
Road Map of Appendix Our appendix is organized into five sections. The notation table is in464

Appendix A, which contains the mathematical notation and Algorithm 1, which outlines the pipeline465

of FEDLGD. Appendix B shows the results for RETINA, a real-world medical dataset. Appendix C466

provides a list of ablation studies to analyze FEDLGD, including computation cost, communication467

overhead, convergence rate, and hyper-parameter choices. Appendix D lists the details of our468

experiments: D.1 visualizes the original sample images used in our experiments; D.2 visualizes469

the local and global distilled images; D.3 shows the pixel histogram for the DIGITS and RETINA470

datasets for visualizing the heterogeneity of them; D.4 shows the model architectures that we used in471

the experiments; D.5 contains the hyper-parameters that we used to conduct all experiments; D.6472

provides experiments and analysis for the privacy of FEDLGD through membership inference attack.473

Finally, Appendix E provides a detailed literature review and implementation of the state-of-the-art474

heterogeneous FL strategies. Our code and model checkpoints are available in this anonymous link:475

https://drive.google.com/drive/folders/1Hpy8kgPtxC_NMqK6eALwukFZJB7yf8Vl?usp=sharing4.476

A Notation Table477

Table 3: Important notations used in the paper.
Notations Description

d input dimension
d0 feature dimension
f✓ global model
✓ model parameters
 feature extractor
h projection head

Dg, Dc original global and local data
D̃g, D̃c global and local synthetic data
f̃g, f̃ c features of global and local synthetic data
Ltotal total loss function for virtual federated training
LCE cross-entropy loss
LDist Distance loss for gradient matching
LMMD MMD loss for distribution matching
LCon Contrastive loss for local training regularization
� coefficient for local training regularization term
T total training iterations
T c

D
local data updating iterations for each call

T g

D
global data updating iterations for each call

⌧ local global distillation iterations

4The link was created by a new and anonymous account without leaking any identifiable information.
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Algorithm 1 Federated Virtual Learning with Local-global Distillation

Require: f✓: Model,  ✓: Feature extractor, ✓: Model parameters, D̃: Virtual data, D: Original data,
L: Losses, G: Gradients.

Distillation Functions:
D̃c  DistributionMatch(Dc, f✓)
D̃c

t
 IterativeDistributionMatch(D̃c

t�1
, f✓

t
)

D̃g

t+1
 FederatedGradientMatch(D̃g

t
, Gg

t
)

Initialization:
D̃c

0
 DistributionMatch(Dc

rand
, f✓

rand
) . Distilled local data for virtual FL training

FEDLGD Pipeline:
for t = 1, . . . , T do

Clients:
for each selected Client do

if t 2 ⌧ then . Local-global distillation
D̃c

t
 IterativeDistributionMatch(D̃c

t�1
, f✓

t
)

Gc
t
 r✓LCE(D̃c

t
, f✓

t
)

else
D̃c

t
 D̃c

t�1

Gc
t
 r✓

⇣
LCE(D̃c

t
, f✓

t
) + �LCON( ✓

t
(D̃g

t
), ✓

t
(D̃c

t
))
⌘

end if
Uploads Gc

t to Server
end for
Server:
Gg

t
 Aggregate(G1

t
, ..., Gc

t
)

if t 2 ⌧ then . Local-global distillation
D̃g

t+1
 FederatedGradientMatch(D̃g

t
, Gg

t
)

Send D̃g

t+1
to Clients

end if
f✓
t+1
 ModelUpdate(Gg

t
, f✓

t
)

Send f✓
t+1

to Clients
end for
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B Experiment Results on Real-world Dataset478

Table 4: Test accuracy for RETINA experiments under different model architectures and IPC=10. R
and C stand for ResNet18 and ConvNet, respectively. We have 4 clients: Drishti(D), Acrima(A),
Rim(Ri), and Refuge(Re), respectively. We also show the average test accuracy (Avg). The best
results on ConvNet are marked in red and in bold for ResNet18. The same accuracy for different
methods is due to the limited number of testing samples.

RETINA D A Ri Re Avg

FedAvg R 31.6 71.0 52.0 78.5 58.3
C 69.4 84.0 88.0 86.5 82.0

FedProx R 31.6 70.0 52.0 78.5 58.0
C 68.4 84.0 88.0 86.5 81.7

FedNova R 31.6 71.0 52.0 78.5 58.3
C 68.4 84.0 88.0 86.5 81.7

Scaffold R 31.6 73.0 49.0 78.5 58.0
C 68.4 84.0 88.0 86.5 81.7

MOON R 42.1 71.0 57.0 70.0 60.0
C 57.9 72.0 76.0 85.0 72.7

VHL R 47.4 62.0 50.0 76.5 59.0
C 68.4 78.0 81.0 87.0 78.6

FEDLGD R 57.9 75.0 59.0 77.0 67.2
C 78.9 86.0 88.0 87.5 85.1

Dataset. For medical dataset, we use the retina image datasets, RETINA = {Drishti [36], Acrima[6],479

Rim [2], Refuge [32]}, where each dataset contains retina images from different stations with480

image size 96 ⇥ 96, thus forming four clients in FL. We perform binary classification to identify481

Glaucomatous and Normal. Example images and distributions can be found in Appendix D.3. Each482

client has a held-out testing set. In the following experiments, we will use the distilled local virtual483

training sets for training and test the models on the original testing sets. The sample population484

statistics for both experiments are available in Table 12 and Table 14 in Appendix D.5.485

Comparison with baselines. The results for RETINA experiments are shown in Table 4, where D, A,486

Ri, Re represent Drishti, Acrima, Rim, and Refuge datasets. We only set IPC=10 for this experiment487

as clients in RETINA contain much fewer data points. The learning rate is set to 0.001. The same488

as in the previous experiment, we vary arch 2 { ConvNet, ResNet18}. Similarly, ConvNet shows489

the best performance among architectures, and FEDLGD has the best performance compared to the490

other methods w.r.t the unweighted averaged accuracy (Avg) among clients. To be precise, FEDLGD491

increases unweighted averaged test accuracy for 3.1%(versus the best baseline) on ConvNet and492

7.2%(versus the best baseline) on ResNet18, respectively. The same accuracy for different methods493

is due to the limited number of testing samples. We conjecture the reason why VHL [37] has lower494

performance improvement in RETINA experiments is that this dataset is in higher dimensional and495

clinical diagnosis evidence on fine-grained details, e.g., cup-to-disc ratio and disc rim integrity [34].496

Therefore, it is difficult for untrained StyleGAN [19] to serve as anchor for this kind of larger images.497

15



C Additional Results and Ablation Studies for FEDLGD498

C.1 Different random seeds499

To show the consistent performance of FEDLGD, we repeat the experiments for DIGITS, CIFAR10C,500

and RETINA with three random seeds, and report the validation loss and accuracy curves in Figure 5501

and 6 (The standard deviations of the curves are plotted as shadows.). We use ConvNet for all502

the experiments. IPC is set to 50 for CIFAR10C and DIGITS; 10 for RETINA. We use the default503

hyperparameters for each dataset, and only report FedAvg, FedProx, Scaffold, VHL, which achieves504

the best performance among baseline as indicated in Table 1, 2, and 4 for clear visualization. One can505

observe that FEDLGD has faster convergence rate and results in optimal performances compared to506

other baseline methods.507

(a) (b) (c)

Figure 5: Averaged testing loss for (a) DIGITS with IPC = 50, (b) CIFAR10C with IPC = 50, and
(c) RETINA with IPC = 10 experiments.

(a) (b) (c)

Figure 6: Averaged testing accuracy for (a) DIGITS with IPC = 50, (b) CIFAR10C with IPC = 50, and
(c) RETINA with IPC = 10 experiments.

C.2 Different heterogeniety levels of label shift508

In the experiment presented in Sec 4.3, we study FEDLGD under both label and domain shifts, where509

labels are sampled from Dirichlet distribution. To ensure dataset distillation performance, we ensure510

that each class at least has 100 samples per client, thus setting the coefficient of Dirichlet distribution511

↵ = 2 to simulate the worst case of label heterogeneity that meets the quality dataset distillation512

requirement 5. Here, we show the performance with a less heterogeneity level (↵ = 5) while keeping513

the other settings the same as those in Sec.4.3. The results are shown in Table 5. As we expect,514

the performance drop when the heterogeneity level increases (↵ decreases). One can observe that515

when heterogeneity increases, FEDLGD’s performance drop less except for VHL. We conjecture516

that VHL yields similar test accuracy for ↵ = 2 and ↵ = 5 is that it uses fixed global virtual data so517

that the effectiveness of regularization loss does not improve much even if the heterogeneity level is518

decreased. Nevertheless, FEDLGD consistently outperforms all the baseline methods.519

5The ↵ should be 2 instead of 0.5 in Sec 4.3.
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Table 5: Comparison of different ↵ for Drichilet distribution on CIFAR10C.
↵ FedAvg [29] FedProx [26] FedNova [38] Scaffold [18] MOON [24] VHL [37] FEDLGD
2 54.9 54.9 53.2 54.5 51.6 55.2 57.4
5 55.4 55.4 55.4 55.6 51.1 55.4 58.1

Table 6: Computation cost for each epoch. Nc and Ns stand for the number of updating iteration for
local and global virtual data, and we defaultly set as 100 and 500, respectively. Note that we only set
|⌧ | = 10 iterations, which is a relatively small number compare to total epochs(100).

Dataset Vanilla FedAvg FEDLGD(iters 2 ⌧ ) FEDLGD(iters /2 ⌧ ) FEDLGD(server)
DIGITS 238K 2.7K + 3.4K ⇥ Nc 4.8K 2.9K ⇥ Ns
CIFAR10C 53M 2.7K + 3.4K ⇥ Nc 4.8K 2.9K ⇥ Ns
RETINA 1.76M 0.7K + 0.9K ⇥ Nc 1K 0.9K ⇥ Ns

C.3 Computation Cost520

Computation cost for DIGITS experiment on each epoch can be found in Table 7. Nc and Ns stand for521

the number of updating iterations for local and global virtual data, and as default, we it set as 100 and522

500, respectively. The computation costs for FEDLGD in DIGITS and CIFAR10C are identical since523

we used virtual data with fixed size and number for training. Plugging in the number, clients only524

need to operate 3.9M FLOPs for total 100 training epochs with ⌧ = 10 (our default setting), which is525

significantly smaller than vanilla FedAvg using original data (23.8M and 5,300M for DIGITS and526

CIFAR10C, respectively.).527

Table 7: Communication overhead for each epoch. Note that the IPC for our global virtual data is 10,
and the clients only need to download it for |⌧ | = 10 times.

Image size ConvNet ResNet18 Global virtual data
28 ⇥ 28 311K 11M 23K ⇥ IPC
96 ⇥ 96 336K 13M 55K ⇥ IPC

C.4 Communication Overhead528

The communication overhead for each epoch in DIGITS and CIFAR10C experiments are identical529

since we use same architectures and size of global virtual data (Table. 7 28 ⇥ 28). The analysis530

of RETINA is shown in row 96 ⇥ 96. Note that the IPC for our global virtual data is 10, and the531

clients only need to download it for |⌧ | times. Although FEDLGD requires clients to download532

additional data which is almost double the original Bytes (311K + 230K), we would like to point533

out that this only happens |⌧ | = 10 times, which is a relatively small number compared to total FL534

training iterations.535

C.5 Analysis of batch size536

Batch size is another factor for training the FL model and our distilled data. We vary the batch537

size 2 {8, 16, 32, 64} to train models for CIFAR10C with the fixed default learning rate. We show538

the effect of batch size in Table 8 reported on average testing accuracy. One can observe that the539

performance is slightly better with moderately smaller batch size which might due to two reasons:540

1) more frequent model update locally; and 2) larger model update provides larger gradients, and541

FEDLGD can benefit from the large gradients to distill higher quality virtual data. Overall, the results542

are generally stable with different batch size choices.543

C.6 Analysis of Local Epoch544

Aggregating at different frequencies is known as an important factor that affects FL behavior. Here,545

we vary the local epoch 2 {1, 2, 5} to train all baseline models on CIFAR10C. Figure 7 shows the546

result of test accuracy under different epochs. One can observe that as the local epoch increases, the547

performance of FEDLGD would drop a little bit. This is because doing gradient matching requires the548

model to be trained to an intermediate level, and if local epochs increase, the loss of DIGITS models549
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Table 8: Varying batch size in FEDLGD on CIFAR10C. We report the unweighted accuracy. One can
observe that the performance increases when the batch size decreases.

Batch Size 8 16 32 64
CIFAR10C 59.5 58.3 57.4 56.0

will drop significantly. However, FEDLGD still consistently outperforms the baseline methods. As550

our future work, we will investigate the tuning of the learning rate in the early training stage to551

alleviate the effect.552

Figure 7: Comparison of model performances under different local epochs with CIFAR10C.

C.7 Different Initialization for Virtual Images553

To validate our proposed initialization for virtual images has the best trade-off between privacy and554

efficacy, we compare our test accuracy with the models trained with synthetic images initialized by555

random noise and real images in Table 9. To show the effect of initialization under large domain556

shift, we run experiments on DIGITS dataset. One can observe that our method which utilizes the557

statistics (µi,�i) of local clients as initialization outperforms random noise initialization. Although558

our performance is slightly worse than the initialization that uses real images from clients, we do not559

ask the clients to share real images to the server which is more privacy-preserving.560

Table 9: Comparison of different initialization for synthetic images DIGITS
CIFAR10C MNIST SVHN USPS SynthDigits MNIST-M Average
Noise (N (0, 1)) 96.3 75.9 93.3 72.0 83.7 84.2
Ours (N (µi,�i)) 97.1 77.3 94.6 78.5 86.1 86.7
Real images 97.7 78.8 94.2 82.4 89.5 88.5
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D Experimental details561

D.1 Visualization of the original images562

D.1.1 Digits dataset563

(a) (b) (c) (d) (e)

Figure 8: Visualization of the original digits dataset. (a) visualized the MNIST client; (b) visualized
the SVHN client; (c) visualized the USPS client; (d) visualized the SynthDigits client; (e) visualized
the MNIST-M client.

D.1.2 Retina dataset564

(a) (b) (c) (d)

Figure 9: Visualization of the original retina dataset. (a) visualized the Drishti client; (b) visualized
the Acrima client; (c) visualized the Rim client; (d) visualized the Refuge client.

D.1.3 Cifar10C dataset565
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(a) (b) (c)

(d) (e) (f)

Figure 10: Visualization of the original CIFAR10C. Sampled images from the first six clients.

D.2 Visualization of our distilled global and local images566

D.2.1 Digits dataset567

(a) (b) (c)

(d) (e) (f)

Figure 11: Visualization of the global and local distilled images from the digits dataset. (a) visualized
the MNIST client; (b) visualized the SVHN client; (c) visualized the USPS client; (d) visualized the
SynthDigits client; (e) visualized the MNIST-M client; (f) visualized the server distilled data.

D.2.2 Retina dataset568

D.2.3 Cifar10C dataset569
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(a) (b) (c) (d) (e)

Figure 12: Visualization of the global and local distilled images from retina dataset. (a) visualized
the Drishti client; (b) visualized the Acrima client; (c) visualized the Rim client; (d) visualized the
Refuge client; (e) visualized the server distilled data.

(a) (b) (c)

(d) (e) (f) (g)

Figure 13: (a)-(f) visualizes the distailled images for the first six clients of CIFAR10C. (g) visualizes
the global distilled images.

D.3 Visualization of the heterogeneity of the datasets570

D.3.1 Digits dataset571

(a) MNIST (b) SVHN (c) USPS (d) SynthDigits (e) MNIST-M

Figure 14: Histogram for the frequency of each RGB value in original DIGITS. The red bar represents
the count for R; the green bar represents the frequency of each pixel for G; the blue bar represents the
frequency of each pixel for B. One can observe the distributions are very different. Note that figure
(a) and figure (c) are both greyscale images with most pixels lying in 0 and 255.
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(a) Drishti (b) Acrima (c) RIM (d) REFUGE

Figure 15: Histogram for the frequency of each RGB value in original RETINA. The red bar represents
the count for R; the green bar represents the frequency of each pixel for G; the blue bar represents the
frequency of each pixel for B.

D.3.2 Retina dataset572

D.3.3 CIFAR10C dataset573

(a) (b) (c)

(d) (e) (f)

Figure 16: Histogram for the frequency of each RGB value in the first six clients of original CIFAR10C.
The red bar represents the count for R; the green bar represents the frequency of each pixel for G; the
blue bar represents the frequency of each pixel for B.

D.4 Model architecture574

For our benchmark experiments, we use ConvNet to both distill the images and train the classifier.575
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Table 10: ResNet 18 architecture. For the convolutional layer (Conv2D), we list parameters with a
sequence of input and output dimensions, kernel size, stride, and padding. For the max pooling layer
(MaxPool2D), we list kernel and stride. For a fully connected layer (FC), we list input and output
dimensions. For the BatchNormalization layer (BN), we list the channel dimension.

Layer Details
1 Conv2D(3, 64, 7, 2, 3), BN(64), ReLU
2 Conv2D(64, 64, 3, 1, 1), BN(64), ReLU
3 Conv2D(64, 64, 3, 1, 1), BN(64)
4 Conv2D(64, 64, 3, 1, 1), BN(64), ReLU
5 Conv2D(64, 64, 3, 1, 1), BN(64)
6 Conv2D(64, 128, 3, 2, 1), BN(128), ReLU
7 Conv2D(128, 128, 3, 1, 1), BN(64)
8 Conv2D(64, 128, 1, 2, 0), BN(128)
9 Conv2D(128, 128, 3, 1, 1), BN(128), ReLU
10 Conv2D(128, 128, 3, 1, 1), BN(64)
11 Conv2D(128, 256, 3, 2, 1), BN(128), ReLU
12 Conv2D(256, 256, 3, 1, 1), BN(64)
13 Conv2D(128, 256, 1, 2, 0), BN(128)
14 Conv2D(256, 256, 3, 1, 1), BN(128), ReLU
15 Conv2D(256, 256, 3, 1, 1), BN(64)
16 Conv2D(256, 512, 3, 2, 1), BN(512), ReLU
17 Conv2D(512, 512, 3, 1, 1), BN(512)
18 Conv2D(256, 512, 1, 2, 0), BN(512)
19 Conv2D(512, 512, 3, 1, 1), BN(512), ReLU
20 Conv2D(512, 512, 3, 1, 1), BN(512)
21 AvgPool2D
22 FC(512, num_class)

Table 11: ConvNet architecture. For the convolutional layer (Conv2D), we list parameters with a
sequence of input and output dimensions, kernel size, stride, and padding. For the max pooling layer
(MaxPool2D), we list kernel and stride. For a fully connected layer (FC), we list the input and output
dimensions. For the GroupNormalization layer (GN), we list the channel dimension.

Layer Details
1 Conv2D(3, 128, 3, 1, 1), GN(128), ReLU, AvgPool2d(2,2,0)
2 Conv2D(128, 118, 3, 1, 1), GN(128), ReLU, AvgPool2d(2,2,0)
3 Conv2D(128, 128, 3, 1, 1), GN(128), ReLU, AvgPool2d(2,2,0)
4 FC(1152, num_class)

D.5 Training details576

We provide detailed settings for experiments conducted in Table 12 for DIGITS, Table 13 for577

CIFAR10C, and Table 14 for RETINA.578
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Table 12: DIGITS settings for all federated learning, including the number of training and testing
examples, and local update epochs. Image per class is the number of distilled images used for
distribution matching only in FEDLGD.

DataSets MNIST SVHN USPS SynthDigits MNIST-M
Number of clients 1 1 1 1 1

Number of Training Samples 60000 73257 7291 10000 10331
Number of Testing Samples 10000 26032 2007 2000 209

Image per Class 10,50 10,50 10,50 10,50 10,50
Local Update Epochs 1,2,5 1,2,5 1,2,5 1,2,5 1,2,5

Local Distillation Update Epochs 50, 100, 200 50, 100, 200 50, 100, 200 50, 100, 200 50, 100, 200
global Distillation Update Epochs 200, 500, 1000 200, 500, 1000 200, 500, 1000 200, 500, 1000 200, 500, 1000

� 10 10 10 10 10

Table 13: CIFAR10C settings for all federated learning, including the client ratio for training and
testing examples, and local update epochs. Image per class is the number of distilled images used for
distribution matching only in FEDLGD.

↵ 2 5
Number of clients 57 57

Averaged Number of Training Samples 21790 15000
Standard Deviation of of Training Samples 6753 1453

Averaged Number of Testing Samples 2419 1666
Standard Deviation of Number of Testing Samples 742 165

Image per Class 10,50 10,50
Local Update Epochs 1,2,5 1,2,5

Local Distillation Update Epochs 50, 100, 200 50, 100, 200
global Distillation Update Epochs 200, 500, 1000 200, 500, 1000

� 1 1

Table 14: RETINA settings for all federated learning, including the number of training and testing
examples and local update epochs. Image per class is the number of distilled images used for
distribution matching only in FEDLGD.

Datasets Drishti Acrima RIM Refuge
Number of clients 1 1 1 1

Number of Training Samples 82 605 385 1000
Number of Testing Samples 19 100 100 200

Image per class 10 10 10 10
Local Distillation Update Epochs 100 100 100 100
global Distillation Update Epochs 500 500 500 500

� 0.1 0.1 0.1 0.1
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D.6 Membership Inference Attack579

Studies show that neural networks are prone to suffer from several privacy attacks such as Membership580

Inference Attacks (MIA) [35]. In MIA, the attackers have a list of query data, and the purpose is to581

determine whether the query data belongs to the original training set. As discussed in [7, 40], using582

distilled data to train a target model can defend against multiple attacks up to a certain level. We583

will especially apply MIA to test whether our work can defend against privacy attacks. In detail, we584

perform MIA directly on models trained with FedAvg (using the original data set) and FEDLGD585

(using the synthetic dataset). We show the attack results in Figure 17 following the evaluation in586

[3]. If the ROC curve intersects with the diagonal dashed line (representing a random membership587

classifier) or lies below it (indicating that membership inference performs worse than random chance),588

it signifies that the approach provides a stronger defense against membership inference compared589

to the method with a larger area under the ROC curve. It can be observed that models trained with590

synthetic data exhibit ROC curves that are more closely aligned with or positioned below the diagonal591

line, suggesting that attacking membership becomes more challenging.592

(a) MIA on Synth-Digits (b) MIA on MNIST-M

Figure 17: MIA attack results on models trained with FedAvg (using original dataset) and FEDLGD
(using distilled virtual dataset). If the ROC curve is the same as the diagonal line, it means the
membership cannot be inferred. One can observe the ROC curve for the model trained with synthetic
data is closer to the diagonal line, which indicates the membership information is harder to be
inferred.

E Other Heterogeneous Federated Learning Methods Used in Comparison593

FL trains the central model over a variety of distributed clients that contain non-iid data. We detailed594

each of the baseline methods we compared in Section 4 below.595

FedAvg [29] The most popular aggregation strategy in modern FL, Federated Averaging (Fe-596

dAvg) [29], averages the uploaded clients’ model as the updated server model. Mathematically, the597

aggregation is represented as wt+1 = wt�⌘
P

i2St

|Di|
n �wt

k [23]. Because FedAVG is only capable598

of handling Non-IID data to a limited degree, current FL studies proposed improvements in either599

local training or global aggregation based on it.600

FedProx [25] FedProx improves local training by directly adding a L2 regularization term, µ,601
µ
2
||w � wt||2 controlled by hyperparameter µ, in the local objection function to shorten the distance602

between the server and the client distance. Namely, this regularization enforces the updated model603

to be as close to the global optima as possible during aggregation. In our experiment, we carefully604

tuned µ to achieve the current results.605

FedNova [38] FedNova aims to tackle imbalances in the aggregation stage caused by different606

levels of training (e.g., a gap in local steps between different clients) before updating from different607

clients. The idea is to make larger local updates for clients with deep level of local training (e.g.,608
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a large local epoch). This way, FedNova scales and normalizes the clients’ model before sending609

them to the global model. Specifically, it improves its objective from FedAvg to wt+1 = wt �610

⌘
P

i2St
|Di|⌧i

n

P
i2St

|Di|�wt
k

n⌧i
[23].611

Scaffold [18] Scaffold introduces variance reduction techniques to correct the ‘clients drift’ caused612

by gradient dissimilarity. Specifically, the variance on the server side is represented as v, and on the613

clients’ side is represented as vi. The local control variant is then added as vi� v+ 1

⌧i⌘
(wt�wt

i). At614

the same time, the Scaffold adds the drift on the client side as wt = wt � ⌘(�(wt; b)� vti + v) [23].615

Virtual Homogeneous Learning (VHL) [37] VHL proposes to calibrate local feature learning by616

adding a regularization term with global anchor for local training objectives E(x,y)⇠Pk
l(⇢� (x), y)+617

E(x,y)⇠Pv
l(⇢ � (x), y)+�Eyd(Pk( (x)|y), Pc( (x)|y)). They theoretically and empirically show618

that adding the term can improve the FL performance. In the implementation, they use untrained619

StyleGAN [19] to generate global anchor data and leave it unchanged during training.620

A comprehensive experimental study of FL can be found here [23]. Also, a survey of heterogeneous621

FL is here [48].622

26


	Introduction
	Related Work
	Dataset Distillation
	Heterogeneous Federated Learning
	Datasets Distillation for FL

	Method
	Setup for Federated Virtual Learning
	Overall Pipeline
	FL with Local-Global Dataset Distillation
	Local Data Distillation
	Global Data Distillation


	Experiment
	Training and Evaluation Setup
	DIGITS Experiment
	CIFAR10C Experiment
	Ablation studies for FedLGD

	Conclusion
	Notation Table
	Experiment Results on Real-world Dataset
	Additional Results and Ablation Studies for FedLGD
	Different random seeds
	Different heterogeniety levels of label shift 
	Computation Cost
	Communication Overhead
	Analysis of batch size
	Analysis of Local Epoch
	Different Initialization for Virtual Images

	Experimental details
	Visualization of the original images
	Digits dataset
	Retina dataset
	Cifar10C dataset

	Visualization of our distilled global and local images
	Digits dataset
	Retina dataset
	Cifar10C dataset

	Visualization of the heterogeneity of the datasets
	Digits dataset
	Retina dataset
	CIFAR10C dataset

	Model architecture
	Training details
	Membership Inference Attack

	Other Heterogeneous Federated Learning Methods Used in Comparison

