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1 SUPPLEMENTARY MATERIAL

1.1 OVERESTIMATION, INACCURACIES AND INCONSISTENCIES IN ADVERSARIAL TRAINING:
RADIAL

Performance drop P2(p) Performance drop P2(p) Performance drop Pw(p)

Figure 1: Left: Performance drop P2(p) with respect to action modification a2 for RADIAL adver-
sarially trained deep neural policies Oikarinen et al. (2021) and vanilla trained policies for BankHeist.
Center: Performance drop P2(p) with respect to action modification a2 for RADIAL adversarially
trained deep neural policies Oikarinen et al. (2021) and vanilla trained policies for RoadRunner.
Right: Performance drop Pw(p) with respect to action modification aw for the RADIAL adversarially
trained deep neural policy and the vanilla trained deep neural policy.

The left and center column of Figure 1 demonstrate the performance drop P2(p) with respect to action
modification a2 for the RADIAL adversarially trained deep reinforcement learning policy proposed
by Oikarinen et al. (2021) and the vanilla trained deep reinforcement learning policy in BankHeist and
RoadRunner respectively. The right column of the Figure 1 demonstrates the performance drop Pw(p)
with respect to action modification aw for the RADIAL adversarially trained deep reinforcement
learning policy proposed by Oikarinen et al. (2021) and the vanilla trained deep reinforcement
learning policy in RoadRunner. Again the results in Figure 1 demonstrate that the vanilla training
technique has better estimates for state-action values compared to the adversarial training method
RADIAL, quite recently proposed by Oikarinen et al. (2021).

In particular, the curve for P2(p) for RADIAL in RoadRunner lies well above the corresponding
vanilla training curve. This implies that, while taking the second best action has a relatively mild effect
on the vanilla-trained policy, it causes a dramatic loss in performance for RADIAL. Similarly, the
Pw(p) curve for RADIAL in RoadRunner lies above the corresponding curve for the vanilla-trained
policy. This again implies that the vanilla-trained policy has a better estimate for which action will

Figure 2: Q-value of the best action a∗ over the states for the RADIAL adversarially trained deep
neural policy proposed by Oikarinen et al. (2021) and vanilla trained deep neural policy.
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lead to lowest rewards than the RADIAL adversarially trained policy. The results reported in Figure
1 again demonstrate the loss of information in the state-action value function due to adversarial
regulation of the temporal difference loss.

Figure 2 demonstrates that the overestimation bias discussed in the main body of our submission
is again an issue for a newer adversarial training technique quite recently published in NeurIPS
2021. Furthermore, exactly as the previous adversarial training methods, RADIAL also learns
inaccurate, inconsistent and overestimated state-action value functions. Hence, these results once
more demonstrate the loss of information in the state-action value function as a novel fundamental
trade-off intrinsic to adversarial training.

1.2 SUPPLEMENTARY RESULTS ON INCONSISTENCIES IN ACTION RANKING IN
ADVERSARIALLY TRAINED DEEP NEURAL POLICIES

As we mentioned in Section 6.1 of the main body of the paper the inaccuracies of the state-action
value function reach a high enough level for the state-of-the-art adversarially trained deep neural
policies such that the ranking of the sub-optimal actions is not correct anymore. This can be seen
in Figure 3 in the P2 and Pw results. Note that P2 represents the performance drop (Definition 4.2)
with action modification a2, and Pw (Definition 4.2) represents the action modification with aw.

Thus, it can be observed from Figure 3 that the performance drop P2 with action modification a2

is higher than the performance drop Pw with action modification aw. In more detail P2 0.18257-
dominates Pw (Definition 4.3). This demonstrates that the state-of-the-art adversarially trained deep
neural policies are not ranking the sub-optimal actions correctly. Note that as we discussed in the
main body of the paper in Section 6.1 this poses a problem for learning optimal state-action value
functions Lin & Zhou (2020); Alshiekh et al. (2018).

Figure 3: Consistency results for ranked actions via performance drop P2 and Pw for the state-of-the-
art adversarially trained deep neural policies.

1.3 OVERESTIMATION OF STATE-ACTION VALUES

In this section we provide supplementary results for the overestimation bias caused by state-of-
the-art adversarially trained deep neural policies. In particular, in Section 6.3 of the main body
of the paper we explained the problem of overestimation of state-action values. Furthermore, in
Section 6.2 we empirically demonstrate that state-of-the-art adversarially trained deep neural policies
overestimate the state-action values. In this section we further provide results on state-action values
of the optimal action for vanilla and adversarially trained deep neural policies when pa2 is equal to
0.1, 0.2 and 0.3 respectively. Note that in the main body of the paper we claim that the reason for
this overestimation lies in the fact that the state-of-the-art deep neural policy adversarial training is
solely an extension of adversarial training in image classification tasks, which is based on penalizing
the wrong “label”. However, this approach does not directly correspond to deep neural policies. The
correct label in image classification can be connected to the optimal action in deep neural policies
in this analogy. However, the wrong label does not correspond to sub-optimal actions. An optimal
Q-function represents the discounted expected cumulative rewards received when taking an action a
in state s. Hence, the sub-optimal actions have much more meaning in collecting rewards than solely
misclassifying an image.
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Figure 4: State-action values of the best action Q(s, a∗) for vanilla trained deep neural policies and
adversarially trained deep neural policies when pa2 is 0.1.

Figure 5: State-action values of the best action Q(s, a∗) for vanilla trained deep neural policies and
adversarially trained deep neural policies when pa2 is 0.2.

Figure 6: State-action values of the best action Q(s, a∗) for vanilla trained deep neural policies and
adversarially trained deep neural policies when pa2 is 0.3.

1.4 SUPPLEMENTARY RESULTS ON ACTION GAP

In Section 6.4 of the main body of our paper we discuss the action gap phenomenon introduced
by Farahmand (2011). Note that the action gap is defined as κ(Q, s) = maxa′∈AQ(s, a′) −
maxa/∈arg maxa′∈AQ(s,a′)Q(s, a). Further, we argue that both the existence of overestimation of
state action values and the higher action gap in state-of-the-art adversarially trained deep neural
policies demonstrates that the hypothesis of Bellemare et al. (2016) cannot be true. In this section we
provide supplementary results on the action gap without the normalization Q(s, a)/

∑
a |Q(s, a)|. In

particular, Figure 7, Figure 8 and Figure 9 show the action gap for the vanilla trained deep neural
policies and state-of-the-art adversarial deep neural policies when pa2 is 0, 0.1 and 0.2 respectively.
Hence, the action gap for adversarially trained deep neural policies is higher than for vanilla trained
deep neural policies.

1.5 SUPPLEMENTARY RESULTS ON ACTION GAP WITH NORMALIZED STATE-ACTION VALUES

In the remainder of this section we provide additional results on normalized state-action values for
adversarially trained and vanilla trained deep neural policies.

In more detail, Figure 10 and Figure 11 show the normalized state-action values of the optimal action,
second best action a2 and worst action aw for vanilla trained deep neural policies and adversarially
trained deep neural policies when pa2 is 0.01 and 0.1 respectively. Thus, Figure 10 and Figure 11
demonstrate that the action gap is higher for the state-of-the-art adversarially trained deep neural
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Figure 7: The action gap Q(s, a∗)−Q(s, a2) for the state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies for pa2 is 0.

Figure 8: The action gap Q(s, a∗)−Q(s, a2) for state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies for pa2 is 0.1.

Figure 9: The action gap Q(s, a∗)−Q(s, a2) for state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies for pa2 is 0.2.

policies compared to vanilla trained deep neural policies. Note that the state-action values in Figure
10 and Figure 11 are normalized Q-values (i.e. normalized via Q(s, a)/

∑
a |Q(s, a)|).

1.6 IMPLEMENTATION DETAILS

Note that to be able to provide a fair comparison State-Adversarial Double Deep Q-Network and
Double Deep Q-Network are the exact same implementations described in SA-DDQN paper described
in Section 3 and Wang et al. (2016) respectively. In more detail for Double Deep Q-Network the
batch size is 32, discount factor γ is 1, buffer size 50000, learning rate is 5 × 10−5 for the Adam
optimizer, and random action probability is 0.02. Note that experience replay Schaul et al. (2016) is
utilized. More details can be found in Dhariwal et al. (2017) and Wang et al. (2016) on Double Deep
Q-Networks. The state-of-the-art adversarial deep neural policy is the exact same implementation as
in the SA-DDQN paper. Adversarial deep neural policies are trained via experience replay as well
Schaul et al. (2016). Note that State-Adversarial Double Deep Q-Network is trained via the regularizer
R(θ) =

∑
s

(
maxs̄∈Dε(s) maxa6=a∗(s)Qθ(s̄, a)−Qθ(s̄, a∗(s))

)
where a∗(s) = arg maxaQ(s, a)

inside ε-ball Dε(s) = {s̄ : ‖s− s̄‖∞ ≤ ε}. Hence, this ε is set to 1/255. Note that the regularization
is added to the temporal difference loss in the Q-update. The regularization parameter of state-
adversarial is κ ∈ {0.005, 0.01, 0.02}. The initial 1.5×106 frames are trained without regularization.
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Figure 10: Normalized state-action values for the best action a∗, second best action a2 and worst
action aw over states when pa2 is 0.01. Row1: Vanilla trained deep neural policies. Row2: State-of-
the-art adversarially trained deep neural policies.

Figure 11: Normalized state-action values for the best action a∗, second best action a2 and worst
action aw over states when pa2 is 0.1. Row1: Vanilla trained deep neural policies. Row2: State-of-
the-art adversarially trained deep neural policies.
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