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A APPENDIX

Table 6: Additional comparison results for multivariate long-term series forecasting, including

Onefitsall, TimeLLM (Jin et al.)), ModernTCN (Luo & Wang, [2024), UniTST 2024a)), and
TSLANet (Eldele et al.). K refers to the number of variables in the dataset.

Model MambaT$S Onefitsall TimeLLM ModernTCN UniTST TSLANet
odels (Ours) (2023) (2024) (2024) (2024) (2024)
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 | 0.145 0.195 0.162 0212 0.147 0201 0.149 0200 0.156 0202 0.148 0.197
Weather | 192 | 0.192 0241 0204 0248 0.189 0.234 0.196 0245 0207 0250 0.193 0.241
(K=21) | 336 | 0245 0283 0254 0286 0262 0279 0.238 0277 0263 0292 0245 0282
720 | 0314 0330 0326 0337 0304 0316 0314 0334 0340 0341 0325 0.337
96 | 0.128 0.223 0.139 0238 0.131 0224 0.129 0226 0.139 0235 0.136 0.229
Electricity | 192 | 0.145 0.239 0.153 0251 0.152 0241 0143 0239 0.155 0250 0.152 0.229
(K =321) | 336 | 0.163 0259 0.169 0266 0.160 0.248 0.161 0259 0.170 0268 0.168 0.262
720 | 0.192 0.286 0206 0297 0.192 0298 0.191 0286 0.198 0.293 0205 0.293
96 | 0.347 0.248 0388 0282 0362 0248 0368 0253 0402 0255 0372 0261
Traffic | 192 | 0.358 0.255 0407 0290 0374 0.247 0379 0261 0426 0268 0388 0.266
(K =862) | 336 | 0372 0262 0412 0294 0385 0271 0397 0270 0449 0275 0394 0.269
720 | 0416 0.284 0450 0312 0430 0288 0440 0296 0489 0297 0.430 0.289
AVG. | | 0251 0259 0273 0276 0257 0258 0259 0262 0283 0269 0263 0.263
(d) iTransformer

(a) Dataset

(b) MambaTsS

(c) vanilla Mamba
1
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Figure 5: Visualization of variable correlations at different layers, including the first layer (top
row) and the final layer (bottom row). Correlation coefficients between variables are calculated to
quantify their interdependencies within the dataset (a). Notably, MambaTS (b) benefits from variable-
aware scan along time (VAST), learning richer global dependencies compared to vanilla Mamba (c)
(highlighted in the red-dashed regions). Additionally, while both MambaT$ and iTransformer (d)
capture similar variable dependencies, MambaTS learns a more intricate dependency graph, while
iTransformer’s graph appears smoother, particularly in the final layer.
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FULL PROOF OF PROPOSITION 2

Proposition 2. Given a causal graph G = (V, E)) with unknown relationships among nodes V. =
{V1,Va,..., Vi}, if the total cost of a random walk without return is known, then the causal
relationships can be estimated through infinite random walks without return.

Proof. Let G = (V, E) be the causal graph, with nodes V. = {V,..., V} and unknown causal
relationships. The goal is to estimate these causal relationships based on random walks without
return.

Define the cost matrix P, where p; ; represents the cost C; ; of transitioning from node V; to V.
For a random walk without return involving K nodes, there are K — 1 transitions. Since the individual
contribution of each transition to the total cost C' is unknown, we assume that the cost is evenly
distributed across these K — 1 transitions. Therefore, we focus on the question of whether the total
cost C reflects the actual transition costs.

Transitions are classified into three types:

* Positive transition (PT). A transition from node V; to node 'V is positive if there exists a
direct or indirect causal relationship from V; to V; in G, i.e., there exists a directed path
from V; to V; in the graph. This transition incurs a positive cost, C; ; > 0, reflecting the
causal influence of V; on V, either directly or through intermediate nodes.

» Negative transition (NT). A transition from node V; to node V; is negative if V; is
causally influenced by V, i.e., there exists a directed path from V; to V; in G, either
directly or through intermediate nodes. This transition incurs a negative cost, C; ; < 0, with
magnitude equal to the positive transition in the reverse direction.

* Independent node transition (IN). A transition from V; to V; is independent if there is
no direct causal relationship between them, i.e., (V;,V;) ¢ E and (V;,V;) ¢ E. Such
transitions are assigned a positive cost 0 < C; ; < Cpay, reflecting valid movement within
the graph without disrupting causal structure. [ﬂ

A key observation is that, due to the symmetry of causal relationships in the graph, the number of
positive transitions #PT equals the number of negative transitions #NT. Consequently, for any given
random walk without return, the proportion of transitions that contribute correctly to the cost update
is at least % > % This bound is tight and equality holds if and only if there are no
independent node transitions, i.e., #IN = 0.

As the number of random walks N — oo, the expected cost for each transition converges to a positive
value, reflecting the underlying causal relationships:

E[C{] >0, foralli,j. (8)
After N random walks, the average cost p; ; for the transition from node V; to node V ; is given by:
1
(n)
pij =5 > Ciy- ©)
n=1

Finally, the strength of the causal relationship between V; and V; is estimated as:
A Di,j
)P p— - R—
Y Y kev Pik

where the denominator normalizes the cost relative to all other outgoing transitions from V;, providing
a measure of the relative strength of the causal relationship.

(10)

Thus, as the number of random walks approaches infinity, the causal relationships among nodes in
the graph can be accurately estimated through random walks. O

' Our experimental results, as shown in Table confirm that handling independent node transitions this way
contributes effectively to the overall performance of the VAST method, demonstrating that even transitions
between causally independent nodes can provide valuable information within the causal inference framework.
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