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A Table of Notations

We show in the table below the notations grouped by the modules. The values used in our imple-
mentation are shown if applicable.

Table A1: Table of Notations

Model

X Input motion signal
xt The tth time step of the input signal

Sizes

L = 32 Input length
l = 8 Snippet length
S Number of snippets, S = L/l
N = 8 Number of snippet capsules
M = 80 Number of segment capsules

Snippet Capsule

SniCap Snippet Capsule
T Snippet template (of a snippet capsule)
A Snippet transformation parameters
µi Activation of the ith snippet template

Segment Capsule

SegCap Segment Capsule
P Segment template (of a segment capsule)
P Spatial relation between a segment template and all the snippet templates
α The weights of snippet templates when used to form a segment template
B Segment transformation parameters
ν(k) Activation of the kth segment template

B Number of Layers

The necessity of a two-layer hierarchy is briefly discussed in Section 3.3. In short, it is difficult for
a single-layer hierarchy to capture long-time dependencies and variations. This section describes an
empirical study where we compare MCAE with its single-layer correspondence. The single-layer
model is an MCAE without the segment autoencoder and with an increased number of 80 snippet
capsules. The snippet length l is set to input length L, and the snippet activations µ are used for
contrastive learning. The double-layer model is the MCAE proposed in the paper. Both models are
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Table A2: Performance of single and double layer model on T20 dataset of different clip lengths.

L = 32 L = 64 L = 128 L = 256

Single 47.64 ± 1.68 28.43 ± 2.95 35.23 ± 1.38 31.42 ± 0.53
Double 69.30 ± 0.76 69.88 ± 3.53 66.45 ± 0.39 65.24 ± 6.62

Table A3: Convolution backbone. When used in the snippet encoder, C = 8 and D = 5N . When
used for 1D-Conv baseline, C = 48 and D is set to the number of hidden units. The Leaky ReLU
has a negative slope of 0.01.

Channels in Channels out Kernel Size Stride Padding

1D Conv Layer 2 C 4 2 1
Batch Normalization
Leaky ReLU
1D Conv Layer C 2C 4 2 1
Batch Normalization
Leaky ReLU
1D Conv Layer 2C 4C 4 2 1
Batch Normalization
Leaky ReLU
1D Conv Layer 4C D 1 1 0

trained using samples from T20 interpolated to four different lengths {32, 64, 128, 256}. The results
are shown in Table A2. The first observation is that the single-layer model performs poorly in all
four configurations. More importantly, as L increases, the single-layer model degrades severely
while the double-layer model performs well consistently.

C Implementation

Transformation Parameters The MCAE implementation in the main paper works in 2D spaces.
To regulate the model, the snippet and segment encoders are set to output five parameters for each
template: µ (or ν), s, tx, ty , and θ, where the first parameter is the activation and the last four
parameters form a transformation as follows(

σ(s) cos θ −σ(s) sin θ f(tx, 1.5)
σ(s) sin θ σ(s) cos θ f(ty, 1.5)

0 0 1

)
, (1)

where σ(·) is the sigmoid function, and f(x, t) = max(−t,min(x, t)) “clamps” x within [−t, t].
The value t = 1.5 allows for more flexibility as the input is generally in [−1, 1] in our experiments.

Snippet Encoder The 1D ConvNet fconv in the snippet encoder is defined in Table A3, with C =
8 and D = 5N where N is the number of snippet capsules, and the factor 5 corresponds to the five
parameters for each capsule {µ, s, tx, ty, θ}. The 5N -dimension output is used as transformation
parameters for snippet capsules.

Segment Encoder The fLSTM in the segment encoder is a bi-directional LSTM (BiLSTM) with 32
hidden units. The 64-dimension hidden state of fLSTM at the last time step is sent to a fully connected
layer which gives 32M -dimension output. It is then fed intoM different fully connected layers, each
of which outputs five parameters for a segment capsule.

Baselines The 1D-Conv baseline uses the same architecture as fconv, which is defined in Table A3.
To improve its performance, we use C = 48 and experimented with a variable D as hidden unit
numbers. The LSTM baseline is a BiLSTM with 256 hidden units. Its 512-dimension output is fed
to a fully connected layer with a variable output dimension D, whose output is activated by a leaky
ReLU function. Different values of D have been explored in the main paper.
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D Training Details

Hyperparameters We set the batch size to 64 and use a fixed learning rate 10−3. The models
are optimized using the Adam [1] optimizer. The training stops when the model’s performance
stagnates for over 100 epochs or right after the 1000th epoch, whichever is earlier. For experiments
on T20, we set the random seed to 0, 1, and 2. For experiments on NW-UCLA, NTURGBD60, and
NTURGBD120, we set random seed 0. There is no tuning of random seeds. The loss weights λSni
and λSeg are searched in {0.5, 1, 1.5, 2, 5, 10}. For T20 and NW-UCLA, we use λSni = λSeg = 1.
For NTURGBD60 and NTURGBD120, we use λSni = 10 and λSeg = 5.

Software and Hardware All the models are implemented using PyTorch 1.8 compiled with
CUDA 11.2 and CuDNN 7.6.5. The computation runs on an NVIDIA Titan V GPU with 12GB
memory. The typical time required for experiments on T20, NW-UCLA, NTURGB60, and
NTURGBD120 is 7hrs, 0.5hrs, 6hrs, and 16hrs, respectively.

Contrastive Learning We use four disturbance (data augmentation) methods in the experiments:

1. Rotate: Applied to T20 and skeleton datasets. For T20 dataset, the input is rotated by a
random angle between −30◦ and 30◦. For skeleton datasets, the orientation for rotation is
randomly determined from yaw, pitch, or roll.

2. Smooth: Applied to T20 and skeleton datasets. The input sequences are temporally filtered
by a moving average kernel of size 3.

Table A4: Examples of the Trajectory20 dataset (a.t. is short for “asymptotic to").
Triangle Rectangle Pentagon Hexagon Astroid Circle Heart Hippopede Lemniscate Spriral

Line Tanh Parabola Sine Absolute
Sine Bell Cuspidal

Cubic
Cubic

a.t. Line

Asymmetric
Cubic a.t.

Line

Cubic a.t.
Cuspidal

Cubic
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3. Jittering: Applied to skeleton datasets only. A random number m ∼ U(0, 1) is sampled
for each joint. The coordinates of a joint are disturbed by Gaussian noise n ∼ N (0, 1) in
all the time steps if m < 0.1 and kept unchanged otherwise.

4. Masking: Applied to skeleton datasets only. A random number m ∼ U(0, 1) is sampled
for each joint. The coordinates of a joint are masked by 0 in all the time steps if m < 0.2
and kept unchanged otherwise.

The disturbance methods applied for each training sample are randomly determined.

E Examples of the Trajectory20 (T20) dataset

We show in Table A4 some examples of the T20 dataset. The color gradient from blue to yellow
indicates the time steps. For closed trajectories, the point moves in a randomly selected direction
and finishes one whole trajectory. For open trajectories, the point starts at one end in a randomly
selected direction and finishes at the other end.
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