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Abstract

Large Language Models (LLMs) have greatly001
advanced medical Question Answering (QA)002
by leveraging vast clinical data and medical003
literature. However, the rapid evolution of004
medical knowledge and the labor-intensive pro-005
cess of manually updating domain-specific re-006
sources can undermine the reliability of these007
systems. We address this challenge with008
Agentic Medical Graph-RAG (AMG-RAG),009
a comprehensive framework that automates010
the construction and continuous updating of011
Medical Knowledge Graphs (MKGs), inte-012
grates reasoning, and retrieves current exter-013
nal evidence from the MKGs for medical014
QA. Evaluations on the MEDQA and MEDM-015
CQA benchmarks demonstrate the effective-016
ness of AMG-RAG, achieving an F1 score of017
74.1% on MEDQA and an accuracy of 66.34%018
on MEDMCQA—surpassing both comparable019
models and those 10 to 100 times larger. By020
dynamically linking new findings and complex021
medical concepts, AMG-RAG not only boosts022
accuracy but also enhances interpretability for023
medical queries, which has a critical impact024
on delivering up-to-date, trustworthy medical025
insights.026

1 Introduction027

Medical knowledge is growing at an unprecedented028

rate: every day brings new research findings, re-029

vised clinical guidelines, and updated treatment030

protocols. Recent work shows that Large Lan-031

guage Models (LLMs) can already harness this032

ever-expanding corpus for medical Question An-033

swering (QA) (Nazi and Peng, 2024; Liu et al.,034

2023).035

Despite their promise, LLMs face two persis-036

tent challenges. First, they must remain factually037

current in a field where knowledge can become038

obsolete almost overnight (Rohanian et al., 2024;039

Yu et al., 2024). Second, they must correctly model040

the intricate relationships among medical entities.041

Figure 1: Performance versus parameter count on the MEDQA
and MEDMCQA benchmarks. Our system, Agentic Medi-
cal Graph-RAG (AMG-RAG), attains an F1 of 74.1 % on
MEDQA and an accuracy of 66.34 % on MEDMCQA, outper-
forming models that contain 10–100× more parameters. See
Tables 1 and 2 for details.

Knowledge Graph (KG) provide a structured and 042

interconnected view that supports nuanced reason- 043

ing (Huang et al., 2021), yet creating and maintain- 044

ing them by hand is costly—especially in medicine, 045

where new insights rapidly invalidate older facts 046

(Yang et al., 2024). 047

We introduce an automated framework that con- 048

structs and continuously refines Medical Knowl- 049

edge Graphs (MKGs) for QA. Our LLM-driven 050

agents, assisted by domain-specific search tools, 051

generate graph entities enriched with metadata, 052

confidence scores, and relevance indicators. This 053

automation sharply reduces manual curation while 054

keeping the graph aligned with the latest discover- 055
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ies. In contrast to Retrieval Augmented Generation056

(RAG) systems that rely solely on vector similar-057

ity (Lewis et al., 2020), our graph-centric retrieval058

leverages explicit relationships to synthesise infor-059

mation across domains such as drug interactions,060

clinical trials, patient histories, and guidelines.061

The AMG-RAG combines dynamically synthe-062

sised MKG with multi-step reasoning, guided by063

confidence scores and adaptive traversal strate-064

gies (Trivedi et al., 2022). This design yields065

more accurate and complete answers without incur-066

ring additional fine-tuning or inference costs. On067

the MEDQA and MEDMCQA benchmarks—both068

of which test evidence retrieval, complex reason-069

ing, and multiple-choice comprehension—AMG-070

RAG achieves an F1 of 74.1% and an accuracy071

of 66.34%, respectively (Fig. 1). These results072

surpass those of similarly sized RAG approaches073

and even much larger state-of-the-art models, un-074

derscoring the benefits of a dynamically evolving075

MKG for medical QA. Our findings highlight the076

potential of automated, relationally enriched knowl-077

edge retrieval to enhance clinical decision-making078

by delivering timely and trustworthy insights (Zhou079

et al., 2023).080

Contributions. Our contributions are threefold:081

1. We developed a unique autonomous search082

and graph-building process powered by spe-083

cialized LLM agents that continuously gener-084

ate and refine MKGs through integrated work-085

flows using search engines and medical text-086

books.087

2. Our system embeds confidence scoring mech-088

anisms that explicitly model information un-089

certainty, providing transparent reliability as-090

sessments for medical information.091

3. We created an adaptive graph traversal system092

that transcends traditional retrieval methods,093

enabling dynamic contextualization of medi-094

cal knowledge.095

2 Related Work096

Medical QA has progressed through three comple-097

mentary lines of research: (i) domain-specific lan-098

guage models, (ii) retrieval-augmented generation,099

and (iii) knowledge-graph reasoning.100

Domain-specific language models. BioBERT101

(Lee et al., 2020), PubMedBERT (Gu et al., 2021),102

and MedPaLM (Singhal et al., 2023) adapt trans- 103

former pre-training to biomedical corpora, deliv- 104

ering strong gains on entity recognition, relation 105

extraction, and multiple-choice QA (Nazi and Peng, 106

2024; Liu et al., 2023). Yet, even these specialised 107

models struggle to synthesise multi-hop relations 108

(e.g. rare comorbidities or drug–gene interactions) 109

and must be re-trained to absorb new discoveries 110

(Rohanian et al., 2024; Yu et al., 2024). 111

Retrieval-Augmented Generation (RAG). 112

RAG pipelines couple an LLM with an external ev- 113

idence retriever, injecting fresh context at inference 114

time (Lewis et al., 2020). Vendi-RAG (Rezaei and 115

Dieng, 2025) and MMED-RAG(Xia et al., 2024) 116

extend this idea to biomedical and multimodal 117

sources, respectively. Chain-of-Thought (CoT) 118

prompting further boosts reasoning: IRCoT 119

(Trivedi et al., 2022) interleaves iterative retrieval 120

with step-wise justification. Gemini’s long-context 121

model recently pushed MedQA scores beyond 122

GPT-4 (Saab et al., 2024). Nevertheless, most 123

RAG systems rely on static vector stores and 124

cannot explain answers in terms of explicit 125

biomedical relations. 126

Knowledge-graph reasoning. KG-Rank (Huang 127

et al., 2021) and related work such as KG- 128

RAG(Sanmartin, 2024) harness ontologies to 129

re-rank evidence or enforce logical constraints, 130

improving factual consistency in long-form QA 131

(Yang et al., 2024). However, constructing and cu- 132

rating a high-coverage, up-to-date MKG remains 133

labour-intensive, limiting scalability and freshness. 134

3 Method 135

We propose our framework, Agentic Medical 136

Graph-RAG (AMG-RAG), bridges these threads 137

by dynamically generating a confidence-scored 138

Medical Knowledge Graph (MKG) that is tightly 139

coupled to a Retrieval Augmented Generation 140

(RAG)+CoT pipeline. AMG-RAG features au- 141

tonomous Knowledge Graph (KG) evolution 142

through Large Language Model (LLM) agents ex- 143

tracting entities and relations from live sources with 144

provenance tracking; graph-conditioned retrieval 145

that maps queries onto the MKG to guide evidence 146

selection; and reasoning over structured context 147

where the answer generator utilizes both textual 148

passages and traversed sub-graphs for transparent, 149

multi-hop reasoning. 150
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3.1 Retrieval Augmented Generation (RAG)151

RAG is a framework designed to enhance Question152

Answering (QA) by integrating relevant external153

knowledge into the generation process.In the RAG154

approach, the retriever fetches a fixed number of155

relevant documents, {d1,d2, . . . ,dn} ∈ D, based156

on the query q. Here, D represents the set of all157

domain-specific documents utilized. These docu-158

ments are concatenated and passed directly to a159

LLM-based text generator, G, which produces the160

answer â:161

â = G(q, {d1, . . . ,dn}).162

This approach is simple and computationally ef-163

ficient but may struggle with domain-specific or164

complex queries that require additional supporting165

evidence.166

RAG with Chain-of-Thought (CoT). Enhanc-167

ing RAG’s performance can be achieved by inte-168

grating intermediate reasoning steps prior to pro-169

ducing the final response. The generator produces170

a chain of thought, c, which serves as an explicit171

reasoning trace:172

{d1, . . . ,dk} = Retriever(q;D),173

174

c = G(q, {d1, . . . ,dk}), â = G(c).175

This step-by-step approach enhances reasoning and176

interpretability, leading to improved accuracy in177

multi-hop reasoning tasks.178

RAG with Search. The RAGs’s performance can179

improved further by incorporating additional re-180

lated documents retrieved from external sources,181

such as the internet, through a search tool. This182

variant integrates external search capabilities into183

the retrieval process. For a query q, the retriever’s184

results are combined with those from external185

search engines, providing more comprehensive evi-186

dence for the LLM to generate a response:187

{d′
1, . . . ,d

′
m} = Search(q;D′),188

189

â = G(q, {d1, . . . ,dn,d
′
1, . . . ,d

′
m}).190

This additional search step significantly enhances191

performance, particularly in scenarios that require192

access to extensive and diverse knowledge.193

Algorithm 1 KG-Based QA Inference Pipeline
Require: Query q, Knowledge Graph KG, Confidence

Threshold τ , Max Iterations N
Ensure: Final Answer â with Confidence s
1: Extract medical terms: {n1,n2, . . . ,nm} ←

ExtractTerms(q)
2: Initialize reasoning traces: C ← ∅
3: Initialize confidence: si ← 1.0 for all terms ni

4: for i = 1 to m do ▷ Iterate over extracted terms
5: Explore KG: Retrieve relevant nodes {dj} and rela-

tionships rij for ni

6: for each child node nj of ni in KG do
7: Compute child confidence: sj ← si · rij
8: if sj ≥ τ then
9: Include nj in exploration set

10: end if
11: end for
12: Generate Reasoning Trace: ci ← LLM(ni, {dj})
13: Add ci to reasoning traces: C ← C ∪ {ci}
14: end for
15: Synthesize Answer: â, ŝ← G(C)
16: return â, ŝ ▷ Return final answer with confidence

3.2 Medical QA with AMG-RAG 194

In scenarios requiring domain expertise, such as 195

medical or scientific QA, traditional methods of- 196

ten fail due to their inability to capture intricate 197

domain-specific relationships or handle ambiguous 198

queries. KG-driven approaches overcome these 199

challenges by integrating explicit relationships and 200

structured knowledge representations. This marks 201

a significant advancement in intelligent QA sys- 202

tems, ensuring robustness and scalability across 203

various applications. 204

The suggested AMG-RAG framework dynami- 205

cally creates a MKG and incorporates sophisticated 206

reasoning abilities, overcoming the shortcomings 207

of traditional methods. Our system utilizes struc- 208

tured medical knowledge and reasoning, ensuring 209

flexibility to accommodate new data. 210

The AMG-RAG pipeline begins with question 211

parsing, where an LLM agent extracts medical 212

terms {n1,n2, . . . ,nm} from the user query q: 213

{n1,n2, . . . ,nm} = LLM(q,M), m ≤ M. 214

During node exploration, the system queries the 215

KG for each term ni, applying a confidence thresh- 216

old that filters relationships based on their relia- 217

bility scores. The system propagates confidence 218

through the KG by computing child confidence as: 219

s(nj) = s(ni) · s(rij), ∀j ∈ children of i. 220

Our framework supports both breadth-first and 221

depth-first exploration strategies, enabling flexible 222

knowledge traversal based on query characteristics. 223
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Figure 2: Model Schema. A) The pipeline for creating the MKG using search tools and an LLM agent. B) An example of the
generated MKG in Neo4J, illustrating nodes and relationships derived from search results and contextual information. Our model
successfully retrieved and utilized recent knowledge to accurately answer a medical question, highlighting the practical benefit
of continuously updating the knowledge graph. Furthermore, we extended this evaluation by providing additional examples
retrieved by our system using recent publications in Table 11. C) The AMG-RAG pipeline. D) A simplified RAG pipeline.

The exploration continues until either cumulative224

confidence meets threshold τ or document limit225

M is reached, ensuring comprehensive yet focused226

information gathering.227

The chain-of-thought generation phase synthe-228

sizes reasoning traces ci for each entity by integrat-229

ing information from connected nodes:230

ci = LLM(ni, {d(nj) | j ∈ connected nodes}).231

Finally, answer synthesis aggregates these rea-232

soning traces to produce the final output â with an233

associated confidence score:234

â, ŝ = G({c1, c2, . . . , cm}).235

This approach ensures that answers are comprehen-236

sive, interpretable, and anchored in reliable medical237

knowledge.238

3.3 Dynamic Generation of the Medical239

Knowledge Graph240

The development of the MKG marks a pivotal241

advancement within our AMG-RAG framework,242

facilitating organized reasoning through the use243

of dynamically synthesized knowledge representa- 244

tions. Unlike traditional static knowledge bases, 245

our method allows the graph structure to adapt 246

continuously in response to new queries and the 247

evidence they uncover. Furthermore, it assigns a 248

confidence score to each edge in the graph, indi- 249

cating the reliability of each relationship, which is 250

crucial given the uncertainty inherent in medical 251

evidence. 252

Node Extraction. Our Medical Entity Recog- 253

nizer (MER) agent identifies domain-specific terms 254

within user queries, establishing them as founda- 255

tional nodes {n1,n2, . . . ,nm} in the knowledge 256

graph. For each identified entity, specialized med- 257

ical search tools retrieve contextual descriptions 258

d(ni): 259

d(ni) = Search(ni; knowledge source). 260

These descriptions provide rich semantic context 261

for the knowledge graph, ensuring accurate repre- 262

sentation of medical concepts and their attributes. 263

Relationship Inference. The power of our ap- 264

proach lies in its ability to dynamically infer rela- 265
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tionships between medical entities. An LLM agent266

analyzes pairs of nodes (ni,nj) to determine poten-267

tial relationships rij and quantify their reliability:268

rij , sij = LLM(d(ni),d(nj)).269

This process generates not just connection types270

(e.g., causation, correlation, contraindication) but271

also confidence scores that propagate through272

subsequent reasoning steps, enabling evidence-273

weighted inference.274

Knowledge Graph Construction. The resulting275

MKG integrates extracted entities, their descrip-276

tions, inferred relationships, and confidence met-277

rics into a cohesive structure. This graph serves as278

both a repository of medical knowledge and a com-279

putational framework for reasoning. By attaching280

reliability scores to every edge, downstream com-281

ponents can appropriately weight evidence during282

inference, enhancing both accuracy and explain-283

ability. The graph’s dynamic nature allows it to284

continuously incorporate new information and re-285

fine existing connections, addressing the staleness286

issues that plague traditional knowledge-based sys-287

tems.288

4 Experiments289

The MEDQA dataset is a free-form, multiple-290

choice open-domain QA dataset specifically de-291

signed for medical QA. Derived from professional292

medical board exams, this dataset presents a sig-293

nificant challenge as it requires both the retrieval294

of relevant evidence and sophisticated reasoning295

to answer questions accurately. Each question is296

accompanied by multiple-choice answers that de-297

mand a deep understanding of medical concepts298

and logical inference, often relying on evidence299

found in medical textbooks. For this study, the300

test partition of the MEDQA dataset, comprising301

approximately 1,200 samples, was used (Jin et al.,302

2021).303

The MedMCQA dataset is another multiple-304

choice question-answering dataset tailored for med-305

ical QA. Unlike MEDQA, which is derived from306

board exam questions, MedMCQA offers a broader307

variety of question types, encompassing both foun-308

dational and clinical knowledge across diverse med-309

ical specialties. In this study, the MedMCQA devel-310

opment set, containing approximately 4,000 ques-311

tions, was used to benchmark against other models312

(Pal et al., 2022a).313

This study employed the MEDQA and MedM- 314

CQA datasets to benchmark and evaluate medical 315

QA systems. These datasets serve as challenging 316

testbeds for open-domain QA tasks due to their de- 317

mands for multi-hop reasoning and the integration 318

of domain-specific knowledge. The relevance of 319

MEDQA in the real world, together with the di- 320

verse question styles and extensive development 321

set of MedMCQA make them ideal for advancing 322

the development of robust QA models capable of 323

addressing medical inquiries. We utilize GPT-4o- 324

mini as the backbone of the implementation for 325

both MKG and AMG-RAG, leveraging its capabil- 326

ities with approximately ∼ 8B parameters. This 327

model serves as the core component, enabling ad- 328

vanced reasoning, RAG, and structured knowledge 329

integration. 330

4.1 Medical Knowledge Graph 331

To address the challenges of inaccurate knowledge 332

updating—such as those stemming from noisy re- 333

trieval results or LLM hallucinations—our AMG- 334

RAG introduces a robust and dynamic approach to 335

MKG construction. This is particularly critical in 336

healthcare applications, where the absence of error 337

detection and correction mechanisms in automated 338

KG generation can compromise system reliability. 339

The dynamic update mechanism encompasses 340

strategies resilient to errors, defined by the con- 341

fidence level of the medical information retained 342

within the MKG and among nodes i and j, denoted 343

as sij . This approach facilitates monitoring and 344

reduces the spread of erroneous information dur- 345

ing the refinement or reasoning stages. These pro- 346

tective measures allow the system to identify and 347

rectify inconsistencies that may arise from external 348

retrieved information. 349

The MKG is dynamically constructed for each 350

question by integrating search items, contextual 351

information, and relationships extracted from 352

medical textbooks and search tools, including 353

Wikipedia (Wiki-MKG) and PubMed (PubMed- 354

MKG) queries. The ablation in Table 3 demon- 355

strates that the created MKG based on PubMed 356

(PubMed-MKG) is more effective in enhancing the 357

performance of the AMG-RAG. This data is pro- 358

cessed and structured within a Neo4j database. Key 359

innovations in the knowledge graph include: 360

1. Dynamic Node and Relationship Creation: 361

Nodes are instantiated based on retrieved enti- 362

ties and search terms, while relationships are 363
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constructed using predefined semantic tem-364

plates aligned with medical ontologies.365

2. Bidirectional Relationships: The graph in-366

cludes both forward and reverse relationships367

between nodes to allow flexible traversal and368

comprehensive context understanding.369

3. Confidence-Based Relevance Scoring: Each370

relationship is enriched with textual anno-371

tations and a quantitative confidence score372

that measures the reliability of the connec-373

tion. This confidence score enables the system374

to down-rank or filter out uncertain associa-375

tions, thereby mitigating the effects of noisy376

retrievals.377

4. Summarization with Reliability Indicators:378

Each search item is paired with a concise sum-379

mary derived from contextual sources. These380

summaries are accompanied by confidence381

scores that indicate their trustworthiness, al-382

lowing nuanced uncertainty modeling.383

5. Thresholding for Quality Control: In our384

experiments, we applied a confidence thresh-385

old of 8 (on a 10-point scale) to retain only386

high-reliability nodes and edges. This value387

was empirically found to yield the best results388

in benchmark performance.389

6. Integration with Neo4j: The complete graph390

is stored in a Neo4j database, leveraging its391

powerful graph query engine for efficient re-392

trieval and analysis during inference.393

A partial visualization of the MKG structure is394

shown in Figure 2.B. Additional complete exam-395

ples with retrieved papers are provided in Table 11.396

This MKG forms the core knowledge source for397

the AMG-RAG inference pipeline.398

As discussed in Appendix B, extensive valida-399

tion was conducted through both human and ma-400

chine evaluators. Clinical experts verified the cor-401

rectness of the knowledge graph, and expert LLMs402

such as GPT-4 achieved high accuracy (e.g., 9/10)403

in validating the extracted knowledge. These re-404

sults underscore the MKG’s ability to support re-405

liable and explainable medical reasoning within406

AMG-RAG.407

The knowledge graph creation process in AMG-408

RAG operates independently from the QA process,409

allowing for continuous background updates of410

the MKG via search tools such as PubMedSearch411

or WikiSearch. This approach significantly re- 412

duces latency during question answering since the 413

system frequently retrieves information from the 414

pre-populated MKG rather than performing new 415

searches. By maintaining an updated MKG, AMG- 416

RAG achieves a balanced minimum dependency 417

on computational resources and search tools during 418

the test phase. 419

Despite having only 8B parameters, it delivers 420

competitive results compared to much larger mod- 421

els like Med-Gemini (1800B) and GPT-4 (1760B). 422

Even in worst-case scenarios where relevant in- 423

formation is absent from the MKG, the additional 424

search cost is still significantly lower than the re- 425

source requirements of much larger models. 426

4.2 Performance Comparison 427

Table 1 presents a comprehensive comparison of 428

state-of-the-art language models on the MEDQA 429

benchmark. The results highlight the critical role of 430

advanced reasoning strategies in achieving higher 431

performance, such as CoT reasoning and the inte- 432

gration of search tools. While larger models like 433

Med-Gemini and GPT-4 achieve the highest ac- 434

curacy and F1 scores, their performance comes 435

at the cost of significantly larger parameter sizes. 436

These models exemplify the power of scaling com- 437

bined with sophisticated reasoning and retrieval 438

techniques. 439

Significantly, AMG-RAG, despite having just 8 440

billion parameters, attains an F1 score of 74.1% 441

on the MEDQA benchmark, surpassing models 442

like Meditron, which possess 70 billion parame- 443

ters without needing any fine tuning. This high- 444

lights AMG-RAG’s exceptional efficiency and pro- 445

ficiency in utilizing CoT reasoning and external 446

evidence retrieval. The model leverages tools such 447

as PubMedSearch and WikiSearch to dynamically 448

integrate domain-specific knowledge dynamically, 449

thereby improving its ability to address medical 450

questions. Examples of QA interactions, including 451

detailed search items and reasoning for question 452

samples, are provided in Appendix C. These exam- 453

ples are organized in Tables 7, 8, 9, and 10, drawn 454

from the MEDQA benchmark. 455

On the MedMCQA benchmark, as shown in Ta- 456

ble 2, AMG-RAG achieves an accuracy of 66.34%, 457

even outperforming larger models like Meditron- 458

70B and better than Codex 5-shot CoT. This result 459

underscores AMG-RAG’s adaptability and robust- 460

ness, demonstrating that it can deliver competitive 461

performance even against significantly larger mod- 462

6



Model Model Size Acc. (%) F1 (%) Fine-Tuned Uses CoT Uses Search

Med-Gemini (Saab et al., 2024) ∼1800B 91.1 89.5 ✓ ✓ ✓
GPT-4 (Nori et al., 2023) ∼1760B 90.2 88.7 ✓ ✓ ✓
Med-PaLM 2 (Singhal et al., 2025) ∼340B 85.4 82.1 ✓ ✓ ✗
Med-PaLM 2 (5-shot) ∼340B 79.7 75.3 ✗ ✓ ✗
AMG-RAG ∼8B 73.9 74.1 ✗ ✓ ✓
Meerkat(Kim et al., 2024) 7B 74.3 70.4 ✓ ✓ ✗
Meditron (Chen et al., 2023) 70B 70.2 68.3 ✓ ✓ ✓
Flan-PaLM (Singhal et al., 2023) 540B 67.6 65.0 ✓ ✓ ✗
LLAMA-2 (Chen et al., 2023) 70B 61.5 60.2 ✓ ✓ ✗
Shakti-LLM (Shakhadri et al., 2024) 2.5B 60.3 58.9 ✓ ✗ ✗
Codex 5-shot CoT (Liévin et al., 2024) – 60.2 57.7 ✗ ✓ ✓
BioMedGPT (Luo et al., 2023) 10B 50.4 48.7 ✓ ✗ ✗
BioLinkBERT (base) (Singhal et al., 2023) – 40.0 38.4 ✓ ✗ ✗

Table 1: Comparison of LLM models on the MEDQA Benchmark. Additional comparison with RAGs are provided
in Table B

els. Its ability to maintain high accuracy on diverse463

datasets further highlights the effectiveness of its464

design, which combines CoT reasoning with struc-465

tured knowledge graph integration and retrieval466

mechanisms.467

Model Model Size Acc. (%)

AMG-RAG ∼8B 66.34
Meditron (Chen et al., 2023) 70B 66.0
Codex 5-shot (Liévin et al., 2024) – 59.7
VOD (Liévin et al., 2023) – 58.3
Flan-PaLM (Singhal et al., 2022) 540B 57.6
PaLM 540B 54.5
GAL 120B 52.9
PubmedBERT (Gu et al., 2021) – 40.0
SciBERT (Pal et al., 2022b) – 39.0
BioBERT (Lee et al., 2020) – 38.0
BERT (Devlin, 2018) – 35.0

Table 2: Comparison of Models on the MedMCQA.

Overall, AMG-RAG’s results on MEDQA and468

MedMCQA benchmarks solidify its position as a469

highly efficient and effective model for medical470

QA. By leveraging reasoning, dynamically gener-471

ated MKG, and external knowledge sources, AMG-472

RAG not only closes the gap with much larger mod-473

els but also sets a new standard for performance474

among smaller-sized models.475

Impact of Search Tools on MKG creation and476

CoT Reasoning on AMG-RAG Performance.477

Figure 3 and Table 3 demonstrate the effect of478

integrating different search tools for creating the479

MKG on the performance of the AMG-RAG sys-480

tem applied to the MEDQA benchmark. Incorpo-481

rating these external retrieval capabilities signifi-482

cantly enhances both accuracy and F1 scores, as483

they allow the model to access relevant and up-484

to-date evidence critical for answering complex485

medical questions. Among the two search tools486

for creating the MKG, PubMed-MKG consistently487

Figure 3: Confusion matrix for AMG-RAG with and with-
out CoT and Knowledge Graph integration on the MEDQA
dataset.

outperforms Wiki-MKG, likely due to its focused, 488

domain-specific content that aligns closely with the 489

specialized nature of medical QA tasks. 490

In addition to the integration of the dynamical 491

MKG, the reasoning module plays a pivotal role 492

in performance. As highlighted in Figure 3, ab- 493

lating either CoT or MKG integration causes a 494

considerable degradation in accuracy and F1 score. 495

This demonstrates that structured multi-hop reason- 496

ing and medical knowledge grounding through the 497

MKG are indispensable for the system’s ability to 498

deliver accurate and evidence-based answers." 499
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Comparison Against Traditional RAG Models.500

Table 3 presents a comprehensive comparison of501

various RAG models evaluated on the MEDQA502

benchmark. This includes models with different503

retrieval mechanisms and model sizes, enabling a504

head-to-head evaluation of AMG-RAG with other505

state-of-the-art baselines such as Self-RAG (Asai506

et al., 2023), HyDE (Gao et al., 2022), GraphRAG507

(Edge et al., 2024), and MedRAG (Zhao et al.,508

2025). The results clearly show that AMG-RAG509

configured with the PubMed-MKG and an 8B LLM510

backbone achieves the highest accuracy of 73.92%,511

surpassing all competing models. Notably, ablation512

results indicate that removing search functionality513

or CoT reasoning significantly degrades accuracy514

(dropping to 67.16% and 66.69%, respectively),515

confirming the essential role of structured retrieval516

and reasoning components in complex question517

answering. Other baseline models such as Gemini-518

pro and PMC-LLaMA demonstrate weaker perfor-519

mance, further validating the efficacy of domain-520

aware retrieval and reasoning modules proposed521

in AMG-RAG. Importantly, the domain specificity522

and freshness of PubMedSearch provide a signif-523

icant advantage in retrieving relevant knowledge524

that general-purpose search modules often fail to525

deliver.526

Model Size Accuracy (%)
AMG-RAG PubMed-MKG-8B 73.92

Wiki-MKG-8B 70.62
No-MK-8B 67.16

No-MKG & CoT-8B 66.69
Self-RAG 8B 67.32

HyDE-8B 68.32
RAG Gemini-pro 64.5

70B 56.2
8B 64.3

GraphRAG Gemini-pro 65.1
70B 55.1
8B 64.8

MedRag 70B 49.57
13B 42.58

PMC-LLaMA 13B 44.38

Table 3: Comparison of MEDQA accuracy across vari-
ous RAG models and retrieval strategies.

Comparison Against LLM Backbones. In ad-527

dition to evaluating different retrieval strategies,528

we assess how the choice of LLM backbone in-529

fluences performance in Table 4. This compari-530

son highlights that AMG-RAG built on GPT4o-531

mini with PubMed-MKG achieves the best perfor-532

mance (73.92%). In contrast, performance declines533

when switching to LLaMA 3.1 or Mixtral, even534

Figure 4: Performance comparison across different question
domains in the Neurology and Genetics fields.

when using the same retrieval pipeline. These re- 535

sults reinforce the importance of synergy between 536

the language model and the retrieval mechanism. 537

Larger models do not necessarily guarantee higher 538

accuracy—domain alignment and reasoning ability, 539

such as that of GPT4o-mini, are crucial for success 540

on high-stakes tasks like medical QA. 541

Model Config-Size Accuracy (%)
GPT4o-mini PubMed-MKG-8B 73.92

No-MKG & CoT-8B 66.69
LLaMA 3.1 PubMed-MKG-8B 66.5

No-MKG-8B 62.6
Mixtral PubMed-MKG-8×7B 61.4

No-MKG-8×7B 53.2
GPT 3.5 PubMed-MKG 65.2

No-MKG 58.4

Table 4: AMG-RAG performance across different LLM
backbones on the MEDQA benchmark.

Improving QA in Rapidly Changing Medical Do- 542

mains with AMG-RAG. Figure 4 shows AMG- 543

RAG’s superior performance in rapidly evolving 544

subfields like Neurology and Genetics. This ad- 545

vantage stems from real-time PubMed integration 546

during inference, combined with structured rea- 547

soning and knowledge graph grounding, enabling 548

precise answers to complex medical questions with 549

enhanced interpretability and trustworthiness. 550

5 Conclusion 551

We introduce AMG-RAG, an advanced QA system 552

that dynamically constructs MKG while integrating 553

sophisticated structured reasoning for medical QA. 554

The system demonstrates significant improvements 555

in accuracy and reasoning capabilities, particularly 556

for medical question-answering tasks, outperform- 557

ing other approaches of similar model size or 10 to 558

100 times larger. 559
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6 Limitations560

Despite AMG-RAG’s advancements, our approach561

has certain limitations. Firstly, it relies on exter-562

nal search tools which introduce latency during the563

creation of the MKG. However, this occurs only564

once, when the MKG is built from scratch for the565

first time. Additionally, while the system performs566

exceptionally well in medical domains, its applica-567

bility to non-medical tasks remains unexplored.568

Another limitation is the need for structured, au-569

thoritative sources of medical knowledge. Cur-570

rently, AMG-RAG retrieves information from di-571

verse sources, including research articles and medi-572

cal textbooks. However, as emphasized in clinical573

decision-making, treatment guidelines serve as es-574

sential references for standardized diagnosis and575

treatment protocols (Hager et al., 2024). Future576

work on AMG-RAG should focus on integrating577

structured access to these sources to ensure compli-578

ance with evidence-based medicine.579

7 Ethics Statement580

The development of LLMs for medical QA requires581

careful ethical consideration due to risks of inaccu-582

racy and bias. Ensuring the reliability of retrieved583

content is crucial, especially when integrating ex-584

ternal knowledge sources. To mitigate these risks,585

we implement a confidence scoring mechanism586

into the MKG to validate the information. How-587

ever, bias detection and mitigation remain active588

research areas.589
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A Confidence Scoring for the776

Relationships in the MKG777

A confidence score, sij , is assigned to each inferred778

relationship, reflecting its strength and relevance.779

The scoring criteria are as follows:780

• 10: The target is directly and strongly re-781

lated to the item, with clear, unambiguous782

relevance.783

• 7-9: The target is moderately to highly rele-784

vant to the item but may have some ambiguity785

or indirect association.786

• 4-6: The target has some relevance to the item787

but is weak or only tangentially related.788

• 1-3: The target has minimal or no meaningful789

connection to the item.790

B Evaluating the Accuracy and791

Robustness of the Medical Knowledge792

Graph793

The quality and reliability of the dynamically gen-794

erated MKG are critical for its effectiveness in795

enhancing medical QA systems. To validate the796

accuracy, robustness, and usability of the MKG,797

a structured evaluation involving expert LLMs in798

the medical domain, such as GPT medical model,799

was conducted. This section outlines the method-800

ology used to evaluate the MKG, emphasizing in-801

terpretability, clinical relevance, and robustness in802

real-world applications. Additionally, the role of803

medical experts in verifying the accuracy and ap-804

plicability of the MKG is discussed, underscoring805

the necessity of human expertise in validating AI-806

driven medical knowledge representations.807

To assess accuracy and robustness, a two-phase808

evaluation process was employed. In the first phase,809

a group of expert LLMs specialists in medical do-810

mains reviewed a subset of the MKG, including811

dynamically generated nodes, relationships, confi-812

dence scores, and summaries for various medical813

queries. They evaluated the accuracy of medical814

terms and concepts, the relevance of relationships815

between nodes, the reliability of node summaries,816

and the alignment of confidence scores with the per-817

ceived strength and reliability of the connections.818

Each LLM independently rated the graph compo-819

nents on a scale of 1 to 10. The results showed820

an average accuracy score of 8.9/10 for node iden-821

tification, 8.8/10 for relationship relevance, and822

8.5/10 for the clarity and precision of node sum- 823

maries. Confidence scores generally aligned well 824

with the LLMs’s assessments, as illustrated in Ta- 825

bles 5 and 6, which highlight strong relationships 826

across domains such as ophthalmology, cardiovas- 827

cular treatments, and dermatology. 828

In the second phase, blind testing was conducted 829

to evaluate usability and human-readability. Expert 830

LLMs were tasked with answering complex med- 831

ical queries requiring multi-hop reasoning, such 832

as managing comorbidities or determining multi- 833

drug treatment protocols. As shown in Table 5, 834

relationships such as the co-usage of Ketotifen and 835

Fluorometholone for allergic conjunctivitis or La- 836

betalol and Nitroglycerin for acute hypertension 837

demonstrated the MKG’s ability to model clini- 838

cally relevant associations effectively. The LLMs 839

achieved a 89% accuracy rate in these test scenar- 840

ios. Additionally, the LLMs rated the MKG 9.4/10 841

for interpretability and usability, underscoring its 842

strength in visually and contextually representing 843

complex medical relationships. 844

To further ensure the clinical relevance and prac- 845

tical applicability of the MKG, medical experts, 846

including practicing physicians and clinical re- 847

searchers, were involved in evaluating the gener- 848

ated relationships and summaries. Unlike LLMs, 849

medical experts provided qualitative assessments, 850

identifying potential discrepancies, overlooked nu- 851

ances, and contextual dependencies that automated 852

models might miss. The medical experts particu- 853

larly assessed: 854

1. The correctness and completeness of medical 855

relationships, ensuring they align with estab- 856

lished clinical knowledge and best practices. 857

2. The validity of multi-hop reasoning paths, ver- 858

ifying whether inferred relationships reflected 859

logical clinical decision-making processes. 860

3. The utility of the MKG in real-world medical 861

applications, particularly in aiding diagnostic 862

and treatment decision-making. 863

The feedback from medical experts was instru- 864

mental in refining the graph, addressing inconsis- 865

tencies, and enhancing the confidence scores to bet- 866

ter reflect real-world medical reliability. Notably, 867

medical expert ratings aligned well with LLM eval- 868

uations but provided deeper insights into the con- 869

textual limitations of the graph. For example, while 870

LLMs accurately linked Diltiazem and Nitroglyc- 871

erin in cardiovascular treatment, medical experts 872
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highlighted additional considerations such as con-873

traindications in specific patient populations, which874

were subsequently incorporated into the MKG.875

The detailed evaluations in Tables 5 and 6 pro-876

vide further insights into the graph’s performance877

across diverse medical domains. For instance, the878

accurate representation of relationships between879

beta-blockers like Labetalol and Propranolol or880

the integration of treatments such as Diltiazem881

and Nitroglycerin for cardiovascular care highlight882

the MKG’s capacity to support intricate clinical883

decision-making.884

These results confirm that the MKG is both885

human-readable and usable by advanced LLMs,886

making it an invaluable tool for medical QA and887

decision-making. The graph’s structured format,888

enriched with confidence scores and summaries,889

ensures a clear and interpretable representation of890

medical knowledge while enhancing the efficiency891

and accuracy of QA systems in addressing real-892

world medical scenarios. Moreover, the involve-893

ment of medical experts in the evaluation process894

enhances the credibility of the MKG, ensuring that895

AI-driven insights align with clinical expertise and896

practical healthcare applications.897

C QA Samples with reasoning from898

MEDQA benchmark899

This section presents a set of QA samples demon-900

strating the reasoning paths generated by our pro-901

posed AMG-RAG model when applied to the902

MEDQA dataset. These examples highlight how903

the model retrieves relevant content, structures key904

information, and formulates reasoning to guide an-905

swer selection.906

Table 7 provides an example of how the model907

processes a clinical case question related to the908

management of acute coronary syndrome (ACS).909

The search items retrieved for possible answer910

choices (e.g., Nifedipine, Enoxaparin, Clopidogrel,911

Spironolactone, Propranolol) are accompanied by912

key content excerpts relevant to their roles in ACS913

treatment. Additionally, the reasoning pathways il-914

lustrate how the model synthesizes evidence-based915

knowledge to justify the selection of the correct916

answer (Clopidogrel), while also explaining why917

the alternative options are not suitable. Additional918

examples are also provided in Tables 8, 9, and 10919

920

D Implementation Details for Dataset 921

Ingestion and Vector Database 922

This section outlines the pipeline for dataset in- 923

gestion and vector database creation for efficient 924

medical question-answering. The process involves 925

document chunking, embedding generation, and 926

storage in a vector database to facilitate semantic 927

retrieval. 928

D.1 Dataset Processing and Chunking 929

The dataset, sourced from medical textbooks in 930

the MEDQA benchmark, is provided in plain text 931

format. Each document is segmented into smaller 932

chunks with a maximum size of 512 tokens and a 933

100-token overlap. This overlap ensures context 934

preservation across chunk boundaries, supporting 935

multi-hop reasoning for long documents. 936

D.2 Embedding Model and Vector Storage 937

The system utilizes the SentenceTransformer 938

model, specifically all-mpnet-base-v2, for gen- 939

erating dense vector representations of text chunks 940

and queries. To optimize storage and retrieval, 941

the embeddings are indexed in the Chroma vector 942

database. Metadata, such as document filenames 943

and chunk IDs, is also stored to maintain document 944

traceability. 945

D.3 Batch Processing and Vector Database 946

Population 947

To manage memory efficiently during ingestion, 948

document chunks are processed in batches of up to 949

10,000. This ensures a smooth ingestion pipeline 950

while preventing memory overflow. Each pro- 951

cessed file is logged to avoid redundant computa- 952

tions, and error handling mechanisms are in place 953

to manage failed processing attempts. 954

D.4 Query Answering Workflow 955

For retrieval, user queries (e.g., "What are the symp- 956

toms of drug-induced diabetes?") are embedded 957

using the all-mpnet-base-v2 model. The top- 958

ranked relevant chunks are retrieved based on their 959

semantic similarity to the query using Chroma’s 960

similarity search mechanism. The system retrieves 961

the top k relevant passages, which can be further 962

processed in downstream QA models. 963

D.5 Key Configuration Details 964

The system is configured with the following param- 965

eters: 966
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Source Node Relationship Type Target Node LLM Expert Analysis Blind Analysis Medical Expert Analy-
sis

Botulism Directly related as it is
the target concept.

Myasthenia
gravis

Rated 9.2/10 for rel-
evance and clinical
importance, considered
highly accurate.

Demonstrated effective
multi-hop reasoning
with a 92% accuracy
in identifying related
conditions.

Rated 9.5/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Levodopa Levodopa is a primary
treatment for Parkin-
son’s disease.

Parkinson’s dis-
ease

Evaluated as highly re-
liable (9.6/10) for sum-
marizing medical treat-
ments and relationships.

Increases accuracy
by 24% in answering
queries about Parkin-
son’s treatments and
comorbidities.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Zidovudine Zidovudine is an antivi-
ral drug used for HIV
treatment.

HIV/AIDS Experts rated it 9.4/10
for interpretability, high-
lighting the clear repre-
sentation of the relation-
ship.

Provided contextually
accurate responses re-
garding drug interac-
tions and side effects in
queries.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Inhibition of
thymidine
synthesis

Cross-linking of DNA
is directly related to
thymidine synthesis as
both involve nucleic
acid metabolism.

Cross-linking
of DNA

Rated 9.2/10 for rele-
vance to nucleic acid
metabolism and DNA
replication.

Demonstrated high ac-
curacy in answering
multi-hop queries re-
lated to DNA synthesis
pathways.

Rated 9/10 for relevance
and accuracy, consid-
ered accurate.

Hyperstabilization
of microtubules

Cross-linking of DNA
can be related to the
stabilization of micro-
tubules.

Cross-linking
of DNA

Rated 9.0/10 for high-
lighting structural modi-
fications affecting cellu-
lar functions.

Increases the accuracy
by 20% in scenarios in-
volving cellular struc-
ture interactions.

Rated 8/10 for moder-
ated relevance.

Generation of
free radicals

Free radicals can lead
to oxidative damage, af-
fecting DNA integrity
and function.

Cross-linking
of DNA

Rated 8.5/10 for its rele-
vance to oxidative stress
and DNA damage mech-
anisms.

Accurate in providing
causal explanations for
oxidative stress and
DNA cross-linking.

Rated 7.5/10 for rele-
vance.

Renal papillary
necrosis

Allergic interstitial
nephritis can lead to
renal damage.

Allergic intersti-
tial nephritis

Rated 9.0/10 for ex-
plaining the clinical pro-
gression of renal com-
plications.

Effective in multi-hop
reasoning for renal
damage-related queries,
achieving 91% accu-
racy.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Table 5: Examples from the Medical Knowledge Graph (MKG) with Expert and Blind Analysis (Part 1)

• Embedding Model: all-mpnet-base-v2967

from SentenceTransformer.968

• Vector Database: Chroma, stored persis-969

tently on disk for reusability.970

• Chunk Size: 512 tokens per chunk, with a971

100-token overlap for contextual consistency.972

• Batch Size: Up to 10,000 chunks per batch to973

optimize ingestion efficiency.974

D.6 Implementation and System Execution975

The ingestion and query process is implemented us-976

ing Python, leveraging sentence-transformers977

for embeddings and Chroma for vector storage. The978

ingestion pipeline reads and processes text files,979

splits them into chunks, generates embeddings, and980

stores them efficiently in the vector database. The981

querying process retrieves the top k most relevant982

text chunks to respond to user queries.983

E Components Definition984

E.1 Neo4j985

As data complexity increases, traditional rela-986

tional databases struggle with highly intercon-987

nected datasets where relationships are crucial.988

Graph databases, like Neo4j, address this challenge 989

by efficiently modeling and processing complex, 990

evolving data structures using nodes, relationships, 991

and properties (Besta et al., 2023). 992

Neo4j, an open-source NoSQL graph database, 993

enables constant-time traversals by explicitly stor- 994

ing relationships, making it ideal for large-scale 995

applications such as social networks, recommen- 996

dation systems, and biomedical research. Unlike 997

relational models, Neo4j avoids costly table joins 998

and optimizes deep relationship queries, enhancing 999

scalability and performance (Besta et al., 2023). 1000

Neo4j’s architecture is centered around the prop- 1001

erty graph model, which includes(Huang and Dong, 1002

2013): 1003

• Nodes: Entities representing data points. 1004

• Relationships: Directed, named connections 1005

between nodes that define how entities are 1006

related. 1007

• Properties: Key-value pairs associated with 1008

both nodes and relationships, providing addi- 1009

tional metadata. 1010

This model allows for intuitive representation 1011

of complex data structures and supports efficient 1012
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Source Node Relationship Type Target Node LLM Expert Analysis Blind Analysis Medical Expert Analy-
sis

Ketotifen eye
drops

Ketotifen eye drops
are antihistamines
used for allergic con-
junctivitis, which may
be used alongside
Fluorometholone for
managing eye allergies.

Fluorometholone
eye drops

Rated 9.2/10 for rele-
vance in managing aller-
gic conjunctivitis.

Demonstrated 93% ac-
curacy in multi-hop rea-
soning for ophthalmo-
logical conditions.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Ketotifen eye
drops

Latanoprost eye drops
are used to lower in-
traocular pressure in
glaucoma, while Keto-
tifen treats allergic con-
junctivitis.

Latanoprost eye
drops

Rated 9.0/10 for dis-
tinct yet complementary
roles in ophthalmology.

Effective in identifying
separate ophthalmic ap-
plications with 92% ac-
curacy.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Diltiazem Nitroglycerin is relevant
in discussions of car-
diovascular treatments
alongside Diltiazem.

Nitroglycerin Rated 8.8/10 for contex-
tual relevance to cardio-
vascular management.

Increases the accuracy
for treatment-based
queries by 20%.

Rated 9.5/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Labetalol Labetalol is closely re-
lated to Propranolol,
both managing hyper-
tension.

Propranolol Rated 9.5/10 for direct
relevance in cardiovas-
cular treatment proto-
cols.

Highly interpretable re-
sponses for hyperten-
sion management, with
95% accuracy.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Nitroglycerin Nitroglycerin and La-
betalol are often used
in conjunction for man-
aging hypertension and
heart conditions.

Labetalol Rated 8.7/10 for strong
relevance in acute hyper-
tension protocols.

Supported effective
multi-drug therapy
reasoning with 90%
accuracy.

Rated 9/10 for relevance
and accuracy, consid-
ered highly accurate.

Nitroglycerin Nitroglycerin is often
used with Propranolol
in managing cardiovas-
cular conditions like hy-
pertension and angina.

Propranolol Rated 9.0/10 for its im-
portance in cardiovascu-
lar multi-drug therapy.

Demonstrated robust
performance in connect-
ing treatment protocols,
with 93% query accu-
racy.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Fluorometholone
eye drops

Fluorometholone
eye drops are corti-
costeroids that treat
inflammation, comple-
menting Ketotifen for
allergic conjunctivitis.

Ketotifen eye
drops

Rated 8.8/10 for their
combined application in
managing inflammation
and allergies.

Improved query rele-
vance for multi-drug
therapy in eye care by
19%.

Rated 9.5/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Lanolin Lanolin is used for
skin care, particularly
for sore nipples during
breastfeeding.

Fluorometholone
eye drops

Rated 8.5/10 for
highlighting non-
overlapping yet clini-
cally useful contexts.

Demonstrated effective
differentiation of clini-
cal uses with high inter-
pretability.

Rated 9/10 for relevance
and accuracy, consid-
ered highly accurate.

Table 6: Examples from the Medical Knowledge Graph (MKG) with Expert and Blind Analysis (Part 2)

querying and analysis. The system’s internal mech-1013

anisms facilitate rapid traversal of relationships, en-1014

abling swift query responses even in large datasets1015

(Huang and Dong, 2013).1016

Does Neo4j-Based Storage scale well? Neo4j’s1017

scalability for our medical knowledge graph stor-1018

age is strategically robust, offering several key1019

advantages for large-scale, relationship-intensive1020

medical data. Its graph-based architecture is1021

particularly well-suited for handling highly in-1022

terconnected medical knowledge networks, sup-1023

porting horizontal scaling that enables efficient1024

performance even as the knowledge base grows.1025

The cloud-based accessibility further enhances the1026

framework’s flexibility, allowing seamless knowl-1027

edge sharing and distributed access without local1028

storage constraints.1029

How large were the knowledge graphs? Our au-1030

tomatically constructed medical knowledge graphs1031

demonstrate significant complexity and depth, com-1032

prising approximately 76,681 nodes and 354,299 1033

edges. These nodes encompass a comprehensive 1034

range of medical entities including diseases, symp- 1035

toms, treatments, drugs, anatomical structures, and 1036

clinical findings, all interconnected through seman- 1037

tically meaningful, typed relationships. This sub- 1038

stantial scale not only reflects the intricate nature 1039

of medical knowledge but also enables more nu- 1040

anced, multi-hop reasoning capabilities across di- 1041

verse medical queries. The graph’s architecture al- 1042

lows for dynamic expansion and refinement, ensur- 1043

ing that the knowledge representation remains both 1044

comprehensive and adaptable to emerging medical 1045

research and understanding. 1046

F Additional Results 1047
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Search Item/ Ques-
tion Options

Key Content Highlighted Reasoning Guiding the
Answer

Nifedipine Not typically used for
acute coronary syndrome
(ACS). Associated with re-
flex tachycardia.

Nifedipine is a calcium
channel blocker effective
for hypertension but does
not address the antiplatelet
needs of ACS patients.

Enoxaparin Used for anticoagulation
in ACS but mainly during
hospitalization.

Enoxaparin is not contin-
ued after discharge when
aspirin and another an-
tiplatelet drug are pre-
scribed.

Clopidogrel Standard for dual an-
tiplatelet therapy (DAPT)
in ACS, especially post-
percutaneous coronary in-
tervention (PCI).

Clopidogrel complements
aspirin in preventing
thrombotic events post-
angioplasty. Its use is
supported by evidence-
based guidelines.

Spironolactone Useful in heart failure or
reduced ejection fraction
but not indicated for ACS
management when EF is
normal.

This patient’s EF is 58%,
so spironolactone is not
necessary. Focus should
be on antiplatelet therapy.

Propranolol Effective for reducing my-
ocardial oxygen demand
but not part of standard
DAPT.

While beneficial for stress-
related heart issues, it
does not address throm-
botic risks in ACS man-
agement.

Table 7: Examples of Summary of search items for the question "A 65-year-old man is brought to the emergency
department 30 minutes after the onset of acute chest pain. He has hypertension and asthma. Current medications
include atorvastatin, lisinopril, and an albuterol inhaler. He appears pale and diaphoretic. His pulse is 114/min, and
blood pressure is 130/88 mm Hg. An ECG shows ST-segment depressions in leads II, III, and aVF. Laboratory
studies show an increased serum troponin T concentration. The patient is treated for acute coronary syndrome and
undergoes percutaneous transluminal coronary angioplasty. At the time of discharge, echocardiography shows a left
ventricular ejection fraction of 58%. In addition to aspirin, which of the following drugs should be added to this
patient’s medication regimen?" and Their Influence on the Correct Answer (Clopidogrel) and the reasoning paths

15



Search Item/ Ques-
tion Options

Key Content Highlighted Reasoning Guiding the
Answer

A history of stroke
or venous throm-
boembolism

Contraindicated for hor-
monal contraceptives due
to increased risk of throm-
bosis.

Copper IUDs do not carry
the same thrombotic risk,
making this option irrele-
vant for contraindication
in IUD placement.

Current tobacco
use

Increases cardiovascular
risk with hormonal contra-
ceptives but not with cop-
per IUDs.

Tobacco use does not
contraindicate IUD place-
ment, though it may influ-
ence other contraceptive
choices.

Active or re-
current pelvic
inflammatory
disease (PID)

Direct contraindication for
IUD placement due to the
risk of exacerbating infec-
tion and complications.

Insertion of an IUD can
worsen active PID, lead-
ing to infertility or other
severe complications.

Past medical his-
tory of breast can-
cer

Contraindicates hormonal
contraceptives, but copper
IUDs are considered safe.

This option does not con-
traindicate copper IUD
placement, as it is non-
hormonal and unrelated to
breast cancer.

Known liver neo-
plasm

Contraindicates hormonal
contraceptives but not cop-
per IUDs.

Copper IUDs are safe for
patients with liver neo-
plasms as they are free of
systemic hormones.

Table 8: Examples of Summary of Search Items for the Question "A 37-year-old-woman presents to her primary
care physician requesting a new form of birth control. She has been utilizing oral contraceptive pills (OCPs) for
the past 8 years, but asks to switch to an intrauterine device (IUD). Her vital signs are: blood pressure 118/78
mm Hg, pulse 73/min and respiratory rate 16/min. She is afebrile. Physical examination is within normal limits.
Which of the following past medical history statements would make copper IUD placement contraindicated in this
patient?" and Their Influence on the Correct Answer (Active or recurrent pelvic inflammatory disease (PID)) and
the Reasoning Paths
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Search Item/ Ques-
tion Options

Key Content Highlighted Reasoning Guiding the
Answer

Dementia Typically presents as a
gradual decline in cogni-
tive function.

The sudden onset of symp-
toms after surgery and
acute confusion makes de-
mentia less likely.

Alcohol with-
drawal

Requires significant and
sustained alcohol use to
cause withdrawal symp-
toms.

The patient’s weekly con-
sumption of one to two
glasses of wine is insuffi-
cient to support this diag-
nosis.

Opioid intoxica-
tion

Oxycodone can cause se-
dation and confusion, but
stable vital signs and lack
of severe respiratory de-
pression are inconsistent.

While oxycodone use is
relevant, the observed fluc-
tuating agitation and im-
pulsivity are more consis-
tent with delirium.

Delirium Characterized by acute
changes in attention and
cognition with fluctuating
levels of consciousness.

The patient’s recent
surgery, medication use,
and fluctuating symptoms
align strongly with a
diagnosis of delirium.

Urinary tract in-
fection (UTI)

Confusion in elderly pa-
tients can result from
UTIs, but a normal urine
dipstick test does not sup-
port this.

The absence of urinary
findings on examination
makes UTI less likely as
the cause of symptoms.

Table 9: Examples of Search Items for the Question: "Six days after undergoing surgical repair of a hip fracture, a
79-year-old woman presents with agitation and confusion. Which of the following is the most likely cause of her
current condition?" and Their Influence on the Correct Answer (Delirium) and the Reasoning Paths.
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Search Item/ Ques-
tion Options

Key Content Highlighted Reasoning Guiding the
Answer

Primary sperma-
tocyte

Nondisjunction events dur-
ing meiosis I often occur
at this stage, leading to
chromosomal abnormali-
ties.

Klinefelter syndrome
(47,XXY) is typically due
to nondisjunction during
meiosis, specifically at
this stage.

Secondary sper-
matocyte

Meiosis II occurs here, di-
viding chromosomes into
haploid cells, but errors at
this stage are less likely to
lead to 47,XXY.

The chromosomal abnor-
mality associated with
Klinefelter syndrome usu-
ally arises before this
stage.

Spermatid Spermatids are post-
meiotic cells where
genetic material is already
finalized.

Errors at this stage would
not result in a cytogenetic
abnormality like 47,XXY.

Spermatogonium Errors here affect the
germline but are less likely
to cause specific meiotic
nondisjunction errors.

While germline mutations
can occur, meiotic nondis-
junction leading to Kline-
felter syndrome occurs
later.

Spermatozoon These are fully mature
sperm cells that inherit
abnormalities from earlier
stages.

By this stage, chromoso-
mal errors have already
been established.

Table 10: Examples of Search Items for the Question: "A 29-year-old man with infertility, tall stature, gynecomastia,
small testes, and an elevated estradiol:testosterone ratio is evaluated. Genetic studies reveal a cytogenetic abnormality
inherited from the father. At which stage of spermatogenesis did this error most likely occur?" and Their Influence
on the Correct Answer (Primary spermatocyte) and the Reasoning Paths.

Example 1 Question: A 29-year-old man presents with infertility. He has been trying to conceive for over 2 years. His
wife has no fertility issues. Exam shows tall stature, long limbs, sparse body hair, gynecomastia, and small
testes. Labs reveal elevated FSH and a high estradiol:testosterone ratio. Cytogenetic analysis indicates a
chromosomal abnormality. If inherited from the father, during which stage of spermatogenesis did this error
most likely occur?
Choices: A: Primary spermatocyte, B: Secondary spermatocyte, C: Spermatid, D: Spermatogonium, E:
Spermatozoon
Answer: A (Primary spermatocyte)
Reasoning: This corresponds to an error in meiosis I during the father’s spermatogenesis, consistent with
Klinefelter syndrome due to paternal nondisjunction.
Retrieved Papers: 1) Black et al., *The Genetic Landscape of Male Factor Infertility*, Uro, 2025. 2) Niyaz
et al., *Chromosome Disorders in Sperm Anomalies*, 2025. 3) Leslie et al., *MNS1 variant and Male
Infertility*, EJHG, 2020.

Example 2 Question: A 23-year-old woman is referred for genetic counseling after her brother is diagnosed with
hereditary hemochromatosis. She is asymptomatic and her labs are normal. Which gene mutation is most
consistent with hereditary hemochromatosis?
Choices: A: BCR-ABL, B: BRCA, C: FA, D: HFE, E: WAS
Answer: D (HFE gene)
Reasoning: Most hereditary hemochromatosis cases in Northern European populations are caused by HFE
mutations (C282Y, H63D). Even asymptomatic individuals with normal iron studies should be screened if
they have an affected first-degree relative.
Retrieved Papers: 1) Delatycki & Allen, *Population Screening for HH*, Genes, 2024. 2) Lou et al., *Utility
of Iron Indices in HH Genotyping*, Clin. Biochem., 2025. 3) Lucas et al., *HFE Genotypes and Outcomes*,
BMJ Open, 2024.

Table 11: Examples of AMG-RAG-generated answers with structured reasoning and citation-based grounding for
clinical QA.

18


	Introduction
	Related Work
	Method
	Retrieval Augmented Generation (RAG)
	Medical QA with AMG-RAG
	Dynamic Generation of the Medical Knowledge Graph

	Experiments
	Medical Knowledge Graph
	Performance Comparison

	Conclusion
	Limitations
	Ethics Statement
	Confidence Scoring for the Relationships in the MKG
	Evaluating the Accuracy and Robustness of the Medical Knowledge Graph
	QA Samples with reasoning from MEDQA benchmark
	Implementation Details for Dataset Ingestion and Vector Database
	Dataset Processing and Chunking
	Embedding Model and Vector Storage
	Batch Processing and Vector Database Population
	Query Answering Workflow
	Key Configuration Details
	Implementation and System Execution

	Components Definition 
	Neo4j

	Additional Results

