Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes], , Or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section ??.

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note
that the Checklist section does not count towards the page limit. In your paper, please delete this
instructions block and only keep the Checklist section heading above along with the questions/answers
below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] . As we state in the abstract, our goal is to provide
a Python framework for benchmarking counterfactual explanation methods. Users
can easily evaluate our results by accessing our Github repository, where we host our
Python framework and our benchmarking results.

(b) Did you describe the limitations of your work? [Yes] . In Section 6, we discuss the
current limitations of our approach. The counterfactual explanation methods are based
on the original implementation of the respective research groups. Researchers mostly
implement their experiments and models for specific ML frameworks and data sets. For
example, some explanation methods are restricted to Tensorflow and are not applicable
to Pytorch models.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] . We
discuss the broader impact of our benchmarking library in Section 6; we mainly see
positive impacts on the literature of algorithmic recourse.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] . We have read the ethics review guidelines and attest that our paper
conforms to the guidelines.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [IN/A] . We did not
provide theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] . We did not provide
theoretical results.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] . Details of
implementations, data sets and instructions can be found here: Appendices A, C, E,
and our Github repository.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] . Please see Appendices E and C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] . Error bars have been reported for our cost comparisons
in terms of the 25th and 75ht percentiles of the cost distribution, see for example Figure
3.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] . All models are evaluated on an
17-8550U CPU with 16 Gb RAM, running on Windows 10.

14

https://github.com/indyfree/CARLA
https://github.com/indyfree/CARLA

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] . The data sets, which
are publicly available are appropriately cited in Section 5. We cite and link to any
additional code used, for example [3].

(b) Did you mention the license of the assets? [Yes] . All assets are publicly available and
attributed.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
. Our implementation and code is accessible through our Github repository.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] . We use publicly available data sets without any personal
identifying information.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] . We use publicly available data sets without
any personal identifying information.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] . We did not use crowdsourcing or conduct research with human
subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] . We did not use crowdsourcing or conduct
research with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] . We did not use crowdsourcing or conduct
research with human subjects.

15

https://github.com/indyfree/CARLA

A CARLA’s Software Interface

In the following, we introduce our open-source benchmarking software CARLA. we describe the archi-
tecture in more detail and provide examples of different use-cases and their implementation.

A.1 CARLA’s High Level Software Architecture

The purpose of this Python library is to provide a simple and standardized framework to allow users
to apply different state-of-the-art recourse methods to arbitrary data sets and black-box-models. It is
possible to compare different approaches and save the evaluation results, as described in Section 4.2.
For research groups, CARLA provides an implementation interface to integrate new recourse methods
in an easy-to-use way, which allows to compare their method to already existing methods.

Custom

Implementation Caigl

Provides interfaces
for arbitrary
implementations

Provides data Provides predictions get_counterfactuals() Counterfactual
Data MLModel RecourseMethod Examples

run_benchmark()

Benchmark Results
CeneEiEs DataFrame with all

counterfactuals and
computes
evaluation measures

computeted
measurements

Figure 4: Architecture of the CARLA python library. The silver boxes show the individual objects
that will be created to generate counterfactual explanations and evaluate recourse methods. Useful
explanations to specific processes are illustrated as yellow notes. The dashed arrows are showing
the different implementation possibilities; either use pre-defined catalog objects or provide custom
implementation. All dependencies between these objects are visualised by solid arrows with an
additional description.

A simplified visualization of the CARLA software architecture is depicted in Figure 4. For every
component (Data, MLModel, and RecourseMethod) the library provides the possibility to use existing
methods from our catalog, or extend the users custom methods and implementations. The components
represent an interface to the key parts in the process of generating counterfactual explanations. Data
provides a common way to access the data across the software and maintains information about the
features. MLModel wraps each black-box model and stores details on the encoding, scaling and
feature order specific to the model. The primary purpose of RecourseMethod is to provide a common
interface to easily generate counterfactual examples.

Besides the possibility to use pretrained black-box-models and preprocessed data, CARLA provides an
easy way to load and define own data sets and model structures independent of their framework (e.g.,
Pytorch, Tensorflow, sklearn). The following sections will give an overview and provide example
implementations of different use cases.

A.2 CARLA for Research Groups

One of the most exciting features of CARLA is the RecourseMethod-wrapper which enables researchers
to implement their own method to generate counterfactual explanations. This opens up a way of
standardized and consistent comparisons between different recourse methods. Strong and weak points
of new algorithms can be stated, benchmarked and analysed in future work.

16

oW

n

o -

In Figure 5, we show how an implementation of a custom recourse method can be structured. After
defining the recourse method, it can be used with the library to generate counterfactuals for a given
data set and benchmark its results against other methods. Researchers have the choice to do this using
our provided catalog of data sets, recourse methods and black-box models (Figure 6) or use their own
models and data sets (see Figures 7 and 8).

from carla import RecourseMethod

Custom recourse implementations need to
inherit from the RecourseMethod interface
class MyRecourseMethod (RecourseMethod) :
def __init__(self, mlmodel):
super () . __init__(mlmodel)

Generate and return encoded and
scaled counterfactual examples
def get_counterfactuals(self, factuals: pd.DataFrame):

[...]

return counterfactual_examples

Figure 5: Pseudo-implementation of the CARLA recourse method wrapper

A.3 CARLA as a Recourse Library

A common usage of the package is to generate counterfactual explanations. This can be done by
loading black-box-models and data sets from our provided catalogs, or by user-defined models and
data sets via integration with the defined interfaces. Figure 6 shows an implementation example of a
simple use-case, applying a recourse method to a pre-defined data set and model from our catalog.
After importing both catalogs, the only necessary step is to describe the data set name (e.g., adult,
give me some credit, or compas) and the model type (e.g., ann, or linear) the user wants to load.
Every recourse method contains the same properties to generate counterfactual explanations.

from carla import DataCatalog, MLModelCatalog
from carla.recourse_methods import GrowingSpheres

1. Load data set from the DataCatalog
data_name = "adult"
dataset = DataCatalog(data_name)

2. Load pre-trained black-box model from the MLModelCatalog
model = MLModelCatalog(dataset, "ann"

3. Load recourse model with model specific hyperparameters
gs = GrowingSpheres (model)

4. Generate counterfactual examples
factuals = dataset.raw.sample (10)
counterfactuals = gs.get_counterfactuals(factuals)

Figure 6: Example implementation of CARLA, using the data and model catalog.

To give users the possiblity to explore their own black-box-model on a custom data set, we provide
an easy-to-use interface, that is able to wrap every possible model or data set. These interfaces
specify particular properties users have to implement, to be able to work with the library. Figure 7
shows an example implementation of the data wrapper, and Figure 8 depicts the same for an arbitrary
black-box-model. After defining data set and black-box model classes, users simply need to call the
canonical methods and generate counterfactual examples, similar to the process in Figure 6.

17

o =

S S5 o EoR s s

26
27
28

29

from carla import Data
from carla.recourse_methods import GrowingSpheres

Custom data set implementations need to inherit from the Data
interface
class MyOwnDataSet (Data):
def __init__(self):
The data set can e.g. be loaded in the constructor
self . _dataset = load_dataset_from_disk ()

List of all categorical features
def categoricals(self):
return [...]

List of all continous features
def continous (self):
return [...]

List of all immutable features which
should not be changed by the recourse method
def immutables(self):

return [...]

Feature name of the target column
def target(self):
return "label"

Non-encoded and non-normalized, raw data set
def raw(self):
return self._dataset

Figure 7: Pseudo-implementation of the CARLA data wrapper

A.4 Benchmarking Recourse Methods

Besides the generation of counterfactual explanations, the focus of CARLA lies on benchmarking
recourse methods. Users are able to compute evaluation measures to make qualitative statements
about usability and applicability.

All measurements, which are described in Section 4.2, are implemented in the Benchmarking
class of CARLA and can be used for every wrapped recourse method. Figure 9 shows an example
implementation of a benchmarking process based on the variables of Figure 6.

B Additional Experimental Results

In this Section, we depict the missing experiments from the COMPAS data set in Figure 10 and Table
4. These results underline the trends that we have already highlighted in Section 5.

C ML C(Classifiers

In this section, we describe how the black—box models f were fitted. CARLA supports different ML
libraries to estimate these models (e.g., Pytorch, Tensorflow) as the implementations of the various
explanation methods work with a particular ML library. We note that the various explanation methods
rely on different binary feature encodings. DICE, for example, requires that binary inputs are supplied
as one-hot vectors, while FACE needs binary features encoded in a single column. If this was the
case, we fitted two ML models, using the same hyperparameters, and generated CEs with respect to
the same set of samples.

To ensure similar behavior between the different ML libraries and encoding variations, each black-box
model type has the same structure (e.g., number of hidden layer, number of neurons), and training
parameters (e.g., learning rate, epochs, etc.).

18

from carla import MLModel

Custom black-box models need to inherit from

the MLModel interface

class MyOwnModel (MLModel) :

def __init__(self, data):

super () . __init__(data)
The constructor can be used to load or build an
arbitrary black-box-model
self. _mymodel = load_model ()

Define a fitted sklearn scaler to normalize input data
self.scaler = MySklearnScaler ().fit ()

Define a fitted sklearn encoder for binary input data
self .encoder = MySklearnEncoder.fit ()

List of the feature order the ml model was trained on
def feature_input_order (self):
return [...]

The ML framework the model was trained on
def backend(self):
return "pytorch"

The black-box model object
def raw_model (self):
return self._mymodel

The predict function outputs
the continous prediction of the model
def predict(self, x):

return self._mymodel.predict (x)

The predict_proba method outputs
the prediction as class probabilities
def predict_proba(self, x):

return self._mymodel.predict_proba(x)

Figure 8: Pseudo-implementation of the CARLA black-box-model wrapper

The first model is a multi-layer perceptron, consisting of three hidden layers with 18, 9 and 3
neurons, respectively. We use ReLu activation functions and binary cross entropy to calculate class
probabilities. Optimization of the loss function is done by RMSProp [54] using a learning rate of
0.002 for every data set. By performing 25 epochs on COMPAS and 10 epochs on Adult and GMC we
reached acceptable performance. Further increasing epochs gave rise to very marginal performance
increases. For Adult we use a batch—size of 1024, for COMPAS 25 and for GMC 204S8.

To allow a more extensive comparison between CE methods, we choose linear models as the second
black—box model category for which we evaluate the CE methods. Again, we optimized these models
with RMSProp using a binary cross entropy loss. For Adult, we used 100 epochs and a batch—size of
2048, for COMPAS we choose 25 epochs and batch—size of 128, and for GMC we chose 10 epochs
with a batch—size of 2048. The learning rate on every data set is set 0.002. Table 5 provides an
overview of the model’s classification accuracies.

19

from carla import Benchmark

1. Initilize the benchmarking class by passing
black-box-model, recourse method, and factuals into it
benchmark = Benchmark (model, gs, factuals)

2. Either only compute the distance measures
distances = benchmark.compute_distances ()

3. Or run all implemented measurements and create a

DataFrame which consists of all results
results = benchmark.run_benchmark ()

Figure 9: Pseudo-implementation of the CARLA recourse method wrapper

Artificial Neural Network Logistic Regression

® AR-LIME 9@- AR-LINE -% AR AR

-c

]

=

© CEM CEM CEM CEM

-

5 e DICE DICE DICE

=]

)

2. Gs Gs Gs Gs

@

2

¥ Wachter "‘ Wachter " Wachter .-‘ Wachter }’

0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0 0.0 02 04 0.6 08 1.0 00 02 04 0.6 08 1.0
allolo llolln illoxlo alloelln

Artificial Neural Network Logistic Regression

CEM-VAE CEM-VAE

CEM-VAE —04 CEM-VAE C@:=
CLUE B(%(] CLUE %

CLUE

X
-
FAGE-EPS 9 FACE-EPS
—0
0

CLUE

FACE-KNN FACE-KNN

REVISE b’d REVISE

00 02 04 06 08 1.0 00 02 04 06 08 1.0 0.0 02 04 06 08 1.0 00 02 04 06 08 10
alloxllo 216wl FUEAIN FUEAIN

FACE-KNN FACE-KNN

Dependent Methods

REVISE REVISE

o+

Figure 10: COMPAS Data

Figure 11: Evaluating the distribution of costs of counterfactual explanations on the COMPAS dataset.
For all instances with a negative prediction ({x € D : f(x) < 6}), we plot the distribution of ¢,
and ¢; costs of algorithmic recourse as defined in (1) for a logistic regression and an artificial neural
network classifier. The white dots indicate the medians (lower is better), and the black boxes indicate
the interquartile ranges. We distinguish between independence based and dependence based methods.

Adult COMPAS Give Me Credit

Logistic Regression 0.83 0.84 0.92
Neural Network 0.84 0.85 0.93

Table 5: Performance of classification models used for generating algortihmic recourse.

20

Artificial Neural Network Logistic Regression

Data Set Method YNN redund. violation success ¢(s) yNN redund. violation success {(s)

AR(-LIME) 0.91 0.00 0.02 0.53 0.06 - - - 0.00 0.01
CEM 0.98 2.29 0.43 1.00 0.89 093 1.88 0.99 1.00 0.86
COMPAS DICE 0.89 0.88 1.03 1.00 0.09 0.95 0.94 0.90 1.00 0.09
GS 0.44 0.97 0.03 1.00 0.01 0.60 0.64 0.02 1.00 0.01
Wachter 0.56 1.77 0.74 0.66 1090 0.50 1.21 0.79 1.00 0.02
(a) Independence based methods
Artificial Neural Network Logistic Regression

Data Set Method yNN redund. violation success #(s) yNN redund. violation success i(s)

CEM-VAE 1.00 5.59 1.98 1.00 0.89 1.00 6.91 2.14 1.00 0.87

CLUE 0.99 4.06 1.08 1.00 2.03 1.00 4.62 1.25 1.00 1.88

COMPAS FACE-EPS 0.94 3.71 1.55 099 045 097 3.94 1.62 099 0.45
FACE-KNN 0.94 3.83 1.63 1.00 0.44 0.97 3.86 1.57 1.00 0.44

REVISE 1.00 3.29 1.29 1.00 6.06 0.92 3.15 1.03 1.00 5.35

(b) Dependence based methods

Table 4: Summary of COMPAS results for independence and dependence based methods. For all
instances with a negative prediction ({x € D : f(x) < 0}), we compute counterfactual explanations
for which we then measure yNN (higher is better), redundancy (lower is better), violation (lower is
better), success rate (higher is better) and time (lower is better). We distinguish between a logistic
regression and an artificial neural network classifier. Detailed descriptions of these measures can be
found in Section 4. The results are discussed in Appendix B.

D COMPAS Data Set Description

The COMPAS data set [21] contains data for more than 10,000 criminal defendants in Florida. It is
used by the jurisdiction to score defendant’s likelihood of reoffending. We kept a small part of the
raw data as features like name, id, casenumbers or date-time were dropped. The classification task
consists of classifying an instance into high risk of recidivism (score_text is high). By converting the
feature race into white and non-white, we keep the categorical input binary. Similar to Adult, the
immutable features for COMPAS are age, sex and race.

E Hyperparameter Search for the Counterfactual Explanation and
Recourse Methods

We generated counterfactual explanations for instances from H —, the set of factuals with negative
class predictions.

AR and AR-LIME It frequently occurred that the action with the lowest cost did not flip the prediction
of the black-box classifier. To overcome this problem, we let AR compute a flipset of 150 actions
per instance, and subsequently search this set for low—cost CEs. For AR-LIME, we used LIME [49]
and required sampling around the instance to make sure that the coefficients at x were truly
local.

CEM After performing grid search, we set the /; weight to 0.9 and the /5 weight to 0.1, yielding the
strongest performance. For CEM-VAE we set the /5 weight to 0.1, and the VAE-weight to 0.9.

CLUE We use the default hyperparameters from [3], which are set as a function of the data set
dimension d. Performing hyperparameter search did not yield results that were improving distances
while keeping the same success rate.

DICE Since DICE is able to compute a set of counterfactuals for a given instance, we only chose
to generate one CE per input instance. We use a grid search for the proximity and diversity
weights.

FACE To determine the strongest hyperparameters for the graph size we conducted a grid search.
We found that values of kracr = 50 gave rise to the best balance of success rate and costs. For
the epsilon graph, a radius of 0.25 yields the strongest results to balance between high yNN and low
cost.

21

GS We chose 0.02 as the step size with which the sphere is grown. Lower values yield similar
results at the costs of higher computational time, while higher values gave worse results.

REVISE The grid search to find an acceptable learning rate and similarity weight A yielded n = 0.1
and A = 0.5 for about 1500 iterations.

Wachter For the target loss, we choose the Binary Cross Entropy with a learning rate of 0.01 and
an initial A of 0.01. For the distance loss, we use the ¢;- norm to measure the similarity between the
factual input and the counterfactual point Z.

22

