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1 Evaluation Metrics

Following [5, 20, 45], we evaluate RSA and baseline methods quantitatively using mean absolute
relative error (Abs Rel), root mean square error (RMSE), absolute error in log space (log10), loga-
rithmic root mean square error (RMSElog) and threshold accuracy (δi). The evaluation metrics are
summarized in Table 1.

Metric Formulation
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√
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∑
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(ln(y∗(i, j))− ln(y(i, j)))2

δ % of y(i, j) s.t. max( y(i,j)
y∗(i,j) ,

y∗(i,j)
y(i,j) ) < thr ∈ [1.25, 1.252, 1.253]

Table 1: Evaluation metrics. y denotes predictions, y∗ denotes ground truth, N denotes the valid number of
pixels, Ωv denotes the image space where the ground truth is valid, and (i, j) denotes pixel coordinate,

2 Datasets

We conduct experiments on five datasets in total. Details of each dataset are provided below.

KITTI [12, 13] contains 61 driving scenes with research in autonomous driving and computer vision.
It contains calibrated RGB images with sychronized point clouds from Velodyne lidar, inertial, GPS
information, etc. We used Eigen split [7], consisting of 23,488 training images and 697 testing images.
We follow the evaluation protocol of [8] for our experiments.

VOID [36] comprises indoor (laboratories, classrooms) and outdoor (gardens) scenes with syn-
chronized 640 × 480 RGB images and with ground truth depth maps captured by active stereo.
For the purpose of simulating sequences observed in visual inertial odometry (VIO), e.g., XIVO
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[10]), VOID contains 56 sequences with challenging 6 DoF motion captured on rolling shutter. 48
sequences (about 45,000 frames) are assigned for training and 8 for testing (800 frames). We follow
the evaluation protocol of [36] where output depth is evaluated against ground truth within the depth
range between 0.2 and 5.0 meters.

NYUv2 [28] consists of 24,231 synchronized 640× 480 RGB images and depth maps for indoors
scenes (household, offices, commercial areas), captured with a Microsoft Kinect. The official split
consists of 249 training and 215 test scenes. We use the official test set. Following [2, 43], we remove
samples without valid ground truth, leaving 652 valid images for testing. We evaluate on methods on
NYU for depth range between 1× 10−3 to 10 meters.

SUN-RGBD [30] is an indoor dataset consisting of around 10K images with high scene diversity
collected with four different sensors. We use this dataset only for zero-shot evaluation of baselines
and our model on the official test set of 5050 images. Evaluation is done on depth values up to 10
meters. Note that we do not use SUN-RGBD for training.

DDAD [16] comprise of diverse dataset of urban, highway, and residential scenes curated from
a global fleet of self-driving cars. It contains 17,050 training and 4,150 evaluation frames with
ground-truth depth maps generated from dense LiDAR measurements using the Luminar-H2 sensor.
We use this dataset only for zero-shot evaluation of baselines and our model, where evaluations are
done on depth values up to 80 meters. Note that we do not use DDAD for training.

3 Prompts for Natural Text Generation

To generate natural, free-form text that does not follow fixed templates and more closely resembles
human descriptions, we use two visual question answering models LLaVA v1.6 Vicuna and LLaVA
v1.6 Mistral [21]. To produce diverse, natural captions, we use five different prompts per model.
These five prompts are listed in Table 2.

Prompts

"Describe the image in one sentence."
"Provide a one-sentence description of the image, pay to attention object type."
"Capture the essence of the image in a single sentence, pay attention to object relationship."
"Condense the image description into one sentence, pay attention to object size."
"Express the image in just one sentence, pay attention to the overall layout."

Table 2: Prompts for natural text generation.We use LLaVA v1.6 Vicuna and LLaVA v1.6 Mistral with those
5 prompts to generate 10 sentences of different natural text that adhere to human input for each image.

4 Discussion

A single image does not afford metric depth estimation [2, 14, 15, 18, 31, 33, 38, 46]. While some
methods [42, 27, 17, 26] opt to predict scaleless relative depth, our method offers a flexible alternative
to using additional sensors, e.g., lidar [9, 22, 25, 34, 35, 36, 39, 40], radar [11, 19, 23, 24, 29], or
multiple cameras, e.g., stereo [1, 4, 6, 32, 37, 41]. This is facilitated by the the presence of certain
objects that tend to co-occur with certain scenes, which can be captured within text descriptions. As
3D scenes are continuous, a short description of objects populating the scene is sufficient to transfer
relative depth estimates to metric scale.

Limitations. Our method makes the assumption that there exists an unknown scale in the estimated
depth, as modeled by the parameters of a linear transformation. However, this is not always the
case as the estimated depth may contain errors, and one may benefit from refinement of the relative
depth maps, e.g., [3, 44]. To exploit the invariants of language in the context of depth estimation,
future directions may include region-based or even pixel-wise transformations through the use of
text descriptions. Also, our method has the advantage of allowing flexible descriptions as input for
grounding depth estimate to metric scale. While it offers controllability of 3D reconstructions, it also
opens our method to mis-use; malicious users may choose to provide adversarial descriptions to steer
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predictions incorrectly. Additionally, barring malicious behaviors, uninformative captions regarding
the 3D scene at hand, may also yield erroneous transformations.

5 RSA Model Architecture

Detailed architecture of RSA model is shown in Table 3. Given text descriptions t = {t1, t2, ...}, we
first encode them into text embeddings and feed them into a 5-layer shared multi-layer perceptron
(MLP) to project them into k = 256 hidden dimensions followed by two separate sets of 5-layer
MLPs, one serves as the output head ψα̂ : Rk 7→ R+ for scale parameter α̂ and the other as the
output head ψβ̂ : Rk 7→ R+ for shift β̂ parameter. Scale and shift are passed through an exponential
function so that they are assumed to be positive in favor of optimization.

Sub-network Layer Units Activation

scene_feat_net

Linear 1024 → 512 -

LeakyReLU - LeakyReLU

Linear 512 → 512 -

LeakyReLU - LeakyReLU

Linear 512 → 512 -

LeakyReLU - LeakyReLU

Linear 512 → 256 -

LeakyReLU - LeakyReLU

Linear 256 → 256 -

shift_net

Linear 256 → 256 -

LeakyReLU - LeakyReLU

Linear 256 → 128 -

LeakyReLU - LeakyReLU

Linear 128 → 128 -

LeakyReLU - LeakyReLU

Linear 128 → 64 -

LeakyReLU - LeakyReLU

Linear 64 → 1 -

scale_net

Linear 256 → 256 -

LeakyReLU - LeakyReLU

Linear 256 → 128 -

LeakyReLU - LeakyReLU

Linear 128 → 128 -

LeakyReLU - LeakyReLU

Linear 128 → 64 -

LeakyReLU - LeakyReLU

Linear 64 → 1 -

Table 3: Structure of RSA Model. Multi-Layer Perceptron: Layers, Units, and Activation Functions.
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