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A APPENDIX

Table 6: Additional comparison results for multivariate long-term series forecasting, including
Onefitsall, TimeLLM (Jin et al.), ModernTCN (Luo & Wang, 2024), UniTST (Liu et al., 2024a), and
TSLANet (Eldele et al.). K refers to the number of variables in the dataset.

Models MambaTS
(Ours)

Onefitsall
(2023)

TimeLLM
(2024)

ModernTCN
(2024)

UniTST
(2024)

TSLANet
(2024)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather
(K = 21)

96 0.145 0.195 0.162 0.212 0.147 0.201 0.149 0.200 0.156 0.202 0.148 0.197
192 0.192 0.241 0.204 0.248 0.189 0.234 0.196 0.245 0.207 0.250 0.193 0.241
336 0.245 0.283 0.254 0.286 0.262 0.279 0.238 0.277 0.263 0.292 0.245 0.282
720 0.314 0.330 0.326 0.337 0.304 0.316 0.314 0.334 0.340 0.341 0.325 0.337

Electricity
(K = 321)

96 0.128 0.223 0.139 0.238 0.131 0.224 0.129 0.226 0.139 0.235 0.136 0.229
192 0.145 0.239 0.153 0.251 0.152 0.241 0.143 0.239 0.155 0.250 0.152 0.229
336 0.163 0.259 0.169 0.266 0.160 0.248 0.161 0.259 0.170 0.268 0.168 0.262
720 0.192 0.286 0.206 0.297 0.192 0.298 0.191 0.286 0.198 0.293 0.205 0.293

Traffic
(K = 862)

96 0.347 0.248 0.388 0.282 0.362 0.248 0.368 0.253 0.402 0.255 0.372 0.261
192 0.358 0.255 0.407 0.290 0.374 0.247 0.379 0.261 0.426 0.268 0.388 0.266
336 0.372 0.262 0.412 0.294 0.385 0.271 0.397 0.270 0.449 0.275 0.394 0.269
720 0.416 0.284 0.450 0.312 0.430 0.288 0.440 0.296 0.489 0.297 0.430 0.289

AVG. 0.251 0.259 0.273 0.276 0.257 0.258 0.259 0.262 0.283 0.269 0.263 0.263

(a) Dataset (b) MambaTS (c) vanilla Mamba (d) iTransformer
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Figure 5: Visualization of variable correlations at different layers, including the first layer (top
row) and the final layer (bottom row). Correlation coefficients between variables are calculated to
quantify their interdependencies within the dataset (a). Notably, MambaTS (b) benefits from variable-
aware scan along time (VAST), learning richer global dependencies compared to vanilla Mamba (c)
(highlighted in the red-dashed regions). Additionally, while both MambaTS and iTransformer (d)
capture similar variable dependencies, MambaTS learns a more intricate dependency graph, while
iTransformer’s graph appears smoother, particularly in the final layer.
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FULL PROOF OF PROPOSITION 2

Proposition 2. Given a causal graph G = (V,E) with unknown relationships among nodes V =
{V1,V2, . . . ,VK}, if the total cost of a random walk without return is known, then the causal
relationships can be estimated through infinite random walks without return.

Proof. Let G = (V,E) be the causal graph, with nodes V = {V1, . . . ,VK} and unknown causal
relationships. The goal is to estimate these causal relationships based on random walks without
return.

Define the cost matrix P , where pi,j represents the cost Ci,j of transitioning from node Vi to Vj .
For a random walk without return involvingK nodes, there areK−1 transitions. Since the individual
contribution of each transition to the total cost C is unknown, we assume that the cost is evenly
distributed across these K − 1 transitions. Therefore, we focus on the question of whether the total
cost C reflects the actual transition costs.

Transitions are classified into three types:

• Positive transition (PT). A transition from node Vi to node Vj is positive if there exists a
direct or indirect causal relationship from Vi to Vj in G, i.e., there exists a directed path
from Vi to Vj in the graph. This transition incurs a positive cost, Ci,j > 0, reflecting the
causal influence of Vi on Vj , either directly or through intermediate nodes.

• Negative transition (NT). A transition from node Vi to node Vj is negative if Vi is
causally influenced by Vj , i.e., there exists a directed path from Vj to Vi in G, either
directly or through intermediate nodes. This transition incurs a negative cost, Ci,j < 0, with
magnitude equal to the positive transition in the reverse direction.

• Independent node transition (IN). A transition from Vi to Vj is independent if there is
no direct causal relationship between them, i.e., (Vi,Vj) /∈ E and (Vj ,Vi) /∈ E. Such
transitions are assigned a positive cost 0 < Ci,j < Cmax, reflecting valid movement within
the graph without disrupting causal structure. 1

A key observation is that, due to the symmetry of causal relationships in the graph, the number of
positive transitions #PT equals the number of negative transitions #NT. Consequently, for any given
random walk without return, the proportion of transitions that contribute correctly to the cost update
is at least #PT+#IN

#PT+#NT+#IN ≥
1
2 . This bound is tight and equality holds if and only if there are no

independent node transitions, i.e., #IN = 0.

As the number of random walks N →∞, the expected cost for each transition converges to a positive
value, reflecting the underlying causal relationships:

E[C
(n)
i,j ] > 0, for all i, j. (8)

After N random walks, the average cost pi,j for the transition from node Vi to node Vj is given by:

pi,j =
1

N

N∑
n=1

C
(n)
i,j . (9)

Finally, the strength of the causal relationship between Vi and Vj is estimated as:

R̂i,j =
pi,j∑
k∈V pi,k

, (10)

where the denominator normalizes the cost relative to all other outgoing transitions from Vi, providing
a measure of the relative strength of the causal relationship.

Thus, as the number of random walks approaches infinity, the causal relationships among nodes in
the graph can be accurately estimated through random walks.

1Our experimental results, as shown in Table 3, confirm that handling independent node transitions this way
contributes effectively to the overall performance of the VAST method, demonstrating that even transitions
between causally independent nodes can provide valuable information within the causal inference framework.
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