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A Additional Experiments1

In this section, we add additional experiments on a stronger backbone, ablation studies on dynamic2

kernel number and semantic alignment discrimination.3

A.1 Stronger Backbone and Training Scheme4

Method Backbone Refer-Youtube-VOS
J&F J F

ReferFormer [8] Video-Swin-B 64.9 62.8 67.0
Ours Video-Swin-B 69.5 67.5 71.4

Table A: Comparison to state-of-the-art R-VOS methods on Refer-Youtube-VOS val set with
larger backbone and stronger training scheme.

As shown in Table A, we report our result using a stronger Video-Swin-B [6] backbone. Notably, our5

method achieves 69.5 J&F on Refer-Youtube-VOS dataset.6

A.2 Dynamic Kernel Number in Early Grounding Module7

Lθ J&F J F
1 56.4 55.1 57.7
2 57.0 55.3 58.0
3 57.3 56.1 58.4
4 57.1 55.9 58.2

Table B: Impact of the dynamic filter number.

As shown in Table B, we conduct experiments to investigate the impact of the dynamic filter number8

in the early grounding module. The dynamic convolution is extensively used to decode dense features9

in video instance segmentation [4, 5] and object detection [2] because of its strong ability to generate10

instance-specific filters to modify the feature maps. In our method, we use a text-guided dynamic11

convolution to ground referred object in the feature level. We notice that using a dynamic kernel12

number of 3 brings the best performance.13

A.3 Semantic Alignment Discrimination14

As shown in Table C, we conduct experiments without using the semantic alignment 1(A) to filter15

out negative videos during inference. We notice that, even if 1(A) is not applied to the final output,16
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Method Backbone J&F & R J F R
ReferFormer [8] ResNet-50 47.3 54.8 56.5 30.6
Ours ResNet-50 59.2 56.0 58.3 63.2
MTTR [1] Video-Swin-T 40.0 55.9 58.1 5.9
ReferFormer [8] Video-Swin-T 49.1 58.0 60.9 28.5
Ours Video-Swin-T 62.7 59.4 62.9 65.5

Table C: Comparison to state-of-the-art R-VOS methods on R2-Youtube-VOS without applying
1(A) to filter out videos during inference.

our model has a much higher R score compared to previous methods on R2-Youtube-VOS. This17

indicates the consistency constraint can boost the model robustness to negative videos even without18

explicitly filtering out videos with semantic alignment discrimination.19

B Visualization of Attentions in the Early Grounding Module20
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Figure A: Visualization of cross-attention attentions and fearly in the Early Grounding Module.

C More Implementation Details21

We pretrain our model on a combination of three image-level datasets, i.e., Ref-COCO, Ref-COCO+,22

and Ref-COCOg [10]. To be compatible with the image-level dataset, we set the window size to 1.23

We pretrain our model for 12 epochs, which takes about 1-2 days on 8 NVIDIA V100 32G GPUs24

depending on the backbones. We select the checkpoint with the best results on Ref-COCO val set as25

our pretrained weight for our main training.26

We set the λtext = 0.1, λcls = 2, λmask = 2, λalign = 1, λangle = 10, λL1 = 5, λgiou = 2,27

λdice = 2 and λfocal = 5 during all training process. Cv = Ce = Cq = 256 is utilized. The28

positional embedding added in the transformers is the standard triangle positional embedding used29

in [7]. We set the layer number to three for transformers decoders De and Dv. The dynamic filter30

number K is set to 3. The data point to calculate the relational loss is selected within each batch for31

simplicity. The text encoder is frozen during the main training.32

D Detailed Structure of Mask Decoding33

As is shown in Fig. B, given the fused text embedding, we generate the instance query z0 by repeating34

the fused text embedding N times where N is the query number. After that, we generate instance35

embedding {zt}Tt=1 for each time step separately using a shared transformer decoder Dv with encoded36

memory {Ft}Tt=1 from visual encoder. The mask prediction Mt for each time step t is derived by37

a linear combination of Ft where weights are learned from instance embedding zt by two fully38

connected layers. Note that, as positional embedding is added to the instance query z0 ∈ RCq×N ,39

each slot in the instance query is different.40
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Figure B: Illustration of mask decoding.

Why use N instance queries for only one referred object in the video? Empirical, each slot41

in the instance query tends to focus on different visual features in the transformer decode Dv thus42

the N slots in the instance embedding are highly specialized. Each slot tends to represent an object43

with some specific properties. For example, slot 1 can always tend to predict an object located in the44

left of the frame. Slot 2 tends to predict objects belonging to "cat", "dog", etc., categories. By using45

more than one slot for the instance query, we can generate more specialized and accurate instance46

embedding, which is vital for mask decoding and confidence score, and box prediction.47

E Broader Impact and Future Works48

The false alarm problem in the RVOS task also exists in other referring prediction tasks, e.g., visual49

grounding [3] and referring image segmentation [9]. We consider our problem formulation that50

defines the negative and positive vision-language pairs can be extended to other tasks that require51

multi-modal semantic consensus.52
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