
Leave Graphs Alone: Addressing Over-Squashing without
Rewiring

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Recent works have investigated the role of graph bottlenecks in preventing long-2

range information propagation in message-passing graph neural networks, causing3

the so-called ‘over-squashing’ phenomenon. As a remedy, graph rewiring mech-4

anisms have been proposed as preprocessing steps. Graph Echo State Networks5

(GESNs) are a reservoir computing model for graphs, where node embeddings are6

recursively computed by an untrained message-passing function. In this paper, we7

show that GESNs can achieve a significantly better accuracy on six heterophilic8

node classification tasks without altering the graph connectivity, thus suggesting a9

different route for addressing the over-squashing problem.10

1 Challenges in Node Classification11

Relations between entities, such as paper citations or links between web pages, can be best represented12

by graphs. Since the introduction of pioneering models such as Neural Network for Graphs [1] and13

Graph Neural Network [2], a plethora of neural models have been proposed to solve graph-, edge-,14

and node-level tasks [3–5], most of them sharing an architecture structured in layers that perform15

local aggregations of node features, e.g. graph convolution networks (GCNs) [6–8]. However, as the16

development of deep learning on graphs progressed, several challenges preventing the computation of17

effective node representations have emerged. Li et al. [9] first presented over-smoothing as an issue by18

analysing the accuracy decay as the number of layers increases in deep graph convolutional networks19

on semi-supervised node classification tasks. Oono and Suzuki [10] showed that repeated applications20

of a GCN layer cause the node representations to asymptotically converge to a low-frequency subspace21

of the graph spectrum. Furthermore, by acting as a low-pass filter, GCNs representation are biased22

in favour of tasks whose graphs present an high degree of homophily, that is nodes in the same23

neighbourhood share the same class [11]. In general, the inability to extract meaningful features24

in deeper layers for tasks that require discovering long-range relationships between nodes is called25

under-reaching. Alon and Yahav [12] maintain that one of its causes is over-squashing: the problem26

of encoding an exponentially growing receptive field [1] in a fixed-size node embedding dimension.27

Topping et al. [13] have provided theoretical insights into this issue by identifying over-squashing28

with the exponential decrease in sensitivity of node representations to the input features on distant29

nodes as the number of layers increases. For example, a GCN model [8] computes the representation30

h
(`)
v ∈ RH of node v in layer ` as the aggregation of previous-layer features in neighbouring nodes31

v′ ∈ N (v), i. e.32

h
(`)
v = relu

(∑
v′∈N (v) Âv,v′W(`)h

(`−1)
v′

)
, (1)

with Â as the normalized graph adjacency matrix and input node features xv ∈ RX in layer ` = 1.33

The sensitivity of h(`)
v to the input xv′ , assuming that there exists a `-path between nodes v and v′, is34

upper bounded by35 ∥∥∥∂h(`)
v

∂xv′

∥∥∥ ≤ ∏̀
l=1

‖W(l)‖︸ ︷︷ ︸
layers’ Lipschitz constants

(Â`)v,v′ . (2)
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Topping et al. [13] have further investigated the connection of over-squashing — as measured by36

the Jacobian of node representations in (2) — with the graph topology via the term (Â`)v,v′ , and37

have identified in negative local graph curvature the cause of ‘bottlenecks’ in message propagation.38

In order to remove these bottlenecks, they have proposed rewiring the input graph, i.e. altering the39

original set of edges as a preprocessing step, via Stochastic Discrete Ricci Flow (SDRF). This method40

works by iteratively adding an edge to support the most negatively-curved edge while removing the41

most positively-curved one according to the balanced Forman curvature [13], until convergence42

or a maximum number of iterations is reached. This rewiring approach can be contrasted to e.g.43

Graph Diffusion Convolution (DIGL) [14], which aims to address the problem of noisy edges in the44

input graph by altering the connectivity according to a generalized graph diffusion process, such as45

personalized PageRank (PPR). Since DIGL has a smoothing effect on the graph adjacency — by46

promoting connectivity between nodes that are a short diffusion distance —, it may be more suitable47

for tasks that present a high degree of homophily [13], i.e. graphs with an high ratio of intra-class48

edges [11].49

In our opinion, equation (2) instead suggests a different method of addressing the exponentially50

vanishing sensitivity in deeper layers, by acting on the layers’ Lipschitz constants ‖W(l)‖. In the51

next section, we present a model for computing node embeddings in which Lipschitz constants52

can be explicitly chosen as part of the hyper-parameter selection. This will enable an experimental53

comparison between the two approaches in section 3.54

2 Reservoir Computing for Graphs55

Reservoir computing [15–17] is a paradigm for the efficient design of recurrent neural networks56

(RNNs). Input data is encoded by a randomly initialized reservoir, while only the readout layer for57

downstream task predictions requires training. Reservoir computing models, in particular Echo State58

Networks (ESNs) [18], have been studied in order to obtain insights into the architectural bias of59

RNNs [19, 20].60

Graph Echo State Networks (GESNs) have been introduced by Gallicchio and Micheli [21], extending61

the reservoir computing paradigm to graph-structured data. GESNs have already demonstrated their62

effectiveness in graph-level classification tasks [22], and more recently in node-level classification63

tasks [23], in particular when the underlying graphs present low homophily. Node embeddings are64

recursively computed by the non-linear dynamical system65

h
(k)
v = tanh

(
Win xv +

∑
v′∈N (v) Ŵh

(k−1)
v′

)
, h

(0)
v = 0, (3)

where Win ∈ RH×X and Ŵ ∈ RH×H are the input-to-reservoir and the recurrent weights, respec-66

tively, for a reservoir with H units (input bias is omitted). Equation (3) is iterated over k until the67

system state converges to fixed point h(∞)
v , which is used as the embedding. For node classification68

tasks, a linear readout is applied to node embeddings yv = Wout h
(∞)
v + bout, where the weights69

Wout ∈ RC×H ,bout ∈ RC are trained by ridge regression on one-hot encodings of target classes70

yv. The existence of a fixed point is guaranteed by the Graph Embedding Stability (GES) property71

[22], which also guarantees independence from the system’s initial state h
(0)
v . A sufficient condition72

for the GES property is requiring that the transition function defined in (3) to be contractive, i.e.73

to have Lipschitz constant ‖Ŵ‖ ‖A‖ < 1. In standard reservoir computing practice, however,74

the recurrent weights are initialized according to a necessary condition [24] for the GES property,75

which is ρ(Ŵ) < 1/α, where ρ(·) denotes the spectral radius of a matrix, i.e. its largest absolute76

eigenvalue, and α = ρ(A) is the graph spectral radius. This condition provides the best estimate of77

the system bifurcation point, i.e. the threshold beyond which (3) becomes asymptotically unstable78

[24]. Reservoir weights are randomly initialized from a uniform distribution in [−1, 1], and then79

rescaled to the desired input scaling and reservoir spectral radius, without requiring any training.80

Let us now consider a GESN where the number of iterations of (3) is fixed to a constant K. In this81

case, the K iterations of the state transition function (3) can be interpreted as equivalent to ` = K82

graph convolution layers with weights shared among layers and input skip connections. In such a83

network, we are able to control how large the layers’ Lipschitz constant is by increasing ρ(Ŵ), since84

the spectral radius is a lower bound for the spectral norm [25], i.e. ‖Ŵ‖ ≥ ρ(Ŵ). This should allow85

us to contrast the exponentially vanishing sensitivity in (2) caused by topological bottlenecks in the86
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Table 1: Average test accuracy with 95% confidence intervals (best results in bold). Except for
GESN, the other results are reported from [13].

Cornell Texas Wisconsin Chameleon Squirrel Actor

None 52.69±0.21 61.19±0.49 54.60±0.86 41.80±0.41 39.83±0.14 28.70±0.09

Undirected 53.20±0.53 63.38±0.87 51.37±1.15 42.63±0.30 40.77±0.16 28.10±0.11

+FA 58.29±0.49 64.82±0.29 55.48±0.62 42.33±0.17 40.74±0.13 28.68±0.16

DIGL (PPR) 58.26±0.50 62.03±0.43 49.53±0.27 42.02±0.13 34.38±0.11 30.79±0.10

DIGL + Undir. 59.54±0.64 63.54±0.38 52.23±0.54 42.68±0.12 33.36±0.21 29.71±0.11

SDRF 54.60±0.39 64.46±0.38 55.51±0.27 43.75±0.31 40.97±0.14 29.70±0.13

SDRF + Undir. 57.54±0.34 70.35±0.60 61.55±0.86 44.46±0.17 41.47±0.21 29.85±0.07

GESN 69.75±1.11 73.96±1.45 77.76±1.68 50.19±0.65 42.70±0.29 35.07±0.24

Chameleon

1/320
1/160

1/80
1/40

1/20
1/10 1/2

input scaling

0.1

0.25

0.5

1

2.5

5

10

25

re
s
e

rv
o

ir
 r

a
d

iu
s
 

 /
 

-1

0.36

0.38

0.4

0.42

0.44

0.46

0.48

a
v
e
ra

g
e
 t

e
s
t 

a
c
c
u

ra
c
y

Texas

1/320
1/160

1/80
1/40

1/20
1/10 1/2

input scaling

0.1

0.25

0.5

1

2.5

5

10

25

re
s
e

rv
o

ir
 r

a
d

iu
s
 

 /
 

-1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a
v
e
ra

g
e
 t

e
s
t 

a
c
c
u

ra
c
y

Figure 1: The effects of an adequately large reservoir radius ρ (and thus of a large enough layer’s
Lipschitz constant, since ‖Ŵ‖ ≥ ρ [25]) on test accuracy for different input scaling factors on two
of the six tasks.

factor (Â`)v,v′ with the contributions from the factor ‖Ŵ‖K , which is increasing with the number87

of iterations (unfolded recursive layers) if ‖Ŵ‖ > 1. Indeed, a preliminary work by Tortorella88

and Micheli [23] has empirically suggested that in tasks where the graph structure is relevant in the89

prediction, better node embeddings are computed well beyond the stability threshold.90

3 Experiments and Discussion91

In this section, we compare the accuracy of GESNs on six low-homophily node classification tasks92

against different rewiring mechanisms applied in conjunction with fully-trained GCNs. As Topping93

et al. [13] pointed out, avoiding over-squashing in order to capture long-range dependencies is often94

more relevant in low-homophily settings, since most nodes sharing the same labels are not neighbors.95

In our experiments we follow the same setting and training/validation/test splits of [13, 14], with tasks96

limited to the largest connected component of the original graphs, and report the average accuracy97

with 95% confidence intervals on 1000 test bootstraps. As in [23], the hyper-parameters selected on98

the validation split for GESN are: the reservoir radius ρ(Ŵ), which controls how large the Lipschitz99

constant of (3) should be, in the range [0.1/α, 35/α] (the range ρ > 1/α is obtained by grid search);100

the input scaling factor of Win in the range [ 1
320 , 1]; the number of units H in the range [24, 212];101

and the readout regularization for the ridge regression. The number of iterations is fixed at K = 100.102

In Table 1 we compare the accuracy of GESN against the fully-adjacent (+FA) rewiring method by103

Alon and Yahav [12], the diffusion-based rewiring method DIGL (with PPR) by Gasteiger et al. [14],104

and the curvature-based graph rewiring method by Topping et al. [13] (for details on these models105

hyper-parameters, we refer to [13], where experimental results are taken from). We observe that106

GESNs beat the other models by a significant margin on all the six tasks. Indeed, DIGL and SDRF107

offer improvements over the baseline GCN of a few accuracy points on average, usually requiring108
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Figure 2: Node embeddings for the Cora graph at different iterations k (ρ = 6/α, 4096 units).
Colours in the t-SNE plots represent different node classes, qualitatively showing how well separable
are the node representations.

also that the graph to be made undirected. In contrast, GESN improves up to 16% over the best109

rewiring methods, and by 4-6 points on average. Notice also that rewiring algorithms, in particular110

SDRF, can be extremely costly and need careful tuning in model selection, in contrast to the efficiency111

of the reservoir computing approach, which ditches both the preprocessing of input graphs and the112

training of the node embedding function. Indeed, just the preprocessing step of SDRF can require113

computations ranging from the order of minutes to hours, while a complete model can be obtained114

with GESN in a few seconds’ time on the same GPU.115

Figure 1 shows the impact of reservoir radius ρ and input scaling on test accuracy for Chameleon116

and Texas. An adequately large reservoir radius ρ > 1/α, which in turn gives a large enough117

Lipschitz constant, is crucial in providing a significant gain in accuracy. Notice also that setting a118

proper input scaling is relevant, since it cannot be automatically adjusted by training as in GCNs via119

gradient descent. As a further insight, in Figure 2 we present the t-SNE plots of node embeddings120

of the Cora graph computed at different iterations of (3) with reservoir radius set at ρ = 6/α. In121

GESNs, the iterations of the recursive transition function can be interpreted as equivalent to layers in122

deep message-passing graph networks where weights are shared among layers, in analogy with the123

unrolling in RNNs for sequences. We observe that instead of the collapse of node representations124

that has been shown in Li et al. [9] and subsequent works on the over-smoothing issue, node125

embeddings become more and more separable as the number of iterations increases. This observation,126

in conjunction with the accuracy results of Table 1 and of [23], suggests that the contractivity of the127

message-passing function, i.e. whether its Lipschitz constant is smaller or larger than 1, is the critical128

factor in addressing the degradation of accuracy in deep graph neural networks. Indeed, tuning the129

layer contractivity was implicitly done by Chen et al. [26] via a regularization term that favours larger130

pairwise distances of node representations as a mean to address the over-smoothing problem.131

4 Conclusion132

Motivated by the analysis of over-squashing via sensitivity to input features advanced by Topping133

et al. [13], we have proposed a different route to address this issue affecting the capability of deep134

graph neural networks to learn effective node representations. Instead of altering the input graph135

connectivity — as rewiring methods such as SDRF and DIGL propose —, we have shown that a model136

able to select the suitable Lipschitz constant for its graph convolution can achieve a significantly better137

accuracy on six node classification tasks with low homophily, even computing the node embeddings138

in a completely unsupervised and untrained fashion. Future work will involve investigating how the139

change in Lipschitz constant affects the organization of the node embedding space, and assessing the140

merit of transferring those results in fully-trained graph convolution models via a regularization term141

or via constraints on layers’ weights.142
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A Comparison with node classification models217

For the sake of completeness, in Table 2 we report accuracy of GESN and other node classification218

models on nine graphs with different degrees of homophily, following the experimental setting of219

Zhu et al. [11]. Notice that in this setting the whole graph of the task is retained, thus the results220

cannot be compared with those of Table 1, where graphs are restricted to the largest connected221

component following the setting of [13, 14]. The results show that GESN is effective on tasks with222

high homophily as well as on tasks with low homophily, thanks to the ability to tune the Lipschitz223

constant of (3).224

Table 2: Node classification accuracy on low and high homophily graphs following the experimental
setting of Zhu et al. [11]. Average accuracy and standard deviation for GESN is reported from [23],
while other models are reported from [11]. Results within one standard deviation of the best accuracy
are highlighted.

Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora

GraphSAGE 82.4±6.1 81.2±5.6 34.2±1.0 41.6±0.7 58.7±1.7 75.9±5.0 76.0±1.3 88.5±0.5 86.9±1.0

GAT 58.4±4.5 55.3±8.7 26.3±1.7 30.6±2.1 54.7±1.9 58.9±3.3 75.5±1.7 84.7±0.4 82.7±1.8

GCN 59.5±5.3 59.8±7.0 30.3±0.8 36.9±1.3 59.8±2.6 57.0±4.7 76.7±1.6 87.4±0.7 87.3±1.3

GCN+JK 66.5±6.6 74.3±6.4 34.2±0.9 40.5±1.6 63.4±2.0 64.6±8.7 74.5±1.8 88.4±0.5 85.8±0.9

GCN+Cheby 77.3±4.1 79.4±4.5 34.1±1.1 43.9±1.6 55.2±2.8 74.3±7.5 75.8±1.5 88.7±0.6 86.8±1.0

MixHop 77.8±7.7 75.9±4.9 32.2±2.3 43.8±1.5 60.5±2.5 73.5±6.3 76.3±1.3 85.3±0.6 87.6±0.9

H2GCN 84.9±6.8 86.7±4.7 35.9±1.0 36.4±1.9 57.1±1.6 82.2±4.8 77.1±1.6 89.4±0.3 86.9±1.4

MLP 81.9±4.8 85.3±3.6 35.8±1.0 29.7±1.8 46.4±2.5 81.1±6.4 72.4±2.2 86.7±0.4 74.8±2.2

GESN 84.3±4.4 83.3±3.8 34.5±0.8 71.2±1.5 76.2±1.2 81.1±6.0 74.5±2.1 89.2±0.3 86.0±1.0

Table 3: Statistics for the tasks in Table 2.

Task Homophily Nodes Edges Radius α Features Classes

Texas 0.11 183 295 2.56 1,703 5
Wisconsin 0.21 251 466 2.88 1,703 5
Actor 0.22 7,600 26,752 9.99 932 5
Squirrel 0.22 5,201 198,493 138.60 2,089 5
Chameleon 0.23 2,277 31,421 61.90 2,089 5
Cornell 0.30 183 280 2.68 1,703 5
Citeseer 0.74 3,327 9,104 13.74 3,703 6
Pubmed 0.80 19,717 88,648 23.24 500 3
Cora 0.81 2,708 10,556 14.39 1,433 7

B Role of reservoir radius225

In Figure 3, we show the impact of reservoir radius ρ and input scaling factor on average test accuracy226

for the tasks in Appendix A, reaffirming the analysis of Tortorella and Micheli [23]. Chameleon and227

Squirrel (two tasks with low homophily) require an extremely large reservoir radius, while essentially228

ignoring the input features due to the extremely small input scaling factor. This suggests that having229

a large Lipschitz constant is beneficial for the extraction of relevant topological features from the230

graph. The other four low homophily tasks (Actor, Cornell, Texas, Wisconsin) seem to exploit more231

the information of node input labels instead of graph connectivity, by requiring reservoir radii within232

the stability threshold. Finally, the three high homophily tasks (Cora, Citeseer, Pubmed) achieve the233

best accuracy with a combination of moderately high spectral radius and input scaling relatively close234

to 1. Overall, what we have observed shows that GESN can be flexible enough to accommodate the235

two opposite task requirements thanks to the explicit tuning of both input scaling and reservoir radius236

in the model selection phase.237
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Figure 3: Impact of input scaling and reservoir radius on test accuracy (4096 units).
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