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ABSTRACT

The Platonic Representation Hypothesis posits that behind different modalities
of data (what we sense or detect), there exists a universal, modality-independent
representation of reality. Inspired by this hypothesis, we treat each neuron as a
system, where we can detect the neuron’s multi-segment activity data under dif-
ferent peripheral conditions. We believe that, similar to the Platonic idea, there ex-
ists a time-invariant representation behind different segments of the same neuron,
which reflects the intrinsic properties of the neuron’s system. Intrinsic properties
include the molecular profiles, location within brain regions and morphological
structure, etc. The optimization objective for obtaining intrinsic neuronal repre-
sentations should meet two criteria: (I) the representations of recording segments
from the same neuron must exhibit higher similarity compared to those from dif-
ferent neurons; (II) the representations should generalize effectively to out-of-
domain data. To this end, we propose the NeurPIR (Neuron Platonic Intrinsic
Representation) framework, which leverages contrastive learning by treating seg-
ments from the same neuron as positive pairs and those from different neurons as
negative pairs. In the implementation, we adopt VICReg, which only uses pos-
itive pairs while indirectly separating dissimilar samples through regularization
terms. To validate the efficacy of our method, we first conducted tests on simu-
lated neuronal population dynamics data generated by the Izhikevich model. The
results confirmed that our approach accurately captured the neuron types as de-
fined by the preset hyperparameters. Subsequently, we applied our method to two
real - world neuron dynamics datasets, which included neuron type annotations
derived from spatial transcriptomics and the location of each neuron within brain
regions. The representations learned from our model not only accurately pre-
dicted neuron types and locations but also demonstrated robustness when tested
on out-of-domain data (data from unseen animals). This finding underscores the
potential of our approach in furthering the understanding of neuronal systems and
offers valuable insights for future neuroscience research. Code is available at
https://github.com/ww20hust/NeurPIR.

1 INTRODUCTION

Unraveling the intricacies of neuronal activity and the information encoded within neural dynam-
ics stands as a monumental challenge in the field of neuroscience. Plato’s cave allegory and Pla-
tonic Representation Hypothesis Huh et al. (2024) suggests the existence of a universal, modality-
independent representation of world that transcends the modalities through which we perceive it.
Drawing inspiration from this philosophical concept, we propose a novel perspective on neuronal
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activity, treating each neuron as a distinct system capable of generating multi-segment activity data
under various peripheral conditions, the multi-segment activity data of individual neuron as what we
perceive.

Our approach, NeurPIR, is based on the premise that, similar to the Platonic idea, a time-invariant
representation exists that underlies the diverse activity segments of the same neuron. This represen-
tation is hypothesized to encapsulate the intrinsic properties of the neuronal system, offering a stable
and consistent framework for understanding neuronal function.

To extract intrinsic representations, we formulated an optimization objective based on two key crite-
ria. First, activity segments from the same neuron should exhibit greater similarity than those from
different neurons, ensuring that our method effectively captures the unique signatures of individ-
ual neurons. Second, the derived representations should demonstrate high generalizability, enabling
their application to out-of-domain data, such as neuronal activity from different species or experi-
mental conditions not included in the training set.

To achieve these objectives, we employed contrastive learning, a powerful machine learning tech-
nique that treats segments from the same neuron as positive pairs and those from different neurons
as negative pairs. This approach leverages the contrast between similar and dissimilar samples to
learn effective representations. For our implementation, we utilized VICReg, a variant of contrastive
learning that focuses exclusively on positive pairs while incorporating regularization terms to indi-
rectly separate dissimilar samples. This method ensures that the learned representations are both
discriminative and robust to variations in the data. However, achieving the above requires the fol-
lowing two innovative designs for neuron data: Firstly, we use CEBRA Schneider et al. (2023b)
to integrate the single neuronal peripheral information (such as activity of neighboring neuronal
populations and behavioral data for each segment of a single neuron). This process encodes the
peripheral information associated with each segment of an individual neuron. While CEBRA has
been widely recognized for its ability to produce high-performance learnable latent embeddings for
jointly representing surrounding neuronal data and external information, it was previously applied
to groups of neurons rather than focusing on individual neurons. Secondly, the approach aims to
produce a consistent representation of a neuron’s identity across varying experimental conditions,
using these conditions as positive instances in a contrastive learning paradigm. While multi-session
data naturally provides such instances, the reality is that many neurons are recorded in only a single
session. To address this limitation, we designed a data augmentation method tailored to neuronal
data. This method involves extracting segments of varying lengths from the same session to serve as
positive sample pairs. In this way, the learned representation can capture intrinsic properties across
different time scales.

To rigorously assess the effectiveness of the representations learned by NeurPIR, we model neuron
population dynamic data using the Izhikevich model Izhikevich (2003), where different neurons are
assigned distinct hyperparameters representing different firing modes as intrinsic properties. These
neurons are randomly connected to form a network, and after stimulating the network, we obtain
neuron population data. The representations learned by through self-supervised learning on this
neuron population data have been confirmed to contain hyperparameter information. In recognition
of the noise and complexity in real-world neuronal datasets, we turn to a publicly available dataset
of mouse brain neuron populations. These neurons, after recording dynamic activities, are separated
and labeled with cell type annotations using transcriptomics. The representations learned by on
this dataset can be efficiently utilized for downstream cell type prediction tasks. In addition, using
another real public dataset containing ten mice and 39 datasets, we demonstrate that the intrinsic
information contained in the representation obtained by is consistent across animals, and that this
representation has strong cross-domain capability when performing downstream tasks.

2 RELATED WORK

Single Neuron Models: Single neuron models are essential in understanding the fundamental prop-
erties of neuronal dynamics and behavior. The Leaky Integrate-and-Fire model Liu & Wang (2001),
developed in the 1950s, is a minimalistic model that simulates the integration of synaptic inputs and
the leakage of membrane potential over time. The Hodgkin-Huxley model Nelson & Rinzel (1995),
introduced in 1952, provides a detailed description of action potential generation using complex
equations to represent ionic currents across the neuronal membrane, offering deep insights into neu-
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ronal excitability. The FitzHugh-Nagumo model Izhikevich & FitzHugh (2006), proposed in 1961,
simplifies the Hodgkin-Huxley model to focus on excitability and action potential dynamics while
reducing computational complexity. Finally, the Izhikevich model, developed in 2003, combines
simplicity with versatility, effectively capturing a wide range of neuronal firing patterns and bal-
ancing computational efficiency with biological realism. The hyperparameters set for these models
can be viewed as prior assumptions about the inherent properties of the neurons. In the subsequent
sections, we select the Izhikevich model to generate a synthetic dataset for testing , using the set
hyperparameters as the true labels.

Neural Latent Representation Learning: Neural Latent Representation Learning has been pivotal
in transforming high-dimensional neuronal data into lower-dimensional embeddings that encapsu-
late instantaneous information Bengio et al. (2013). A remarkable impact has been made in neuro-
science —from the linear dimensionality reduction techniques such as Principal Component Anal-
ysis (PCA) Maćkiewicz & Ratajczak (1993)—to the non-linear visualization methods like Uniform
Manifold Approximation and Projection (UMAP) McInnes et al. (2018) and t-Distributed Stochastic
Neighbor Embedding (t-SNE) Kobak & Berens (2019)—and most recently, to the advanced, data-
driven deep learning strategies. The focus was first on reducing the dimensionality of neuronal data
alone. It later expanded to include joint dimensionality reduction with behavioral information and
external stimuli (e.g., pi-VAE Prakash (2024) and BLEND Guo et al. (2025)). CEBRA represents
a culmination of these advancements, integrating various techniques into a unified framework. CE-
BRA is used in this study to integrate the stimuli information experienced by each neuron as input for
. NeuPRINT is a method used to extract invariant information from neurons Mi et al. (2023); how-
ever, it still adheres to traditional neuron modeling approaches, which can only implicitly represent
neurons. This results in challenging training processes and suboptimal representation performance.

Contrastive Learning for Voice Representations: The basic approach of the solution presented
in this paper draws inspiration from similar tasks, such as extracting inherent representations of
speakers from voice data Torres et al. (2024). This type of work has been implemented on song-
singer datasets, where contrastive learning is used to bring together the voices of the same singer
while pushing apart the voices of different singers. However, while we borrowed the underlying
idea, the specific methods had to be uniquely designed to accommodate the characteristics of neural
data.

3 METHOD

3.1 GOAL

Our goal is to develop a method for learning intrinsic neuron representations from neuron population
data. These representations should meet three key criteria: (i) neurons with similar functional roles
should exhibit greater similarity in their representations compared to those with different roles; (ii)
the learned representations should be robust to variations in neuronal activity patterns caused by
different stimuli or environmental conditions; and (iii) the representations should be adaptable and
generalizable to new and unseen neuronal activity patterns.

3.2 ARCHITECHTURE

The ideal embedding space for neuron representations should cluster recording segments of the
same neuron while also ensuring semantic consistency by placing similar neurons close to each other
within the space. In line with the criteria outlined in Section 3.1, We conducted advanced contrastive
learning loss functions, VICReg Bardes et al. (2021). We also carefully designed the data sampling
methods to generate multi-segments activity data for each neuron for training purposes.

Data sampling: Without loss of generality, we take bi-segment data as an example. Consider two
scenarios: 1) If a neuron has recordings from multiple sessions, we randomly extract two segments
(Xseg, X

′
seg) from different sessions. 2) If a neuron has recordings from only a single session, we

randomly extract two non-overlapping segments (Xseg, X
′
seg) from that session. We repeat this

process B times for a batch size of B, obtaining a positive pair batch (X
(1)
seg, X

(2)
seg).
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Figure 1: Optimization objective for obtaining intrinsic representations of neurons as follows:
clips(segments) from the same neuron should have a higher average similarity than clips from dif-
ferent neurons. Figure 1 illustrates how this objective can be achieved using a contrastive learning
approach, where different recording segments from the same neuron are treated as positive pairs
and segments from different neurons are treated as negative pairs. Each neuron is considered sep-
arately, and the Stimulus, Behavior and Session treated as surrounding information(SI), which acts
as auxiliary variables. The surrounding information for each neuron is processed and encoded using
CEBRA.

Model: We should integrate surrounding information into each segment. In neurobiology, the stim-
ulation received by the neuron corresponding to a segment (Xst), the animal’s behavior at the corre-
sponding time (Xbe), and the session information (Xse) are all the surrounding information (SI) of
this segment. CEBRA is a self-supervised learning algorithm designed to obtain interpretable and
consistent embeddings of high-dimensional recordings using auxiliary variables. In simple terms,
it serves as an encoder for the dynamic activity information of neuronal populations. Its advantage
lies in its ability to encode both neuronal activity data (N*T) and corresponding auxiliary variables,
such as behavior and external stimuli (M*T), into a lower-dimensional representation (D*T), where
D represents the latent space dimensions. In CEBRA, D does not correspond to individual neurons,
but rather provides a dimensionality reduction method that combines high-dimensional temporal
activity data of neuronal populations with corresponding auxiliary variable information, aiming to
uncover the relationships between neuronal activity and these variables.

Our work focuses on obtaining time-invariant representations for individual neurons. We innova-
tively use CEBRA as a preprocessing step for our input data from a new perspective. Specifically,
from the viewpoint of individual neurons, we leverage CEBRA to integrate peripheral informa-
tion—such as the activity of neighboring neuronal populations and behavioral data—associated with
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each segment of a single neuron. Xst consists of two components: peripheral neuronal activity and
visual stimulation. The dimensions of Xst are n + 1: The n dimensions are the activity of the
surrounding neurons relative to the neuron you’re considering, because there will be coordinates for
each neuron in the dataset, so for each neuron, we’ll take the 47 nearest neurons in the experiment.
The last dimension is visual stimuli, and we have a relatively simple way of dealing with visual stim-
uli: Blank visual stimuli are represented by 0, Drifting Grating visual stimuli by 1, Natural Scenes
visual stimuli by 2, and each time point is represented by a fixed number. In the future, we could
try to encode the video of visual stimuli so that it changes over time, but we currently only encode it
according to the type of visual stimulus. The dimension of Xbe is 1: running speed each time point.
The dimension of Xse is 1: session number. The dimensions of Xsi are 10: The total dimension of
Xbe, Xse and Xst is 50, we use CEBBRA project them to the low dimension 10.

Xsi = CEBRA(Xst, Xbe, Xse) (1)

We then denote the pair (Xsi, Xseg)for the same time as X in the following sections. The encoder
G(·) maps the extracted input X into a latent representation H ′, which is then aggregated into time-
invariant feature embeddings H using adaptive average pooling. These embeddings H are further
mapped into a lower-dimensional space Z by a projection layer P (·). The full model F (·) combines
feature extraction, encoding, and projection. During training, F (X) produces the projections Z.
After training, the projection layer is removed, retaining only the embeddings H . The similarity
between embeddings is measured using cosine similarity.

Contrastive Learning - VICReg: VICReg aims to enhance the quality of learned embeddings by
incorporating three types of losses: variance loss, invariance loss, and covariance loss.

The invariance loss, ensures that embeddings of segments from the same neuron are close:

Linvar(Z
(1), Z(2)) =

1

N

∑
i

∥∥∥Z(1)
i − Z

(2)
i

∥∥∥2 , (2)

The variance loss regularizes the standard deviation of the embeddings to be near a target value µ,
which helps prevent embedding dimensions from becoming non-informative. Given dj(z) ∈ RB , a
vector of batch values at dimension j, the variance loss is defined as:

Lvar(z) =
1

D

D∑
j=1

max (0, µ− S (dj(z), ϵ)) , (3)

where D represents the number of dimensions in z, and S denotes the regularized standard deviation,
S(x, ϵ) =

√
Var(x) + ϵ.

The covariance loss promotes orthogonality among embedding dimensions by decorrelating them:

Lcov(z) =
1

Dz

∑
i ̸=j

(C(z))2i,j , (4)

where C(z) = 1
N−1

∑N
i=1 (zi − z̄) (zi − z̄)

T is the covariance matrix of z, and z̄ = 1
N

∑N
i=1 zi.

4 EXPERIMENTS

4.1 DATA

Simulated Data: Since the neuron intrinsic property is hardly available in vivo neuronal recordings,
we applied to synthetic data where we can access the ground-truth intrinsic property. To make the
synthetic data exhibit dynamics similar to that of real neurons, we simulated the data following the
Izhikevich model. The Izhikevich model is a spiking neuron model that combines biological realism
with computational efficiency. It is designed to capture the rich dynamics of real neurons while
remaining computationally simple. The model is defined by the following differential equations:

dV

dt
= 0.04V 2 + 5V + 140− u+ I, (5)
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du

dt
= a(bV − u), (6)

where V is the membrane potential of the neuron, u is a recovery variable, I is the input current,
and a, b, and c are hyperparameters. The model also includes a spike-reset mechanism:

if V ≥ 30 mV, then
{
V ← c

u← u+ d
(7)

a , b , c and d can be regarded as intrinsic properties of each neuron.

Real Data - Bugeon: We utilized a rare, real-world multimodal dataset Bugeon et al. (2022) to test
, which comprises two main components: 1) in vivo long-term recordings of multiple neurons in the
mouse primary visual cortex using two-photon imaging technology, and 2) spatial transcriptomics
of ex vivo slices from the recorded brain tissue to measure the expression levels of 72 selected
genes in these neurons. Based on gene expression levels, neurons were assigned two main types of
labels: (i) excitatory and inhibitory classification, and (ii) subclass labels (Lamp5, Pvalb, Vip, Sncg,
and Sst) for some inhibitory neurons. This dataset contains recordings from four mice (Mouse
A, B, C, and D). Mouse A has data from 6 sessions, Mouse B from 3 sessions, Mouse C from 5
sessions, and Mouse D from 3 sessions. During each session, the mice were exposed to three types
of visual stimuli: Blank, Drifting Gratings, and Natural Scenes. A total of 9,278 unique neurons
were recorded in the dataset.

Real Data - Steinmetz: The Steinmetz dataset comprises 39 Neuropixels recordings, capturing
data from 400 to 700 neurons across various regions of the mouse brain of 10 mice during a vi-
sual behavior task Steinmetz et al. (2019). This dataset is excellent for exploratory analyses and is
well-supported by extensive tutorial resources 1, alongside a wealth of experimental and behavioral
variables included within.

4.2 EVALUATION

Evaluation on Simulated Data: The process is divided into two steps: (i) perform self-supervised
contrastive learning on the dynamic data of all neurons to obtain a representation for each neuron;
(ii) Employ a 5-fold cross-validation approach to use these neuron representations as input to a
classifier for predicting the pre-defined neuron type labels from the simulation.

Evaluation on Real Data - Bugeon: The process is divided into three steps: (i) perform self-
supervised contrastive learning on the dynamic data of all neurons from four mouse in the real
dataset to obtain a representation for each neuron; (ii) Based on neurobiological prior knowledge
and spatial transcriptomic gene expression information, assign cell type labels to each neuron. The
labels fall into two categories: (a) excitatory and inhibitory, and (b) Lamp5, Pvalb, Vip, Sncg, and
Sst; (iii) Implement a 4-fold (with the folds based on the identity of the mice) cross-validation
approach where the neuron representations are used as input to a classifier to predict the neuron’s
type labels for both categories (a) and (b).

Out-of-Domain Evaluation - Steinmetz dataset: The process is divided into three steps: (i)
Perform self-supervised contrastive learning on the dynamic data of all neurons from all mice in the
real dataset to obtain a representation for each neuron; (ii) As before, assign location within brain
regions labels to the neurons; (iii) Implement a 10-fold (with the folds based on the identity of the
mice) cross-validation approach where the neuron representations are used as input to a classifier to
predict the neuron’s location. During neurodevelopment, where the position of a neuron is crucial
for its differentiation, maturation, and connectivity. The location can influence the neuron’s gene
expression, synaptic connections, and ultimately its function Patel & Poo (1982). In this sense, the
location is an intrinsic property because it defines role within the nervous system.

4.3 COMPARISON OF METHODS

LOLCAT: This method Schneider et al. (2023a) follows a supervised learning paradigm. It directly
uses activity data from a subset of neurons to train a classifier to predict neuron labels, and then
validates on the remaining neurons. Consequently, the representations learned in the intermediate

1https://www.youtube.com/watch?v=WXn4-FpVaOo
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layers of the model contain only label information and do not fully capture the intrinsic properties
of the neurons.

PCA: This method employs a self-supervised approach. Principal Component Analysis (PCA) re-
duces the dimensionality of each neuron’s activity data by projecting it onto a lower-dimensional
space, thereby providing a representation based on the most significant components of the activity
data.

UMAP: Similar to PCA, Uniform Manifold Approximation and Projection (UMAP) is a self-
supervised method that reduces the dimensionality of each neuron’s activity data. UMAP preserves
local and global structures in the data to create a meaningful lower-dimensional representation.

NeurPrint: This self-supervised method involves implicit representation learning through back-
propagation. Due to its implicit nature, the model can be difficult to converge and may require
substantial training data and time to achieve effective results, and the representations may not align
well with the Platonic Representation Hypothesis.

To demonstrate that the representations learned only from neuronal activity capture invariant prop-
erties, we designed a verification process using simulation data. Based on the Izhikevich model,
we defined the neurons’ time-invariant hyperparameters as their intrinsic properties and applied
stimulation to generate activity data (Figure 2). Our model relies solely on activity data to derive
time-invariant representations of neurons and validates these representations by showing their abil-
ity to distinguish predefined intrinsic hyperparameters. To evaluate the effectiveness of our method,
we classify intrinsic hyperparameters (five categories representing five neuronal firing modes) us-
ing the obtained intrinsic representations and compare its performance with four other algorithms:
PCA, UMAP, NeuPRINT, and LOLCAT. The classification performance is assessed across multiple
neuron types using three common metrics: Precision, Recall, and F1-score. Higher values of these
metrics indicate better classification performance.

From the results presented in Table 4.3, we observe that: (i) our method consistently achieves the
highest performance across most neuron firing modes, particularly in the Regular Spiking (RS)
and Fast Spiking (FS) categories, where it significantly outperforms all baselines with F1-scores
of 0.884 and 0.881, respectively; (ii) although some baselines, such as LOLCAT and NeuPRINT,
demonstrate competitive results in certain neuron firing modes like Low-Threshold Spiking (LTS),
their performance falls short compared to NeurPIR. For instance, in the case of Chattering (CH)
neurons, NeurPIR achieves an F1-score of 0.671, surpassing LOLCAT’s 0.652 and NeuPRINT’s
0.611. These results underscore the robustness and accuracy of NeurPIR across varying neuron
firing modes, establishing it as the most effective method in this comparison. Furthermore, these
neuron firing modes are determined by preset hyperparameters, further validating that the intrinsic
representations learned by NeurPIR effectively capture hyperparameter information.

4.4 REAL DATA - NEURON PLATONIC INTRINSIC REPRESENTATION CONTAINS
MOLECULAR INFORMATION

In this section, we utilized a public multimodal dataset, referred to as Bugeon, to train and evaluate
our model. We compared the performance metrics of neuron type classification for three method-
ologies: NeuPRINT, LOLCAT, and the proposed NeurPIR (PCA and UMAP were excluded as they
cannot process behavioral information). The evaluation metrics included precision (Prec.), recall
(Rec.), and F1 score, which are essential for assessing the classification effectiveness across various
neuron types, categorized into subclasses and classes.

The results for the subclasses Lamp5, Vip, Pvalb, and Sst are summarized in Table A.1. For the
Lamp5 subclass, NeurPIR achieved the highest F1 score (0.569 ± 0.014), demonstrating a balanced
classification performance. Similarly, in the Vip subclass, NeurPIR outperformed others with an
F1 score of 0.662 ± 0.035, highlighting its superior accuracy in classifying Vip neurons. For Pvalb
neurons, NeurPIR again led with an F1 score of 0.604 ± 0.043, reflecting its effectiveness in this
subclass. In the Sst subclass, although NeuPRINT achieved the highest precision (0.704 ± 0.168),
its large standard deviation indicates variability. NeurPIR showed the highest F1 score (0.492 ±
0.080), demonstrating robustness despite the challenges in classifying Sst neurons.

Overall, the results demonstrate the effectiveness of NeurPIR in accurately classifying distinct neu-
ronal subtypes, achieving improved precision and F1 scores compared to existing methodologies.
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Firing Modes Metric PCA UMAP NeuPRINT LOLCAT NeurPIR
Prec. 0.689 0.473 0.836 0.783 0.872

regular spiking (RS) Rec. 0.918 0.590 0.908 0.910 0.898
F1. 0.786 0.525 0.870 0.841 0.884

Prec. 0.534 0.332 0.646 0.681 0.678
intrinsically bursting (IB) Rec. 0.375 0.310 0.645 0.573 0.693

F1. 0.440 0.320 0.644 0.620 0.684
Prec. 0.506 0.335 0.648 0.616 0.722

chattering (CH) Rec. 0.603 0.248 0.580 0.698 0.630
F1. 0.548 0.285 0.611 0.652 0.671

Prec. 0.778 0.602 0.826 0.853 0.853
fast spiking (FS) Rec. 0.620 0.638 0.820 0.733 0.913

F1. 0.689 0.618 0.823 0.787 0.881
Prec. 0.970 0.944 0.968 0.993 0.990

low-threshold spiking (LTS) Rec. 0.935 0.965 0.993 0.983 0.990
F1. 0.952 0.954 0.980 0.988 0.990

Table 1: This table presents the performance metrics—precision (Prec.), recall (Rec.), and F1
score—across five methods (PCA, UMAP, NeurPrint, LOLCAT, and NeurPIR) for different neu-
ron types: regular spiking (RS), intrinsically bursting (IB), chattering (CH), fast spiking (FS), and
low-threshold spiking (LTS). The results indicate that and NeurPrint consistently achieve higher
precision and F1 scores for most neuron types, while UMAP shows relatively lower performance,
particularly for IB and CH neurons.

These findings highlight that the neuronal representations generated by our method effectively en-
code neuron type information. Since neuron types are determined by molecular characteristics, this
suggests that the intrinsic representations also capture molecular information.

Neuron Type Metric LOLCAT NeuPRINT NeurPIR
Subclass Prec. 0.460± 0.064 0.590± 0.073 0.607± 0.049

Rec. 0.418± 0.084 0.562± 0.093 0.587± 0.067
F1. 0.401± 0.056 0.553± 0.080 0.582± 0.059

Class Prec. 0.619± 0.015 0.711± 0.044 0.755± 0.023
Rec. 0.584± 0.018 0.707± 0.047 0.749± 0.040
F1. 0.552± 0.018 0.706± 0.047 0.747± 0.016

Table 2: Average performance metrics for neuron type classification. Subclass averages are cal-
culated across Lamp5, Vip, Pvalb, and Sst, while Class averages are calculated across Ex and In.
Metrics include precision (Prec.), recall (Rec.), and F1 score, with errors represented as standard
deviations.

Method Domain Precision Recall F1

LOLCAT In-Domain 0.701± 0.093 0.674± 0.084 0.694± 0.072
Out-of-Domain 0.659± 0.075 0.644± 0.092 0.652± 0.073

NeuPRINT In-Domain 0.764± 0.091 0.744± 0.081 0.743± 0.071
Out-of-Domain 0.665± 0.079 0.678± 0.092 0.662± 0.072

NeurPIR In-Domain 0.764± 0.093 0.749± 0.072 0.758± 0.066
Out-of-Domain 0.701± 0.081 0.672± 0.074 0.708± 0.054

Table 3: Average performance metrics for In-Domain and Out-of-Domain data across all regions
(Vis, Thal, Hipp, Mid) for each method. Metrics include precision, recall, and F1 score, with errors
represented as standard deviations.
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4.5 REAL DATA - SHOWS ROBUSTNESS ON OUT-OF-DOMAIN (UNSEEN ANIMAL) DATA

In this section, we focus on validating the consistency of the intrinsic representations generated
by the model across different animals. The Steinmetz dataset, which includes neural activity data
from ten rats, provides neuron labels based on their respective brain regions. It can be intuitively
seen from Figure 3 that the response patterns of neurons in the same brain area are significantly
different in different mice, but we hope that the representation obtained from the model still contains
consistent information, like consistent brain area information. This corresponds to the evaluation
of the generalizability of the representations obtained by the model on cross-modal (here, cross-
animal) data in deep learning. We use a task of classifying location within brain regions to validate
the intrinsic representations. We use NeurPIR to perform self-supervised training on all the neurons
from the all mice to obtain the intrinsic representations. For the downstream task of brain region
classification, we used 10-fold cross-validation (with folds based on the identity of the mice).

As shown in Figure 4.4, the model’s generalizability is evaluated through brain region classification
across different neural representations. In-domain validation results demonstrate that consistently
outperforms other methods like LOLCAT and NeuPRINT across all location within brain regions,
including visual cortex (ViS), thalamus (Thal), hippocampus (Hipp), and midbrain (Mid). Specifi-
cally, achieves validation Precision close to 0.80 in most regions, with NeuPRINT slightly trailing
behind.

When examining out-of-domain performance (cross-animal), we notice a general drop in accuracy
for all methods. However, NeurPIR still retains a higher degree of accuracy across all location within
brain regions compared to NeuPRINT and LOLCAT, showing the model’s ability to capture more
robust intrinsic representations across different animals. This consistent outperformance across both
in-domain and out-of-domain tests suggests that the representations obtained by better generalize
across animals while still preserving critical brain region information.

5 CONCLUSION AND DISCUSSION

In this paper, we present a novel and scalable approach for extracting and leveraging the intrinsic
properties of neurons. This approach holds significant potential for re-evaluating existing neuro-
science data and enhancing our understanding of neural computation. Future research may focus
on further enhancing its ability to handle an even more diverse range of datasets and applying it to
other domains where extracting intrinsic properties from complex systems is of great importance.
Limitations: (i) The representation learned by our method can only distinguish neurons with sub-
stantial differences in essential attributes. For instance, when neurons are associated with more
refined brain-area labels, it becomes challenging to differentiate them, necessitating more data for
training support. (ii) The learned neuron representations only support data collected from the same
technology. The generalization of cross - platform data, such as two-photon data and neurpixel data,
remains to be explored. (iii) Over very long timescales, some of the short-term invariant properties
of neurons may change. This can be exploited to study the changes in neuronal properties during
the progression of diseases like Alzheimer’s disease.

REPRODUCIBILITY STATEMENT

To enhance the reproducibility of this study, we provide an Appendix section comprising 4 sub-
sections that offer detailed supplementary information. Appendix A.3 presents the pseudo-code of
Synthetic Data. Appendix A.4 presents python code for downloading and organizing the steinmetz
dataset. Appendix A.5 presents the pseudo-code of sownstream task. Appendix A.6 presents De-
scription and Function across firing types / neuron types / brain regions in this paper.
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A.1 DETAIL PERFORMANCE METRICS FOR NEURON TYPE/LOCATION CLASSIFICATION.

Neuron Type Metric NeuPRINT LOLCAT NeurPIR
Subclass

Prec. 0.481 ± 0.035 0.344 ± 0.023 0.487 ± 0.007
Lamp5 Rec. 0.667 ± 0.037 0.694 ± 0.033 0.684 ± 0.028

F1. 0.559 ± 0.036 0.460 ± 0.024 0.569 ± 0.014
Prec. 0.614 ± 0.044 0.592 ± 0.078 0.657 ± 0.048

Vip Rec. 0.652 ± 0.034 0.406 ± 0.028 0.668 ± 0.027
F1. 0.632 ± 0.034 0.480 ± 0.042 0.662 ± 0.035

Prec. 0.559 ± 0.046 0.428 ± 0.026 0.602 ± 0.042
Pvalb Rec. 0.604 ± 0.017 0.403 ± 0.017 0.607 ± 0.055

F1. 0.580 ± 0.032 0.415 ± 0.019 0.604 ± 0.043
Prec. 0.704 ± 0.168 0.477 ± 0.130 0.681 ± 0.072

Sst Rec. 0.323 ± 0.084 0.170 ± 0.077 0.388 ± 0.080
F1. 0.441 ± 0.105 0.248 ± 0.100 0.492 ± 0.080

Class
Prec. 0.685 ± 0.050 0.555 ± 0.010 0.720 ± 0.025

Ex Rec. 0.774 ± 0.020 0.854 ± 0.009 0.817 ± 0.031
F1. 0.726 ± 0.036 0.673 ± 0.008 0.765 ± 0.009

Prec. 0.737 ± 0.037 0.682 ± 0.020 0.790 ± 0.020
In Rec. 0.640 ± 0.073 0.314 ± 0.027 0.680 ± 0.048

F1. 0.685 ± 0.058 0.430 ± 0.028 0.729 ± 0.023

Table 4: Performance metrics for neuron type classification, 4-fold cross-validation was used, with
the folds based on the identity of the mice This table delineates the precision (Prec.), recall (Rec.),
and F1 score for various neuron types categorized into subclasses (Lamp5, Vip, Pvalb, Sst) and
classes (Ex, In). The metrics demonstrate the comparative performance of these methods in identi-
fying and classifying distinct neuronal subtypes.

11



Published as a conference paper at ICLR 2025

Region Method Precision Recall F1

Vis
neu 0.923 ± 0.029 0.614 ± 0.052 0.736 ± 0.042

0.751 ± 0.047 0.467 ± 0.105 0.572 ± 0.086
LOLCAT 0.836 ± 0.049 0.450 ± 0.059 0.584 ± 0.060

0.775 ± 0.014 0.425 ± 0.053 0.547 ± 0.043
NeurPIR 0.900 ± 0.016 0.652 ± 0.024 0.756 ± 0.013

0.825 ± 0.017 0.514 ± 0.012 0.633 ± 0.013

Thal
NeuPRINT 0.758 ± 0.025 0.762 ± 0.005 0.760 ± 0.013

0.669 ± 0.025 0.724 ± 0.019 0.695 ± 0.016
LOLCAT 0.717 ± 0.047 0.738 ± 0.013 0.726 ± 0.025

0.698 ± 0.073 0.681 ± 0.010 0.688 ± 0.040
NeurPIR 0.765 ± 0.025 0.772 ± 0.018 0.768 ± 0.015

0.725 ± 0.049 0.761 ± 0.027 0.742 ± 0.034

Hipp
NeuPRINT 0.708 ± 0.033 0.785 ± 0.013 0.744 ± 0.023

0.626 ± 0.026 0.671 ± 0.022 0.647 ± 0.016
LOLCAT 0.668 ± 0.034 0.742 ± 0.018 0.703 ± 0.027

0.595 ± 0.028 0.703 ± 0.026 0.644 ± 0.020
NeurPIR 0.723 ± 0.018 0.782 ± 0.019 0.751 ± 0.013

0.644 ± 0.032 0.743 ± 0.019 0.689 ± 0.017

Mid
NeuPRINT 0.669 ± 0.026 0.814 ± 0.005 0.734 ± 0.017

0.611 ± 0.012 0.748 ± 0.031 0.672 ± 0.013
LOLCAT 0.584 ± 0.018 0.768 ± 0.010 0.663 ± 0.013

0.569 ± 0.024 0.726 ± 0.029 0.637 ± 0.009
NeurPIR 0.669 ± 0.028 0.789 ± 0.018 0.724 ± 0.021

0.634 ± 0.027 0.740 ± 0.013 0.683 ± 0.021

Table 5: Performance Comparison of Methods Across location within brain regions (In-Distribution
vs Out-of-Distribution). The upper part of each indicator represents In Domain and the lower part
represents Out of Domain.

A.2 HYPERPARAMETERS OF FIVE FIRING MODES OF NEURONS WHEN SIMULATING DATA
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Figure 2: a: the hyperparameters of five firing modes of neurons when simulating data; b: the neuron
firing: the index of regular spiking (RS) is 0-400, the index of intrinsically bursting (IB) is 400-800,
the index of chattering (CH) is 800-1200, the index of fast spiking (FS) is 1200-1600, the index of
low-threshold spiking (LTS) is 1600-2000; c: the results of the visualization of neuronal activity
data using UMAP.

A.3 SIMULATION OF NEURONAL POPULATION USING THE IZHIKEVICH MODEL

1. Define the Izhikevich model parameters for each neuron type:
• Regular Spiking (RS)
• Intrinsically Bursting (IB)
• Chattering (CH)
• Fast Spiking (FS)
• Low-Threshold Spiking (LTS)

2. Initialize the total number of excitatory (Ne) and inhibitory (Ni) neurons.
3. Assign neuron types to indices:

• 25% Regular Spiking (RS)
• 25% Intrinsically Bursting (IB)
• 25% Chattering (CH)
• 25% Fast Spiking (FS)

4. Initialize synaptic connection matrix S.
5. Set initial values for membrane potential v and recovery variable u.
6. For each time step t from 0 to T :

• Calculate input current I .
• If t > 0, add synaptic contributions from previously fired neurons.
• Update membrane potential v and recovery variable u using Euler’s method.
• Check for spikes and record firing events.
• Reset membrane potential and increment recovery variable for fired neurons.
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• Store current and potentials for analysis.
7. Update neuron activity data.
8. Plot firing events.
9. Print shapes of activity arrays for each neuron type.

A.4 PYTHON CODE FOR DOWNLOADING AND ORGANIZING THE STEINMETZ DATASET

# @title Data retrieval
import os, requests

fname = []
for j in range(3):

fname.append(’steinmetz_part%d.npz’ % j)
url = ["https://osf.io/agvxh/download"]
url.append("https://osf.io/uv3mw/download")
url.append("https://osf.io/ehmw2/download")

for j in range(len(url)):
if not os.path.isfile(fname[j]):

try:
r = requests.get(url[j])

except requests.ConnectionError:
print("!!! Failed to download data !!!")

else:
if r.status_code != requests.codes.ok:

print("!!! Failed to download data !!!")
else:

with open(fname[j], "wb") as fid:
fid.write(r.content)

# @title Data loading
alldat = np.array([])
for j in range(len(fname)):

alldat = np.hstack((alldat,
np.load(’steinmetz_part%d.npz’ % j,

allow_pickle=True)[’dat’]))
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A.5 PSEUDO-CODE OF DOWNSTREAM TASK

Algorithm 1 Neural Network Classification with K-Fold Cross-Validation
1: Import necessary libraries: NumPy, scikit-learn, Seaborn, Matplotlib
2: Ignore warnings
3:
4: procedure MAIN
5: Initialize labels as NumPy array
6: Encode labels using LabelEncoder
7: Standardize neuron features using StandardScaler
8:
9: Initialize StratifiedKFold with 5 splits

10: Initialize statistics dictionaries for precision, recall, F1-score
11: Initialize empty list for confusion matrices
12:
13: for each fold in K-Fold do
14: Split data into training and test sets
15: Create MLPClassifier model
16: Fit model to training data
17: Predict labels for test data
18: Generate classification report and confusion matrix
19: Append confusion matrix to list
20:
21: for each cell type in classes do
22: Record precision, recall, and F1-score
23: end for
24: end for
25:
26: for each cell type in classes do
27: Calculate and print average metrics
28: end for
29:
30: Compute cumulative confusion matrix
31: Print cumulative confusion matrix
32:
33: Optional: Plot cumulative confusion matrix using Seaborn
34: end procedure
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A.6 STEINMETZ DATASET

Figure 3: a: Steinmetz dataset contains 39 subdataset from 10 mice. Each subdataset records 400-
700 neurons each from across the mouse brain during a visual behavior task. Each neuron with its
brain area label. b: show of part of subdataset3. c: show of part of subdataset26.

A.7 DESCRIPTION AND FUNCTION ACROSS FIRING TYPES / NEURON TYPES / BRAIN
REGIONS IN THIS PAPER

Firing Types:

1. Regular Spiking (RS) Neurons:

- Description: Regular Spiking neurons are characterized by their ability to fire action potentials at
a regular, predictable rate in response to a sustained depolarizing stimulus. These neurons typically
exhibit a linear relationship between input and output, meaning they can respond to small inputs
with a consistent firing pattern.

2. Intrinsically Bursting (IB) Neurons:

- Description: Intrinsically Bursting neurons can produce bursts of action potentials in response to
a depolarizing stimulus, in addition to regular single spikes. This type of neuron displays a unique
pattern of activity where a series of action potentials is generated in quick succession followed by a
period of quiescence.

3. Chattering (CH) Neurons:

- Description: Chattering neurons exhibit a high-frequency, sustained firing pattern. These neu-
rons are characterized by their ability to fire at a high rate in bursts, often exhibiting a very rapid
oscillatory behavior with minimal latency between spikes.

4. Fast Spiking (FS) Neurons:
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- Description: Fast Spiking neurons are a type of inhibitory interneuron known for their ability to
fire action potentials at very high frequencies (often greater than 100 Hz). They exhibit rapid and
precise spiking in response to stimuli and are critical for the regulation of network activity.

5. Low-Threshold Spiking (LTS) Neurons:

- Description: Low-Threshold Spiking neurons are characterized by their ability to fire action po-
tentials at relatively low levels of depolarization. They are often described as having a ”sensitive”
or ”easy-to-trigger” firing threshold, which enables them to respond to subtle changes in membrane
potential.

Neuron Types:

1. Lamp5 Neurons (Lysosomal-Associated Membrane Protein 5):

- Description: Lamp5 neurons are a type of GABAergic interneuron that expresses the Lamp5 pro-
tein, which is involved in cellular trafficking and autophagy. These neurons are often found in
regions of the brain involved in cortical circuits, particularly in the cortex.

2. Vip Neurons (Vasoactive Intestinal Peptide-expressing neurons):

- Description: Vip neurons are a type of inhibitory interneuron that express vasoactive intestinal
peptide (VIP), a neuropeptide involved in the modulation of neural circuits. These neurons typically
have broad inhibitory effects in cortical regions and influence the activity of other interneuron types.

3. Pvalb Neurons (Parvalbumin-expressing neurons):

- Description: Pvalb neurons are a subtype of fast-spiking inhibitory interneurons that express the
calcium-binding protein parvalbumin. These neurons are well known for their ability to fire action
potentials at extremely high frequencies with minimal delay.

4. Sst Neurons (Somatostatin-expressing neurons):

- Description: Sst neurons are another type of inhibitory interneuron that express somatostatin, a
neuropeptide that inhibits neurotransmitter release. These neurons are typically involved in modu-
lating cortical circuits and are especially important for regulating synaptic plasticity.

Brain Regions:

1. Vis (Visual Cortex): Occipital lobe, primarily in the calcarine sulcus and surrounding regions.

2. Hipp (Hippocampus): Medial temporal lobe, beneath the cerebral cortex.

3. Thal (Thalamus): Deep within the brain, just above the brainstem, near the center.

4. Mid (Midbrain): Between the forebrain and hindbrain, just above the pons and below the thala-
mus.

17


	Introduction
	Related Work
	Method
	Goal
	 Architechture

	Experiments
	Data
	Evaluation
	Comparison of Methods
	Real Data - Neuron Platonic Intrinsic Representation Contains Molecular Information
	Real Data - Shows Robustness on Out-of-Domain (Unseen Animal) Data

	Conclusion and Discussion
	Appendix
	Detail performance metrics for neuron type/location classification.
	hyperparameters of five firing modes of neurons when simulating data
	Simulation of Neuronal Population Using the Izhikevich Model
	python code for downloading and organizing the steinmetz dataset
	pseudo-code of downstream task
	Steinmetz dataset
	Description and Function across firing types / neuron types / brain regions in this paper


