between the ensemble-
averaged prediction 〈f〉 and ground truth g plotted vs. number of channels C for the training set (for
the test set see Fig. 1 in the main text). As n increases, the solution of the self-consistent equation 16
(solid line) yields an increasingly accurate prediction of these empirical values (dots). (B) Same data
as in (A), presented as empirical α vs. predicted α. As n grows, the two converge to the identity line
(dashed black line). Solid lines connecting the dots here are merely for visualization purposes. (C)
The theoretical predictions of the self-consistent theory but using only the fourth cumulant (dotted
lines), and the predictions of perturbation theory to order 1/C (dashed lines, truncated to avoid large
negative values in the figure).

In the main text and here we do not show error bars for α as these are too small to be appreciated
visually. They are smaller than the mean values by approximately two orders of magnitude. The error
bars were found by computing the empirical standard deviation of α across training dynamics and
training seeds.

32

H.2 Convergence of the training protocol to GP for the toy CNN model

In Fig. 4 we plot the MSE between the outputs of the trained CNNs and the predictions of the
corresponding GP. We see that as C becomes large the slope of the MSE tends to −2.0 indicating the
O(1/C) scaling of the leading corrections to the GP. This illustrates where we enter the perturbative
regime of GP, and we see that this happens for larger C as we increase the conv-kernel size S,
since this also increases the input dimension d = NS. Thus it takes larger C to enter the highly
over-parameterized regime.

Figure 4: CNN-GP MSEs for different S, indicating where the perturbative regime starts (slope
approaching −2.0). For S = 15 this happens around C = 25 whereas for S = 30 this happens
around C = 27.

H.3 Additional details for the Myrtle5 CNN experiment

In this subsection we give additional details on the results mentioned in §4.3. We trained the Myrtle-5
CNN [41] with our training protocol on subsets (n ∈ {16, 32, 64}) of CIFAR-10. We used a training
noise level of σ2 = 0.005 and learning rates η ∈ [2 · 10−5, 2 · 10−7] with un-averaged (i.e. sum flag
in PyTorch) MSE loss. Thus these learning rates correspond to learning rates higher by a factor of n
times 10 (the number of categories in CIFAR-10) when training with standard MSE (i.e. mean flag
in PyTorch). Training was done either with a constant learning rate or in some cases with an initial
phase lasting for 105 epochs with 20-times the final learning rate used to sample from equilibrium.
The overall number of epochs was on the scale of 106 and the outputs were recorded every 100− 400
epochs on the train and test sets.

To provide approximate samples from the posterior distribution that are approximately uncorrelated,
several steps were taken. First, we discarded a burn-in phase where the train loss relaxes to its minimal
values (to within 2 − 3% from its initial value) by judging where the train-loss saturates. Second,
we calculate the auto-correlation of all the outputs after that burn-in phase which roughly decayed
exponentially and calculate the auto-correlation time (ACT) of that decay in terms of epochs. We
then down-sampled the recorded outputs on intervals corresponding to that ACT, typically obtaining
between 100 to 300 samples. To verify that the learning rate is sufficiently small we first examined
the training loss, calculated its variance, and made sure that it is much smaller than the mean. We
then compared the train and test loss of two small learning rates differing by a factor of two and
reported results where the change is less than 10%. We verified that such changes had minor effects
on the non-normality measures relative to the statistical error.

Table 1 summarizes our results. The columns of the table are as follows:

• CNN-GP train and test (the ∆-Train and ∆-Test columns)- the MSE between the
predictions of the finite Myrtle-5 CNN and the corresponding GP normalized by the L2 norm
of the target function (the one-hot encoding of the categorical labels). The corresponding
GP was calculated using the Neural Tangents library [35], using an NNGP kernel.

• acc of ave - the full test accuracy of the predictions of the CNN outputs after averaging
these outputs over the equilibrium dynamics.

• ave of acc - first compute the full test accuracy of the predictions of the CNN outputs for
each time point, then average over the equilibrium dynamics.

• Non-normality measures - κCNN
4 was obtained by taking each of the 10n time series

produced by the dynamics, down-sampling them according to the ACTs, and for each
calculating its variance and 4th cumulant and dividing the latter by the variance to the power

33

of 2. The reported κCNN
4 is the square root of the sum of squares of this resulting list of 10n

normalized 4th cumulants. Turning to κPCA
4 it is the same as the previous quantity only

instead of generating a time series to each data-point and label — replacing the data-points
with their projections on the eigenvectors of the posterior covariance of the associated
Gaussian Process. This is meant to pick up potential correlations between data-points.
Last, κGauss

4 is obtained by repeating the first process, for the same amount of ACTs and
same number of series (10n), however with Gaussian uncorrelated random variables of unit
standard deviation.

• ACTs - The number of ACTs that fit in the number of epochs after the burn-in phase.

Table 1: Myrtle5 CNN on CIFAR-10: Normality of fluctuations and departure from GP predictions.
Error bars are within 20% of the reported values for ∆-Train and ∆-Test and 10% for κCNN

4 and
κPCA

4 whereas κGauss
4 has negligible error bars.

n C ∆-Train ∆-Test acc of ave ave of acc κCNN
4 κPCA

4 κGauss
4 ACTs

16 1024 0.004 0.006 - - 0.356 0.371 0.356 202
32 32 0.400 0.564 19.10% 18.28% 0.371 0.375 0.356 209
32 256 0.128 0.101 18.10% 17.82% 0.532 0.442 0.503 103
32 512 0.033 0.038 17.67% 17.74% 0.309 0.280 0.302 288
64 512 0.079 0.093 21.96% 21.89% 0.395 0.380 0.448 135

Looking at Table 1, we can make several observations:

• As expected, for n = 16 and C = 1024 we see a very small difference between the
predictions of the finite CNN and those of the corresponding GP (small ∆-Train and ∆-
Test). Not surprisingly, the non-normality measures indicate that the fluctuations are very
close to being Gaussian: κ4 of the CNN and that of a Gaussian differ only at the 5th decimal
point (not shown). To get a sense of the scale of this measure, consider deforming a Gaussian
distribution by applying the mapping x 7→ sin(ax)/a with a = 0.426 to a standard Gaussian
random variable. After this mapping, for x that equals the standard deviation we would have
a deformation of 3%, resulting in a value of κCNN

4 = 0.53. Hence, this measure is quite
sensitive to deviations from normality.

• For the three n = 32 experiments, we see that as C decreases the finite CNN predictions
grow further apart from those of the corresponding GP but the non-normality measure
(κCNN

4 /κGP
4) stays roughly the same and close to 1.0, indicating that the fluctuations remain

close to being Gaussian even for small C. This is consistent with our description of finite-
width CNNs as shifted GPs, since this description is a result of a saddle-point approximation
and the latter holds when the fluctuations are approximately Gaussian.

• The test performance of our training protocol for these tiny training sets is comparable
and in fact better than those reported in [41], who used standard mini-batch SGD training
(11.83% ± 1.34% for n = 20, 12.16% ± 2.20% for n = 40, and 18.96% ± 2.04% for
n = 80). This demonstrates that we are in an interesting regime of DNN performance, at
least for these tiny data-sets.

I Quadratic fully connected network

One of the simplest settings where GPs are expected to strongly under-perform finite DNNs is the
case of quadratic fully connected DNNs [28]. Here we consider some positive teacher g and a student
DNN f of the form

g(x) = (w∗ · x)2 − σ2
w‖x‖

2
f(x) =

M∑
m=1

(wm · x)
2 − σ2

w‖x‖
2 (I.1)

where w∗,x ∈ Rd. The ‖x‖2 shift is not part of the original model but has only a superficial shift
effect useful for book-keeping later on.

34

At large M and for wm,i drawn from N (0, σ2
w/M), the student generates a GP prior. It is shown

below that the GP kernel is simply K(x,x′) =
2σ4
w

M (x · x′)2. As such it is proportional to the
kernel of the above DNN with an additional linear read-out layer. The above model can be written
as
∑
ij xi[Pij − σ2

wδij]xj where Pij is a positive semi-definite matrix. The eigenvalues of the
matrix appearing within the brackets are therefore larger than −σ2

w whereas no similar restriction
occurs for DNNs with a linear read-out layer. This extra restriction is completely missed by the GP
approximation and, as discussed in Ref. [28], leads to strong performance improvements compared
to what one expects from the GP or equivalently the DNN with the linear readout layer. Here we
demonstrate that our self-consistent approach at the saddle-point level captures this effect.

We consider training this DNN on n train points {xµ}nµ=1 using noisy GD training with weight decay
γ = Mσ2/σ2

w. We wish to solve for the predictions of this model with our shifted target approach.
To this end, we first derive the cumulants associated with the effective Bayesian prior (P0(~f)) here.
Equivalently stated, obtain the cumulants of the equilibrium distribution of ~f following training with
no data, only a weight decay term. This latter distribution is given by

P0

(
~f
)

=

∫
dwe

− M
2σ2w

∑M
m=1 ‖wm‖

2
n+1∏
µ=1

δ

(
fµ −

M∑
m=1

(wm · xµ)
2

+ σ2
w‖xµ‖

2

)
(I.2)

To obtain the cumulants, we calculate the cumulant generating function of this distribution given by

C(t1, ..., tn+1) (I.3)

= log

∫ M,d∏
m,i=1

dwm,i√
2πM−1σ2

w

e
−

∑M,d
m,i=1,1M

w2
m,i

2σ2w
+
∑n+1
µ=1 itµ[

∑M,d
m,i=1,1(wm·xµ)2−σ2

w‖xµ‖
2]


= M log

(∫ d∏
i=1

dwi√
2πM−1σ2

w

e
−M ‖w‖

2

2σ2w
+
∑n+1
µ=1 itµ[(w·xµ)2]

)
−
n+1∑
µ=1

itµσ
2
w‖xµ‖

2

= M log

(∫ d∏
i=1

dwi√
2πM−1σ2

w

e
−

wT[I−2M−1σ2w
∑
µ itµxµxT

µ]w
2M−1σ2w

)
−
n+1∑
µ=1

itµσ
2
w‖xµ‖

2

= −M
2

log

(
det

[
I − 2M−1σ2

w

∑
µ

itµxµx
T
µ

])
−
n+1∑
µ=1

itµσ
2
w‖xµ‖

2

= −M
2

Tr

(
log

[
I − 2M−1σ2

w

∑
µ

itµxµx
T
µ

])
−
n+1∑
µ=1

itµσ
2
w‖xµ‖

2

Taylor expanding this last expression is straightforward. For instance up to third order is gives

C(t1, ..., tn+1) =
M

2

∑
µ1,µ2

(2M−1σ2
w)2 itµ1

itµ2

2
(xµ1 · xµ2)(xµ2 · xµ1) (I.4)

+
M

2

∑
µ1,µ2,µ3

(2M−1σ2
w)3 itµ1

itµ2
itµ3

3
(xµ1 · xµ2)(xµ2 · xµ3)(xµ3 · xµ1) + ...

from which the cumulants can be directly inferred, in particular the associated GP kernel given by

K (xµ,xν) = 2M−1σ4
w (xµ · xν)

2 (I.5)

35

Following this, the target shift equation, at the saddle-point level, becomes

∆gν = ∂tν

(
C(t1..tn, tn+1 = 0)−

∑
µ1,µ2

K(xµ1 ,xµ2)

2!
itµ1

itµ2

)
|
t1..tn=

δ̂g1
σ2

.. δ̂gn
σ2

(I.6)

= −
∑
µ

K (xν ,xµ)
δ̂gµ
σ2

+ σ2
w Tr

xνx
T
ν

[
I − 2M−1σ2

w

∑
µ

δ̂gµ
σ2

xµxµ

]−1
− σ2

w‖xν‖
2

= −
n∑
µ=1

K (xν ,xµ)
δ̂gµ
σ2

+ σ2
wx

T
ν

[
I − 2M−1σ2

w

n∑
µ=1

δ̂gµ
σ2

xµx
T
µ

]−1

xν − σ2
w‖xν‖

2

δ̂gν = (gν −∆gν)−
n∑

µ,µ′=1

K (xν ,xµ) K̃−1
µ,µ′ (gµ′ −∆gµ′)

The above non-linear equation for the quantities δ̂g1, . . . , δ̂gn could be solved numerically, with the
most numerically demanding part being the inverse of K̃µ,ν = K(xµ,xν) + σ2δµ,ν on the training
set.

Figure 5: Test MSE as a function of n/d for the phase retrieval model as predicted by our self-
consistent equation at the saddle-point level (without any EK-type approximation). Train and test
data are drawn uniformly from the d = 20 hypersphere with radius 1. The graph shows the median
test MSE of 60 different data sets. Our approach captures the desired n = 2d threshold value [28]
whereas lazy-learning/GP will predict a cross over at n = O(d2).

Figure 5 shows the numerical results for the test MSE as obtained by solving the above equations
for δ̂g on the training set, taking ν = ∗ in these equation together with the self-consistent δ̂gµ to
find the mean-predictor, and taking the average MSE of the latter over the test set. Both test and
train data sets were random points sampled uniformly from a d dimensional hypersphere of radius
one. The test dataset contained 100 points and the figure shows the test MSE as a function of n/d
where d = 20, σ2

w = 1, σ2 = 2.76 · 10−6, M = 4d, and w∗i drawn from N (0, 1). The non-linear
equations were solved using the Newton-Krylov algorithm together with gradual annealing from
σ2 = 1 down to the above values. The figure shows the median over 60 data sets. Remarkably, our
self-consistent approach yields the expected threshold values of n/d = 2 [28] separating good and
poor performance. Discerning whether this is a threshold or a smooth cross-over in the large d limit
is left for future work.

Turning to analytics, one can again employ the EK approximation as done for the CNN. However
taking σ2 to zero invalidates the EK approximation and requires a more advance treatment as in Ref.

36

[11]. We thus leave an EK type analysis of the self-consistent equation at σ2 = 0 for future work and
instead focus on the simpler case of finite σ2 where analytical predictions can again be derived in
similar fashion to our treatment of the CNN.

To simplify things further, we also commit to the distribution [xµ]i ∼ N (0, 1/d). In this setting
K(x,x′) has two distinct eigenvalues w.r.t. to this measure, the larger one (λ0 = 2M−1σ4

w

(
2
d2 + 1

d

)
)

associated with f(x) = ‖x‖2 and a smaller one (λ2 = 2M−1σ4
w

2
d2) associated with xixj (with

i 6= j) and
∑
i aix

2
i (with

∑d
i=1 ai = 0) eigenfunctions.

Next we argue that provided the discrepancy is of the following form

δ̂gµ = αg(xµ) + βσ2
w‖x‖

2
µ (I.7)

then within the EK limit the target shift is also of the form of the r.h.s. with α∆ and β∆ and the
target shift equations reduce to two coupled non-linear equations for α and β. Following the EK
approximation, we replace all

∑
µ in the target shift equation with n

∫
dµx and obtain

∆g(x) = − n

σ2

∫
dµx′K (x,x′) δ̂g(x′) + σ2

wx
T

[
I − 2M−1σ2

w

n

σ2

∫
dµx′ δ̂g(x′)x′x′T

]−1

x− σ2
w‖x‖

2

(I.8)

Next we note that the i 6= j element of the matrix
∫
dµxg(x)xxT is given by∫

dµxg(x)xixj =

∫
dµx

(
(w∗ · x)

2 − σ2
w‖x‖

2
)
xixj = 2d−2w∗iw

∗
j (I.9)

whereas for i = j we obtain∫
dµxg(x)xixi = 3d−2((w∗i)2 − σ2

w) +
∑
j 6=i

d−2((w∗j)2 − σ2
w) (I.10)

= 3d−2((w∗i)2 − σ2
w) +

∑
j

d−2((w∗j)2 − σ2
w)− d−2((w∗i)2 − σ2

w)

= 2d−2((w∗i)2 − σ2
w)

taking this together with the simpler term (
∫
dµ(x)βα

∑
i xixixx

T = β(d+2)
αd2 I)

∆g(y) = − n

σ2

∫
dµx′K(x,x′)

[
αg(x′) + βσ2

w‖x′‖
2
]

+ . . .

σ2
wx

T

[
I − 2λ2

n

σ2
wσ

2
σ2
wd
−2

[
w∗w

T
∗ − σ2

w

(
1− β(d+ 2)

2α

)
I

]]−1

x− σ2
w‖x‖

2 (I.11)

Consider the matrix (w∗w
T
∗ + bI), appearing in the above denominator with b =

(
βσ2

w(d+2)
2α − σ2

w

)
,

and note that

xT · (w∗wT
∗ + bI)nx = (w∗ · x)2 (‖w∗‖2 + b)n − bn

‖w∗‖2
+ bn‖x‖2 (I.12)

Plugging this equation into a Taylor expansion of the denominator of Eq. I.11 one finds that all the
resulting terms are of the desired form of a linear superposition of g(x) and ‖x‖2. Considering the
first term on the r.h.s. of Eq. I.11, β‖x‖2 is already an eigenfunction of the kernel whereas g(x) can
be re-written as

g(x) ≡
∑
i 6=j

w∗iw
∗
jxixj +

∑
i

(w∗i)2x2
i − σ2

w‖x‖
2 (I.13)

=
∑
i 6=j

w∗iw
∗
jxixj +

∑
i

(
(w∗i)2 − ‖w∗‖

2

d

)
x2
i +

(
‖w∗‖2

d
− σ2

w

)
‖x‖2

37

so that the first two terms on the r.h.s. are λ2 eigenfunctions and the last one is a λ0 eigenfunctions.
Summing these different contributions along with the aforementioned Taylor expansion, one finds
that ∆g(x) is indeed a linear superposition of g(x) and ‖x‖2.

Next we wish to write down the saddle-point equations for α and β. For simplicity we focus on
the case where g(x) is chosen orthogonal to ‖x‖2 under dµ(x), namely ‖w∗‖2 = dσ2

w. Under this
choice the self-consistent equations become

α =
σ2

n

λ2 + σ2

n

[
1− αcσ2

w

1− αbc

(
1

1− α‖w∗‖2c
1−αbc

)
+

n

σ2
αλ2

]
(I.14)

β = −
σ2

n

λ0 + σ2

n

[
αc

1− αbc

(
b+ σ2

w

1

1− α‖w∗‖2c
1−αbc

)
− n

σ2
βλ0

]
where the constant b was defined above and c = nλ2

σ2
wσ

2 .

Next we perform several straightforward algebraic manipulations with the aim of extracting their
asymptotic behavior at large n. Noting that cσ2

w = n
σ2λ2, c‖w∗‖2 = 2d n

σ2λ2, and αcb = − n
σ2 (αλ2−

2βλ0) we have

α =
1

λ2 + σ2

n

σ2

n
− αλ2

1 + n
σ2 (αλ2 − 2βλ0)

 1

1− αd n
σ2
λ2

1+ n
σ2

(αλ2−2βλ0)

+ αλ2

 (I.15)

β =
−1

λ0 + σ2

n

 2α λ0

d+2

1 + n
σ2 (αλ2 − 2βλ0)

β(d+ 2)

2α
− 1 +

1

1− αd n
σ2
λ2

1+ n
σ2

(αλ2−2βλ0)

− βλ0


Further simplifications yield

α =
1

λ2 + σ2

n

[
σ2

n
− αλ2

1 + n
σ2 (αλ2 − 2βλ0 − αdλ2)

+ αλ2

]
(I.16)

β =
−1

λ0 + σ2

n

[
2α λ0

d+2

1 + n
σ2 (αλ2 − 2βλ0)

(
β(d+ 2)

2α
+

α n
σ2 dλ2

1 + n
σ2 (αλ2 − 2βλ0 − αdλ2)

)
− βλ0

]
noting that dλ2 = 2(λ0 − λ2) we find

α =
1

λ2 + σ2

n

[
σ2

n
− αλ2

1− n
σ2 (αλ2 + 2(β + α)λ0)

+ αλ2

]
(I.17)

β =
−1

λ0 + σ2

n

[
2α λ0

d+2

1 + n
σ2 (αλ2 − 2βλ0)

(
β(d+ 2)

2α
+

α n
σ2 dλ2

1− n
σ2 (αλ2 + 2(β + α)λ0)

)
− βλ0

]
The first equation above is linear in β and yields in the large d limit

β = −α− α

d(1− α)
+

σ2

2λ0n
(I.18)

It can also be used to show that
αλ2

1− n
σ2 (αλ2 + 2(β + α)λ0)

= (1− α)
σ2

n
(I.19)

which when placed in the second equation yields

β =
λ0

λ0 + σ2

n

n
σ2 β(αλ2 − 2βλ0) + 2(1− α)α

1 + n
σ2 (αλ2 − 2βλ0)

(I.20)

At large n, we expect α and β to go to zero. Accordingly to find the asymptotic decay to zero, one
can approximate α(1 − α) ≈ α, and similarly α/(1 − α) ≈ α. This along with the large d limit
simplifies the equations to a quadratic equation in β

β2 2λ0n

σ2

(
1− λ0

λ0 + σ2/n

)
+ β

(
−1− 2

λ0

λ0 + σ2/n

)
+

λ0

λ0 + σ2/n

σ2

λ0n
(I.21)

38

which for σ2/n� λ0 simplifies further into

2β2 − 3β +
σ2

2λ0n
= 0 (I.22)

yielding

β =
4

18

σ2

λ0n
(I.23)

α =
5

18

σ2

λ0n
(I.24)

We thus find that both α and β are of the order of σ
2/n

2λ0
= n−1Mdσ2

4σ4
w

. Hence n scaling as Md ensures
good performance. This could have been anticipated as for small yet finite σ2 each n can be seen
as a soft constrained on the parameters of the DNN and since the DNN contains Md parameters
n = O(Md) should provide enough data to fix the student’s parameters close to the teacher’s.

39

