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ABSTRACT

With the widespread deployment of long-context large language models (LLMs),
there has been a growing demand for efficient support of high-throughput infer-
ence. However, as the key-value (KV) cache expands with the sequence length,
the increasing memory footprint and the need to access it for each token generation
both result in low throughput when serving long-context LLMs. While various dy-
namic sparse attention methods have been proposed to speed up inference while
maintaining generation quality, they either fail to sufficiently reduce GPU mem-
ory consumption or introduce significant decoding latency by offloading the KV
cache to the CPU. We present SHADOWKV, a high-throughput long-context LLM
inference system that stores the low-rank key cache and offloads the value cache to
reduce the memory footprint for larger batch sizes and longer sequences. To min-
imize decoding latency, SHADOWKV employs an accurate KV selection strategy
that reconstructs minimal sparse KV pairs on-the-fly. By evaluating SHADOWKV
on a broad range of benchmarks, including RULER, LongBench, and Needle In
A Haystack, and models like Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M,
Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-128K, we demonstrate that it can
support up to 6× larger batch sizes and boost throughput by up to 3.04× on an
A100 GPU without sacrificing accuracy, even surpassing the performance achiev-
able with infinite batch size under the assumption of infinite GPU memory.

1 INTRODUCTION

Large language models (LLMs) have increasingly demonstrated their ability to scale and handle
long contexts (Microsoft, 2024; Liu et al., 2024a; Achiam et al., 2023; Team et al., 2023), enabling
them to tackle complex tasks like multi-document question answering and information retrieval from
extensive contexts of up to 1M tokens (Achiam et al., 2023; Wang et al., 2024b). However, efficiently
serving these long-context LLMs presents challenges related to the key-value (KV) cache (Liu et al.,
2024b; Ge et al., 2023), which stores previous key-value activations to avoid re-computation. As the
KV cache scales with sequence length, its growing memory footprint and the need to access it for
each token generation lead to low throughput during long-context LLM inference. To address these
issues, KV cache eviction or sparse attention methods have been widely explored.

However, existing methods face three primary limitations: accuracy degradation, inadequate mem-
ory reduction, and significant decoding latency overhead. KV cache eviction strategies (Zhang et al.,
2024d;c) aim to reduce the memory footprint by discarding KV pairs based on specific policies, but
they often result in information loss and accuracy degradation in tasks such as multi-turn conversa-
tions (Yang et al., 2024b; Tang et al., 2024a). Dynamic sparse attention methods (Tang et al., 2024b)
preserve all KV pairs on the GPU and accelerate inference by computing attention with selected KV
pairs. However, this line of work does not mitigate the memory footprint, thereby limiting the batch
size and preventing accommodation of extremely long contexts (e.g., 1M tokens). A naive solution
based on sparse attention involves offloading the KV cache to the CPU to reduce memory usage
(Lee et al., 2024a; He & Zhai, 2024). Nonetheless, this approach incurs significant overhead due to
the latency of fetching the selected sparse KV pairs from the CPU during decoding.

Consequently, an ideal effective system for long-context LLM inference with sparse attention
should: (i) reduce GPU memory usage, (ii) minimize inference latency, and (iii) maintain accuracy
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Figure 1: (a) For a sample from PG-19 (Rae et al., 2019; Gao et al., 2020) fed into Llama-3.1-8B,
the pre-RoPE keys are the most low-rank, as indicated by the sharpest decay in singular values. (b)
Average similarities, defined in Section 3.1, between rank-256 truncated SVD projections of pre-
RoPE keys from PG-19 sequences using Llama-3.1-8B. Similarity is measured between a length
16K “Context” and either a 16K+2K continuation on “Context” (“Extended context”) or a new
length 16K sequence (“Inter-context”). Pre-RoPE keys within sequences exhibit similar low-rank
subspaces, while those between sequences show different patterns. (c) The relative overhead of
singular value decomposition (SVD) decreases as sequence length scales for the pre-filling stage.

within limited sparse KV cache budgets. Fortunately, we can potentially overcome these challenges
by leveraging our discovery that pre-Rotary Position Embedding (Su et al., 2024) (RoPE) keys are
exceptionally low-rank compared to the layer inputs, post-RoPE keys, values, key weight matrix,
and value weight matrix, as indicated in Figure 1a. Furthermore, our analysis in Figure 1b reveals
that pre-RoPE keys lack significant similarities in low-rank subspaces across different sequences,
while a sequence and its continuation tend to strongly share low-rank subspaces, enabling high
compression rates within each sequence. Motivated by these findings, we have developed two key
insights that pave the way for the design of an applicable system, detailed in Section 3.

Low-rank Keys and Offloaded Values for Storage: In long-context LLM inference, the quadratic
scaling of attention computation with sequence length makes the linear cost of low-rank decom-
position during pre-filling negligible, as illustrated in Figure 1c1. To reduce memory footprint, we
retain the low-rank pre-RoPE key cache on the GPU and offload the value cache to the CPU since
the value cache does not exhibit low-rank properties, minimizing memory footprint without sacri-
ficing accuracy. During decoding with sparse attention, we employ CUDA multi-streams to overlap
the recovery of the selected key cache with the fetching of the corresponding value cache. This
approach conceals key cache reconstruction and reduces data fetching overhead by 2× compared to
the naive offloading strategy, thereby decreasing the latency of sparse attention during decoding.

Accurate KV Selection for Fast Decoding: To further reduce decoding latency in sparse attention,
we propose an accurate KV selection method that maintains accuracy with minimal number of se-
lected tokens (i.e. the K of TopK), which we refer to as sparse budgets (1.56%). Our analysis reveals
that most post-RoPE keys exhibit high cosine similarity with adjacent tokens, enabling chunk-level
approximations for selecting important tokens. A minimal number of outlier chunks (0.3%), which
are more challenging to approximate (Figure 3b), are stored as static cache on the GPU to preserve
accuracy. As shown in Figure 2, our method outperforms the naive sparse attention approach (Tang
et al., 2024b) and achieves higher sparsity, accelerating decoding.

Building on these insights, we present SHADOWKV in Section 4, depicted in Figure 2, a high-
throughput system for long-context LLM inference. Specifically, during pre-filling, we offload the
value cache to the CPU, retaining only the low-rank pre-RoPE keys, along with compressed land-
marks of the key cache and detected outliers for larger batch sizes. During decoding, landmarks are
used to select chunk indices for key cache recovery and value cache fetching. We perform accurate
sparse attention computation with selected KV pairs and static outliers to achieve high throughput.

Empirically, we conduct extensive experiments and ablation studies to demonstrate the effectiveness
and efficiency of SHADOWKV. In Section 5.1, we evaluate across various long-context LLMs, such

1In practical scenarios, the key cache can be offloaded to the CPU to perform SVD asynchronously or
precomputed and stored as part of the prefix cache (Juravsky et al., 2024).
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Figure 2: Left: SHADOWKV enhances long-context LLM inference throughput by offloading the
value cache to the CPU while maintaining a low-rank key cache, landmarks, and outliers on the
GPU. During decoding, it employs landmarks for efficient sparse attention, reducing computation
and data movement. Right: SHADOWKV effectively utilizes a limited KV budget to achieve high
accuracy, theoretically reaching over 7 TB/s equivalent bandwidth on an A100, and empirically
boosts generation throughput by 3.04× for Llama-3.1-8B with on a batch of 122K contexts.

as Llama-3-8B-1M (Gradient., 2024), Llama-3.1-8B (Meta AI, 2024), GLM-4-9B-1M (GLM et al.,
2024), Yi-9B-200K (AI et al., 2024), Phi-3-Mini-128K (Abdin et al., 2024) and Qwen2-7B-128K
(Yang et al., 2024a) using benchmarks including RULER (Hsieh et al., 2024), LongBench (Bai et al.,
2023), and Needle In A Haystack (Kamradt, 2023) with contexts up to 1M.

In Section 5.2, we demonstrate that SHADOWKV can support 6× larger batch sizes and boost
throughput by 3.04× compared to small batches on an A100 using Llama-3.1-8B, with each sample
having a context length of 122K. We also present results across different models and context lengths,
increasing throughput up to 2.97× for Llama-3-8B-1M, 2.56× for GLM-4-9B-1M, and 2.66× for
Yi-9B-200K, even surpassing infinite batch size under the assumption of infinite GPU memory.

2 RELATED WORKS

Token Eviction. To reduce memory footprint, eviction-based strategies keep a fixed size of KV
cache to store the critical token KV pairs and discard unnecessary tokens. StreamingLLM (Xiao
et al., 2023b) addresses the limitations of window attention by retaining attention sinks and recent
KV pairs. H2O (Zhang et al., 2024d) introduces a low-cost eviction policy, updating the KV cache
based on cumulative attention scores. LESS (Dong et al., 2024b) accumulates evicted token in-
formation by a constant-sized low-rank cache, which allows partial access to previously evicted
information, along with tokens maintained by a sparse policy. SnapKV (Li et al., 2024) uses the lo-
cal window of prompts to select important tokens for future generations. However, they suffer from
performance degradation and information loss since the evicted tokens will never be recovered.

Dynamic Sparse Attention. This line of work retains all KV cache but performs dynamic sparse
attention within selected KV pairs to reduce inference latency. SparQ (Ribar et al., 2023) uses the
norm of the query to decide an important subset of the key cache’s channels to calculate a metric
to select relevant tokens. Quest (Tang et al., 2024b) segments tokens into pages and selects pages
by approximating the highest attention within each page. Loki (Singhania et al., 2024) performs
principal component analysis on key caches using a calibration dataset, selecting tokens based on
attention scores computed in low-dimensional space. TriForce (Sun et al., 2024) combines sparse
attention with speculative decoding (Leviathan et al., 2023) for lossless acceleration. InfiniGen
(Lee et al., 2024a) offloads the entire KV cache to the CPU and prefetches essential entries using
an predefined projection matrix via SVD for KV selection. In contrast, SHADOWKV employs an
online, prompt-dependent SVD for key cache compression rather than for KV selection.
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Figure 3: (a) Accuracy on the needle retrieval task across various ranks shows that the pre-RoPE
key cache can be compressed by over 6 times without a drop in accuracy. (b) The number of notable
outlier chunks is small, taking only 0.2-0.3%. (c) The KV cache has a high hit rate, reducing
computations and data movements by over 60% for each decoding step.

Quantization. Several methods have been introduced to optimize KV cache quantization (Hooper
et al., 2024; Yue et al., 2024; Xiao et al., 2023a), reducing memory consumption while retaining
accuracy. KIVI (Liu et al., 2024c) applies different quantization strategies for keys and values,
quantizing the keys per-channel and the values per-token to 2-bit. Palu (Chang et al., 2024) decom-
poses KV weight matrices offline, caching low-rank KV projections to achieve a higher compression
rate. Quantization methods reduce the KV cache bit width, which is orthogonal to our approach.

3 OBSERVATIONS

We present two key insights of long-context LLMs that inspire SHADOWKV’s design, as follows.

3.1 LOW-RANK KEYS AND OFFLOADED VALUES FOR STORAGE

To reduce memory footprint, the low-rank nature of the KV cache has been explored by recent
studies (DeepSeek-AI, 2024; Xu et al., 2024; Chang et al., 2024). However, these methods focus on
data-independent decomposition, either requiring training or achieving limited compression rates.

Observation. In our study, by conducting SVD on the model weights Wk, Wv , the input X , the
pre-/post-RoPE key cache, and the value cache of Llama-3.1-8B, we visualize the relative singular
value distributions in Figure 1a together with the accuracy in Figure 3a. As we observed, pre-RoPE
keys have the lowest rank and can be compressed by 6× without performance degradation.

We also identify striking dynamic and static behaviors in low-rank keys between and within se-
quences, inspired by a related investigation in FFN layers (Dong et al., 2024a). Analogous to cosine
similarity, we define D(H1,H2) = ⟨H1,H2⟩/r to be the similarity metric between low-rank sub-
spaces of two rank-r projection matrices, H1 and H2, where ⟨·, ·⟩ is the Frobenius inner product2. In
our case with truncated SVDs of pre-RoPE keys, let K1,K2 ∈ Rn×d have rank-r truncated SVDs,
Φ1Σ1Ψ

⊤
1 and Φ2Σ2Ψ

⊤
2 , respectively, where Φ1 ∈ Rn×r,Σ1 ∈ Rr×r,Ψ1 ∈ Rd×r, and similarly

for Φ2, Σ2, and Ψ2. Then, D(Ψ1Ψ
⊤
1 ,Ψ2Ψ

⊤
2 ) can measure the similarity between the low-rank

subspaces of the two right singular matrices. Depicted in Figure 1b, pre-RoPE keys between se-
quences do not strongly share similar low-rank subspaces, but extensions of the same sequence do.

Insights. Our observation of the low-rank nature in the pre-RoPE keys indicates that storing the
low-rank projections is sufficient for each sequence. By keeping the low-rank key cache on the GPU
and offloading the value cache to the CPU since it is not low-rank, we can largely reduce the memory
footprint. During decoding, selected KV pairs can be reconstructed on-the-fly for computation.

2Since H1 and H2 are projection matrices, their squared Frobenius norms are the sum of their singular
values which consist of r 1’s and d − r 0’s, i.e., ∥H1∥2F = r. Thus, by Cauchy-Schwarz, |D(H1,H2)| ≤ 1.
Additionally, D(H1,H2) ≥ 0 by the cyclic property of trace and positive semidefiniteness of projection
matrices. Together, this shows D(H1,H2) ∈ [0, 1], maximized or minimized when the projection matrices
project onto identical or orthogonal subspaces, respectively.
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Algorithm 1: SHADOWKV Pre-filling

Input: K,KRoPE,V ∈ Rb×hkv×s×d, SVD rank r,
chunk size c, number of outlier chunks o
▷ Store low-rank projection of pre-RoPE key cache
A ∈ Rb×s×r, B ∈ Rb×hkv×r×d ← SVD(K)
▷ Segment post-RoPE key cache into chunks and
compute the mean of each chunk
C ∈ Rb×hkv×s/c×d ← Reduce(KRoPE)
▷ Compute cosine similarity within each chunk
S ∈ Rb×hkv×s/c×c ← CosineSimilarity(C,KRoPE)
▷ Find lowest cosine similarity as outliers
I ∈ Rb×hkv×o ← ArgTopK(−Min(S, dim = −1), o)
Koutlier,V outlier ← Gather(KRoPE,V , I)
▷ Offload the rest of values to the CPU and store the
non-outlier chunks’ mean as landmarks
V CPU ← V \ V outlier, L← C \ Gather(C, I)
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Figure 4: SHADOWKV pre-filling.

3.2 ACCURATE KV SELECTION FOR FAST DECODING

To further reduce the latency overhead in sparse attention, including fetching the selected value
cache from the CPU and reconstructing the corresponding key cache, an accurate KV selection
method is needed to minimize the sparse KV cache budget while maintaining the accuracy.

Observation. We found most post-RoPE key cache exhibits spatial locality, with high cosine sim-
ilarity to adjacent tokens, except for a few outliers. To quantify this, we conducted inference experi-
ments on 128K contexts. We divided the post-RoPE keys into chunks of eight tokens and visualized
the minimum cosine similarity between the chunk’s mean and its key cache, as shown in Figure 3b.
The results indicate that, apart from a few outliers, there is generally high cosine similarity, suggest-
ing the mean values can serve as landmarks to approximate attention well within normal chunks.

Analysis. This finding suggests that for the majority of chunks, we can maintain the mean value as
compressed landmarks to select minimal important KV pairs (1.56%) accurately during decoding.
Outlier chunks, which may contain dense or critical information and are difficult to approximate,
are retained to ensure accuracy. Given their relatively small number (0.2–0.3%), storing them on the
GPU is feasible without affecting memory capacity. Furthermore, as shown in Figure 3c, considering
the temporal locality of the KV cache—meaning that the KV pairs selected by the queries of two
adjacent decoding steps have a high repetition rate, a cache policy (Zhang et al., 2024a) can be
leveraged to further reduce the latency overhead by 60% during decoding with optimized kernels.

4 SHADOWKV

In this section, we introduce SHADOWKV, a high-throughput long-context LLM inference system.
We first elaborate our algorithm in Section 4.1, covering both the pre-filling and decoding phases.
Subsequently, in Section 4.2, we discuss the concept of theoretical equivalent bandwidth to illustrate
the benefits of our approach.

4.1 ALGORITHM

The algorithm of SHADOWKV is divided into two main phases: pre-filling and decoding. The
pre-filling phase involves low-rank decomposition of the post-RoPE key cache, offloading the value
cache, and constructing landmarks to facilitate subsequent high-throughput decoding. The decoding
phase includes accurate KV selection and efficient sparse KV cache reconstruction.

Pre-filling. During the pre-filling phase, we optimize GPU memory usage by performing low-
rank compression on the key cache of each layer and offloading values to the CPU. Specifically, as
demonstrated in Algorithm 1 and Figure 4, we apply SVD on the pre-RoPE key cache and store only

5
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Algorithm 2: SHADOWKV Decoding

Input: A, B, L, V CPU, Q ∈ Rb×hq×sq×d, Koutlier,
V outlier, K,V ∈ Rb×hkv×sq×d, number of chunks nc,
number of selected chunk budget k
▷ Compute chunk attention score
P ∈ Rb×hq×sq×nc ← MatMul(Q,L⊤)

S ∈ Rb×hq×sq×nc ← Softmax(P /
√
d)

S1 ∈ Rb×hq×nc ← sum(S, dim = −2)
S2 ∈ Rb×hkv×nc ← maxkv group(S1)
▷ Select top-k chunks for each KV head
I ∈ Rb×hkv×k ← ArgTopK(S2, k)
▷ Gather values from CPU
V sparse ← Gather(V CPU, I)
V ← [V outlier;V sparse;V ]
▷ Recover keys from low-rank projection
Ksparse ← MatMul(Gather(A, I),B)
K ← [Koutlier;RoPE(Ksparse);K]
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Key Cache
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...

#125
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Top-K
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#n

Landmarks

#125

#531 Hit
#125 Miss
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Cache
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Selected 
Chunk IDs

Current KV Cache

Figure 5: SHADOWKV decoding phase.

the low-rank representations for each layer. Post-RoPE key cache is segmented into chunks, with
the mean of each chunk computed as landmarks. By computing the cosine similarity within these
chunks, we identify poorly approximated tokens as outliers. This small set of outliers is gathered
and stored on the GPU as the static cache, while the remaining key cache is maintained as compact
landmarks, with the corresponding values offloaded to the CPU memory.

High-throughput Decoding. For incoming queries, we first compute the approximate attention
scores using the landmarks. As detailed in Algorithm 2, by identifying the top-k scoring chunk
indices, the corresponding values are retrieved from the CPU, and the key cache is simultaneously
reconstructed from low-rank projections, effectively concealing the construction of the key cache.
Based on the insight that the KV cache has temporal locality, we build cache-aware CUDA kernels,
reducing computation and value fetching by 60%. As shown in Figure 5, we conduct an index scan
to detect the missed chunks and only rebuild the necessary KV pairs on-the-fly.

Based on our observations in Section 3.1, future pre-RoPE keys within a sequence reside in a shared
low-rank subspace with the context. As a result, an extension of our algorithm would be to store
generated tokens as low-rank states using the same projections obtained from pre-filling to reduce
the memory usage for future generations3. We evaluate it and include the results in Appendix A.1.

4.2 THEORETICAL EQUIVALENT BANDWIDTH

The benefit of SHADOWKV in terms of increasing throughput can be analyzed through the concept
of equivalent bandwidth. Consider each K or V vector as being M bytes in size, with a sequence
length of S, a chunk size of C, a selected chunk budget of K, O outliers, and hit rate α. During KV
selection, SHADOWKV loads M × S/C bytes using the GPU memory bandwidth BGPU. For value
cache fetching, it loads M×K×C bytes using the PCIe bandwidth BPCIe (Sheng et al., 2023). Since
value movement and key cache reconstruction can be overlapped, we do not need to count key cache
reconstruction here. Following this, SHADOWKV performs standard attention computation for the
top-k chunks and predefined outliers, requiring 2M×(K+O)×C bytes. The equivalent bandwidth
of SHADOWKV is defined as below and the GPU memory savings is detailed in Appendix A.2.

Bequivalent =
2SBGPU

S/C + 2(K +O)C + (1− α)KCBGPU/BPCIe

For example, assuming C=8, S=128K, K=256, O=48, BPCIe=31.5 GB/s, and BGPU=2 TB/s for A100,
the equivalent bandwidth of SHADOWKV is calculated as 7.2 TB/s, which is 3.6× higher than A100
memory bandwidth. This result indicates that SHADOWKV theoretically achieves a high equivalent
bandwidth to accelerate attention computation. System implementation is detailed in Appendix B.1.

3If Ψ ∈ Rd×r is the right singular matrix calculated from the SVD of pre-RoPE context keys K ∈ Rs×d,
new pre-RoPE keys K′ ∈ Rsq×d can be stored as K′Ψ and projected back up with Ψ⊤ when needed.
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Table 1: Performance of different models and different methods on RULER (Hsieh et al., 2024)
evaluated at length of 128K. SHADOWKV outperforms other methods with a 1.56% sparse budget.

Methods N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3-8B-1M 100.00 100.00 98.96 98.96 98.96 95.57 75.00 48.96 78.54 71.85 86.68
Loki 18.75 1.04 2.08 0.00 1.56 0.78 4.17 13.54 26.04 25.35 9.33
Loki (V only) 41.67 6.25 37.50 1.04 8.07 30.73 10.42 19.79 51.67 37.50 24.46
InfiniGen 100.00 98.96 84.38 53.13 63.28 54.95 65.63 48.96 81.67 50.35 70.13
InfiniGen (V only) 100.00 98.96 96.88 76.04 81.25 77.08 67.71 50.00 81.67 53.47 78.31
Quest 100.00 100.00 98.96 77.08 97.65 93.49 60.42 50.00 77.08 65.63 82.03
Quest (V only) 100.00 100.00 98.96 85.42 97.92 95.49 70.83 46.88 78.75 65.63 83.99
SHADOWKV 100.00 100.00 97.92 98.96 96.88 95.83 72.92 52.08 81.67 72.57 86.88

GLM-4-9B-1M 100.00 100.00 94.79 87.50 99.74 93.75 67.71 55.21 97.29 72.22 86.82
Loki 71.88 27.08 22.92 2.08 9.90 11.46 28.13 27.08 31.04 54.17 28.57
Loki (V only) 96.88 55.21 56.25 18.75 51.04 50.52 45.83 39.58 72.71 59.72 54.65
InfiniGen 100.00 93.75 82.29 0.00 79.43 60.16 57.29 53.13 92.71 57.29 67.60
InfiniGen (V only) 100.00 96.88 87.50 7.29 95.31 75.26 56.25 54.17 95.63 60.76 72.91
Quest 100.00 95.83 90.62 54.17 94.01 76.30 55.21 52.08 95.83 64.58 77.86
Quest (V only) 100.00 96.88 93.75 72.92 95.83 83.07 56.25 53.13 96.88 65.97 81.47
SHADOWKV 100.00 100.00 95.83 83.33 98.70 87.76 69.79 55.21 97.50 68.06 85.62

Llama-3.1-8B 100.00 100.00 98.96 91.67 98.96 95.31 82.29 47.92 68.96 71.18 85.53
Loki 68.75 32.29 32.29 20.83 42.71 28.65 41.67 33.33 24.79 29.86 35.52
Loki (V only) 95.83 36.46 57.29 62.50 77.86 70.83 69.79 39.58 35.21 37.50 58.29
InfiniGen 100.00 77.08 78.13 13.54 58.07 47.40 65.63 41.67 60.83 50.35 59.27
InfiniGen (V only) 100.00 88.54 87.50 26.04 79.43 77.08 72.92 43.75 57.08 55.21 68.76
Quest 100.00 98.96 97.92 34.38 93.49 88.54 70.83 44.79 65.63 68.40 76.29
Quest (V only) 100.00 98.96 98.96 56.25 95.83 90.63 76.04 46.88 66.25 67.36 79.72
SHADOWKV 100.00 100.00 100.00 83.33 97.92 92.19 81.25 48.96 67.08 64.93 83.57

5 EMPIRICAL EVALUATION

In this section, we showcase the effectiveness and efficiency of SHADOWKV. Specifically,

• In Section 5.1, we show that SHADOWKV can reduce the GPU memory footprint of the KV cache
by over 6× without accuracy degradation on a wide range of models and evaluation benchmarks.

• In Section 5.2, we demonstrate SHADOWKV can support up to 6× larger batch sizes and increase
the inference throughput by up to 3.04× without compromising model quality.

• In Section 5.3, we present extensive ablation studies that validate the effectiveness of each com-
ponent of SHADOWKV in optimizing GPU memory usage and enhancing performance.

5.1 ACCURACY EVALUATION

We demonstrate that SHADOWKV can reduce the GPU memory usage of the KV cache by 6×while
maintaining accuracy on a range of long-context tasks with a minimal sparse KV cache budget.

Setup. We choose four widely used long-context models for our evaluation: Llama-3-8B-1M
(Gradient., 2024), GLM-4-9B-1M (GLM et al., 2024), Llama-3.1-8B (Meta AI, 2024), and Yi-9B-
200K (AI et al., 2024). We evaluate our approach on three challenging long-context benchmarks:
RULER (Hsieh et al., 2024), LongBench (Bai et al., 2023), and Needle In A Haystack (Kamradt,
2023), covering QA, multi-hop, reasoning, summarization, code completion4. We set the chunk size
to 8, the rank to 160, and the number of outliers to 48 for SHADOWKV.

Baselines. We include three dynamic sparse attention methods as baselines: Quest (Tang et al.,
2024b), Loki (Singhania et al., 2024), and InfiniGen (Lee et al., 2024b). For all methods, we retain
exact pre-filling and perform dynamic sparse attention during decoding, where the computation cost
is set to 1/16 of full attention for selecting sparse KV pairs. We include two variants for each base-
line: one where all the KV cache is offloaded, and another where only the value cache is offloaded.

4We include results for Yi-9B-200K and other models (e.g., Llama-3-70B-1M) in Appendix A. Needle In
A Haystack is also tested on Phi-3-Mini-128K (Abdin et al., 2024) and Qwen2-7B-128K (Yang et al., 2024a).
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Table 2: Performance of various methods on different models with LongBench (Bai et al., 2023)
samples exceeding 4K tokens. SHADOWKV outperforms other methods and maintains the accuracy.

Methods NarrQA MultiFQA HotpotQA MuSiQue DuRead GovRep SAMSum PassRetr LCC Avg.

Llama-3-8B-1M 18.98 41.84 36.79 21.47 31.93 34.18 35.96 81.50 56.07 39.86
Loki 2.26 10.19 5.48 3.16 12.17 28.97 7.84 40.52 31.44 15.78
Loki (V only) 3.20 21.01 12.41 3.86 17.07 31.24 16.23 52.57 38.10 21.74
InfiniGen 14.39 31.46 33.63 17.94 26.65 27.38 21.97 74.30 38.58 31.81
InfiniGen (V only) 17.83 36.08 35.28 19.64 28.39 29.28 28.12 74.85 45.53 35.00
Quest 20.13 36.63 35.00 18.14 24.55 27.11 35.63 79.00 53.64 36.65
Quest (V only) 17.26 39.51 36.78 18.71 26.41 29.49 35.80 79.50 60.05 38.17
SHADOWKV 17.17 39.73 38.29 21.08 31.77 31.62 35.87 80.00 63.93 39.94

GLM-4-9B-1M 25.44 51.09 58.67 39.61 32.04 29.97 40.31 99.00 58.02 48.24
Loki 5.82 30.60 22.73 9.20 30.09 30.35 22.70 98.92 40.77 32.35
Loki (V only) 10.89 44.97 45.44 23.51 32.07 30.56 35.34 99.50 50.27 41.39
InfiniGen 23.67 46.31 55.69 33.91 27.49 25.44 33.48 91.83 36.96 41.64
InfiniGen (V only) 25.63 48.44 57.23 36.94 29.77 26.67 36.64 93.58 46.69 44.62
Quest 23.81 44.53 56.41 35.49 23.54 21.73 37.39 87.00 43.80 41.52
Quest (V only) 26.00 46.32 57.54 36.42 24.58 24.52 37.71 93.50 46.52 43.68
SHADOWKV 26.50 51.31 59.09 38.87 32.92 28.54 38.70 96.50 58.55 47.89

Llama-3.1-8B 31.56 55.10 57.65 29.46 35.26 34.45 29.84 100.00 67.31 48.96
Loki 2.31 18.89 10.64 5.47 19.30 31.16 15.91 94.88 44.60 27.02
Loki (V only) 3.93 38.59 22.85 12.96 27.43 32.22 26.43 98.25 56.11 35.42
InfiniGen 27.23 52.72 53.89 26.81 27.72 29.61 24.42 98.93 56.89 44.25
InfiniGen (V only) 29.73 53.47 55.11 28.72 28.55 31.42 26.76 99.17 62.66 46.18
Quest 29.70 49.04 53.96 27.18 27.16 30.43 29.85 98.50 57.35 44.80
Quest (V only) 30.02 53.97 56.39 27.06 29.06 31.65 30.23 99.00 63.89 46.81
SHADOWKV 30.93 55.20 57.32 29.13 31.85 32.79 30.40 99.50 66.03 48.13

The former has similar latency to SHADOWKV but a smaller sparse budget since SHADOWKV only
needs to fetch the value cache from the CPU. The latter aligns with the same sparse KV cache budget
but significantly increases GPU memory usage. The latter one is marked as “V only” in the table.

RULER. As shown in Table 1, SHADOWKV demonstrates excellent performance on 128K con-
texts. With a fixed sparse budget of 1.56%, other methods experience performance degradation. In
contrast, SHADOWKV is more robust and even outperforms original full attention on certain tasks,
such as variable tracking. For complex tasks like multi-document QA or multi-key needle retrieval,
other methods suffer from significant performance degradation while SHADOWKV does not.
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Figure 6: Needle In A Haystack.

LongBench. On LongBench, we evaluate our method with a
range of realistic scenarios, including single-/multi-document
question-answering, document summarization, code comple-
tion, information retrieval, etc. We only test on samples longer
than 4K and set the sparse KV cache budget to 256 for this
benchmark since it has shorter inputs compared to RULER.
As shown in Table 2, SHADOWKV outperforms other meth-
ods consistently and maintains the performance.

Needle In A Haystack. On the Needle In A Haystack dataset, as shown in Figure 6, SHADOWKV
shows the ability to process information at different positions across various context windows, rang-
ing from 16K to 1M tokens. More experiments on a range of models can be found in Appendix B.3.

Integrate with Efficient Pre-filling Methods. We also combined SHADOWKV with a state-of-
the-art efficient pre-filling method MInference (Jiang et al., 2024). As shown in Table 3, following
the setting of MInference, we tested it on RULER with contexts scaling from 8K to 256K. This
demonstrates that our method is compatible with pre-filling acceleration techniques. For some cer-
tain context length settings, we even see a slight performance improvement.
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Table 3: Performance of different methods on RULER (Hsieh et al., 2024) using MInference (Jiang
et al., 2024) in the pre-filling stage. SHADOWKV is compatible with MInference.

Methods 8K 16K 32K 64K 128K 256K Avg.

Llama-3-8B-1M w/ MInference 89.92 88.02 82.81 78.45 78.12 74.57 81.98
SHADOWKV w/ MInference 90.47 88.12 83.28 77.71 78.32 74.31 82.04
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Figure 7: Multi-turn NIAH.

Multi-turn Conversation Capability. To simulate multi-turn con-
versations, we challenged SHADOWKV with a multi-turn needle
retrieval task (Multi-turn NIAH). We also test two eviction-based
methods in Figure 7, including SnapKV (Li et al., 2024) and
StreamingLLM (Xiao et al., 2023b). The performance of SnapKV
drops significantly from the second round due to the required con-
text information being different from the first round. Since SnapKV
inevitably evicted tokens based on the first-turn conversation, it can-
not successfully retrieve related information for future queries. In
contrast, SHADOWKV can maintain accuracy in the multi-turn con-
versation setting.

5.2 EFFICIENCY EVALUATION

To demonstrate the efficiency of SHADOWKV, we deploy it into real-world large batch serving
scenarios. By measuring the throughput during decoding across different models on A100, we show
that SHADOWKV can support up to 6× larger batch sizes and boost throughput by up to 3.04×. The
detailed latency breakdown can be found in Appendix A.6.

Baselines. The baseline selects the largest batch size that can fit entirely on the GPU with full
attention. We also include results for the same batch size of SHADOWKV and the infinite batch size,
assuming infinite GPU memory capabilities5. We set the sparse budget to 1.56% for SHADOWKV.

Results. As shown in Table 4, SHADOWKV demonstrates significant throughput improvements
for various models on an A100, surpassing even those with infinite GPU memory. Notably, SHAD-
OWKV supports batch sizes up to 6× larger and enhances throughput by up to 3.04× compared to
full attention, even surpassing infinite batch size assuming infinite GPU memory. While the gains
for GLM-4-9B-1M and Yi-9B-200K are slightly lower, the improvements still reach up to 2.56×
and 2.66× respectively, highlighting SHADOWKV’s adaptability even with fewer KV heads.

Table 4: Generation throughput (tokens/s) on an A100. The gray text in brackets denotes batch size.

Model Context Full Attention SHADOWKV Gain Full Attention (Inf)

Llama-3-8B-1M 60K 160.62 (8) 455.14 (48) 2.83× 168.72 (48) / 273.07 (Inf)
(8 KV heads) 122K 80.77 (4) 239.51 (24) 2.97× 83.05 (24) / 134.30 (Inf)

244K 40.37 (2) 119.01 (12) 2.95× 52.00 (12) / 67.15 (Inf)

Llama-3.1-8B 60K 160.93 (8) 472.77 (48) 2.94× 168.72 (48) / 273.07 (Inf)
(8 KV heads) 122K 80.78 (4) 245.90 (24) 3.04× 83.05 (24) / 134.30 (Inf)

GLM-4-9B-1M 60K 241.05 (12) 615.89 (50) 2.56× 266.24 (50) / 436.91 (Inf)
(4 KV heads) 122K 122.67 (6) 293.40 (25) 2.39× 158.83 (25) / 214.87 (Inf)

244K 61.13 (3) 136.51 (12) 2.23× 78.84 (12) / 107.44 (Inf)

Yi-9B-200K 60K 204.81 (10) 544.36 (42) 2.66× 271.21 (42) / 364.09 (Inf)
(4 KV heads) 122K 101.44 (5) 260.03 (21) 2.56× 133.53 (21) / 179.06 (Inf)

244K 46.74 (2) 118.55 (10) 2.54× 65.79 (10) / 89.53 (Inf)

5For the equivalent SHADOWKV batch size, we evaluate a single Transformer block with FlashAttention
and then project the number to the entire model. For the infinite batch size, we leverage A100’s theoretical
memory bandwidth (2 TB/s) for attention computations.
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Figure 8: Comparison results between the models with full cache, our SHADOWKV, and Quest.
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Figure 9: (a) Impact of chunk size on batch size and accuracy. (b) Minimal effect of chunk size on
hit rate. (c) Accuracy trends across different ranks with Llama-3-8B-1M on different tasks.

5.3 ABLATION RESULTS

We present extensive ablation studies of SHADOWKV, focusing on three key points: (1) sparse
KV cache budget variations, (2) chunk size selections, and (3) pre-RoPE key cache rank choices.
Additional ablations, including precision sensitivity analysis and the effectiveness of outliers, are
provided in Appendix A.

Sparse KV Cache Budget. We examine SHADOWKV’s performance across various tasks with
different sparse budgets, as illustrated in Figure 8. SHADOWKV consistently surpasses Quest under
the same sparse budgets and achieves higher throughput. On most tasks, it maintains accuracy with
just a 1.56% sparse budget compared to full attention and even improves slightly on some tasks.

Chunk Size. As shown in Figure 9a, increasing the chunk size allows for larger batch sizes. How-
ever, accuracy declines when the chunk size exceeds eight. Meanwhile, the chunk size choice has
minimal impact on the chunk hit rate, which remains around 60%, as illustrated in Figure 9b.

Rank of Pre-RoPE Keys. We assess SHADOWKV’s performance across various tasks using dif-
ferent ranks for pre-RoPE keys. As illustrated in Figure 9c, accuracy increases with the rank up
to approximately 160, after which it stabilizes near full-rank performance. Interestingly, the trends
vary across tasks, and in some cases, low-rank approximations achieve better performance.

6 CONCLUSION

We present SHADOWKV, a high-throughput inference system for long-context LLM inference.
SHADOWKV optimizes GPU memory usage through the low-rank key cache and offloaded value
cache, allowing for larger batch sizes. It reduces decoding overhead by accurate sparse attention,
boosting throughput while maintaining accuracy. Our empirical experiments demonstrate SHAD-
OWKV can support up to 6× larger batch sizes and enhance throughput by up to 3.04× on an A100
across various long-context models, including Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M, and
Yi-9B-200K. SHADOWKV holds great promise for improving long-context LLM inference.
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A ADDITIONAL EXPERIMENT RESULTS

In this section, we present additional experiments experiments not covered in the main text, includ-
ing the handling of newly generated tokens (as discussed in Section 4.1), scalability analysis for
larger models and longer sequences (mentioned in Section 5.1), latency breakdown (mentioned in
Section 5.2), additional ablation studies (referenced in Section 5.3), and etc.

A.1 HANDLING OF NEWLY GENERATED TOKENS

To address the handling of newly generated tokens, we project these tokens’ key cache into a low-
rank space using the same projections applied during the prefilling phase. This approach preserves
the benefits of reduced GPU memory usage, particularly for long output sequences.

As shown in Table 5 and Table 6, we refer to this extension as SHADOWKV +. Our evaluation across
various models demonstrates that SHADOWKV + effectively maintains accuracy while optimizing
memory usage.

Table 5: Performance of SHADOWKV and SHADOWKV + across different models on RULER
(Hsieh et al., 2024) evaluated at length of 128K.

Methods N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3-8B-1M 100.00 100.00 98.96 98.96 98.96 95.57 75.00 48.96 78.54 71.85 86.68
SHADOWKV 100.00 100.00 97.92 98.96 96.88 95.83 72.92 52.08 81.67 72.57 86.88
SHADOWKV + 100.00 100.00 98.96 100.00 95.83 93.49 71.88 50.00 80.21 71.88 86.23

GLM-4-9B-1M 100.00 100.00 94.79 87.50 99.74 93.75 67.71 55.21 97.29 72.22 86.82
SHADOWKV 100.00 100.00 95.83 83.33 98.70 87.76 69.79 55.21 97.50 68.06 85.62
SHADOWKV + 100.00 100.00 95.83 85.42 98.17 85.16 69.79 56.25 97.92 67.71 85.63

Llama-3.1-8B 100.00 100.00 98.96 91.67 98.96 95.31 82.29 47.92 68.96 71.18 85.53
SHADOWKV 100.00 100.00 100.00 83.33 97.92 92.19 81.25 48.96 67.08 64.93 83.57
SHADOWKV + 100.00 100.00 100.00 84.38 96.88 91.67 81.25 52.08 65.63 62.85 83.47

Yi-9B-200K 100.00 100.00 86.46 62.50 64.58 32.55 44.79 39.58 36.87 89.93 65.73
SHADOWKV 100.00 100.00 82.29 67.71 63.28 31.51 43.75 38.54 56.04 72.22 65.53
SHADOWKV + 100.00 100.00 81.25 67.71 61.72 31.51 46.88 38.54 53.54 72.92 65.41

Table 6: Performance of SHADOWKV and SHADOWKV + on different models with LongBench
(Bai et al., 2023) samples exceeding 4K tokens.

Methods NarratQA MultiFQA HotpotQA MuSiQue DuRead GovRep SAMSum PassRetr LCC Avg.

Llama-3-8B-1M 18.98 41.84 36.79 21.47 31.93 34.18 35.96 81.50 56.07 39.86
SHADOWKV 17.17 39.73 38.29 21.08 31.77 31.62 35.87 80.00 63.93 39.94
SHADOWKV + 20.42 41.16 37.22 21.03 31.77 31.98 35.80 80.00 63.89 40.36

GLM-4-9B-1M 25.44 51.09 58.67 39.61 32.04 29.97 40.31 99.00 58.02 48.24
SHADOWKV 26.50 51.31 59.09 38.87 32.92 28.54 38.70 96.50 58.55 47.89
SHADOWKV + 27.59 51.31 59.17 38.34 33.55 31.25 39.46 96.50 55.86 48.11

Llama-3.1-8B 31.56 55.10 57.65 29.46 35.26 34.45 29.84 100.00 67.31 48.96
SHADOWKV 30.93 55.20 57.32 29.13 31.85 32.79 30.40 99.50 66.03 48.13
SHADOWKV + 32.25 54.29 57.75 28.37 31.07 32.89 28.73 98.75 67.59 47.97

Yi-9B-200K 13.88 30.02 52.46 28.20 22.29 30.25 19.08 67.00 73.50 37.41
SHADOWKV 12.44 30.82 52.43 27.73 20.79 29.83 20.73 64.00 72.89 36.85
SHADOWKV + 14.08 30.94 51.16 27.00 19.50 29.34 21.16 66.00 73.47 36.96
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A.2 QUANTITATIVE ANALYSIS OF GPU MEMORY SAVINGS

The GPU memory savings provided by SHADOWKV can be quantitatively analyzed as follows. Let
each K or V vector have a size of M bytes, with a sequence length S, a chunk size C, a selected
chunk budget K, O outliers, and a pre-RoPE key cache rank r. The GPU memory savings of
SHADOWKV can then be expressed as:

Memory Savings =
2SM

SM/C + 2(K +O)C + Sr + rM

For example, assuming M = 1024, C = 8, S = 128K,K = 256, O = 48, r = 160, the memory
savings of SHADOWKV is calculated as 7.08×. This result demonstrates that SHADOWKV can
theoretically reduce the KV cache memory footprint on the GPU by 7.08× for longer sequences and
larger batch sizes.

A.3 ACCURACY RESULTS FOR YI-9B-200K

We present accuracy results for Yi-9B-200K (AI et al., 2024) on RULER (Hsieh et al., 2024) and
LongBench (Bai et al., 2023), highlighting SHADOWKV’s superior performance across diverse tasks
compared to other methods.

Table 7: Performance of Yi-9B-200K with different methods on RULER (Hsieh et al., 2024) evalu-
ated at length of 128K. SHADOWKV outperforms other methods with a 1.56% sparse budget.

Methods N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Yi-9B-200K 100.00 100.00 86.46 62.50 64.58 32.55 44.79 39.58 36.87 89.93 65.73
Loki 34.38 2.08 2.08 0.00 0.00 0.52 22.92 21.88 0.00 25.00 10.89
Loki (V only) 59.38 11.46 18.75 5.21 4.43 2.08 22.92 31.25 0.00 35.07 19.06
InfiniGen 100.00 94.79 77.08 1.04 40.10 20.57 37.50 34.38 41.46 46.18 49.31
InfiniGen (V only) 100.00 98.96 78.13 2.08 58.33 24.48 40.63 35.42 52.92 55.90 54.69
Quest 100.00 98.96 79.17 26.04 56.51 31.77 32.29 31.25 51.04 71.88 57.89
Quest (V only) 100.00 100.00 80.21 45.83 59.37 31.90 36.45 34.37 53.54 71.88 61.36
SHADOWKV 100.00 100.00 82.29 67.71 63.28 31.51 43.75 38.54 56.04 72.22 65.53

Table 8: Performance of Yi-9B-200K with LongBench (Bai et al., 2023) samples exceeding 4K
tokens. SHADOWKV outperforms other methods and maintains the accuracy.

Methods NarrQA MultiFQA HotpotQA MuSiQue DuRead GovRep SAMSum PassRetr LCC Avg.

Yi-9B-200K 13.88 30.02 52.46 28.20 22.29 30.25 19.08 67.00 73.50 37.41
Loki 1.63 2.73 16.21 4.87 4.75 2.13 4.95 0.00 38.72 8.44
Loki (V only) 1.96 10.39 21.31 7.36 6.78 9.15 10.02 4.00 58.75 14.41
InfiniGen 10.01 23.61 50.47 25.91 15.11 27.96 18.97 30.00 56.46 28.72
InfiniGen (V only) 11.31 26.46 51.13 26.77 16.09 28.67 19.33 34.00 62.07 30.65
Quest 10.57 25.83 46.06 23.04 17.09 17.11 20.59 50.50 67.70 30.94
Quest (V only) 14.56 25.73 48.73 24.73 18.44 20.83 20.08 57.50 71.13 33.53
SHADOWKV 12.44 30.82 52.43 27.73 20.79 29.83 20.73 64.00 72.89 36.85

A.4 PRECISION SENSITIVITY

In the main experiments, we used BF16 for both model weights and KV cache. To further investi-
gate the impact of precision on SHADOWKV’s performance, we conducted additional experiments
using FP8 precision (torch.float8 e5m2). These tests aim to determine whether SHADOWKV
can retain its accuracy at this lower precision, addressing concerns about precision sensitivity, par-
ticularly in SVD computations.

As detailed in Table 9 and Table 10, SHADOWKV and baseline methods were evaluated using FP8.
Results show that SHADOWKV maintains accuracy and achieves consistently high performance
even with FP8 precision. This robustness, despite FP8’s reduced numerical range, confirms that
SHADOWKV can continue to deliver efficiency gains without compromising accuracy.
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Table 9: Performance comparison of SHADOWKV and baseline methods on the RULER (Hsieh
et al., 2024) using FP8 precision, evaluated at a sequence length of 128K.

Methods N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3-8B-1M 100.00 100.00 98.96 95.83 97.40 95.57 63.54 48.96 75.83 73.26 84.94
Loki 5.21 1.04 0.00 0.00 0.78 0.26 5.21 13.54 28.33 28.82 8.32
Loki (V only) 36.46 9.38 31.25 0.00 6.25 21.09 11.46 15.63 57.08 35.76 22.44
Quest 100.00 98.96 98.96 71.88 96.61 93.49 63.54 45.83 78.13 67.01 81.44
Quest (V only) 100.00 100.00 98.96 85.42 97.40 93.49 70.83 48.96 78.13 65.63 83.88
SHADOWKV 100.00 100.00 97.92 94.79 95.31 93.49 75.00 48.96 80.42 73.61 85.95

Table 10: Evaluation of SHADOWKV and baseline methods on LongBench (Bai et al., 2023) with
sequence lengths exceeding 4K tokens, using FP8 precision.

Methods NarratQA MultiFQA HotpotQA MuSiQue DuRead GovRep SAMSum PassRetr LCC Avg.

Llama-3-8B-1M 18.69 41.21 35.76 21.59 31.81 33.77 35.29 80.50 56.77 39.49
Loki 2.21 11.12 5.70 1.84 15.42 28.59 11.41 41.91 33.99 16.91
Loki (V only) 2.68 22.33 12.69 3.35 21.43 30.57 16.32 47.68 36.64 21.52
Quest 19.41 38.92 34.02 19.64 23.13 26.40 28.04 78.50 49.81 35.32
Quest (V only) 16.19 36.73 36.64 19.59 25.57 29.46 27.14 79.50 60.05 36.76
SHADOWKV 18.29 39.39 36.06 21.04 30.47 31.87 35.56 78.50 62.11 39.25

A.5 SCALABILITY ANALYSIS FOR LARGER MODELS AND LONGER SEQUENCES
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Figure 10: Needle In A Haystack.

To demonstrate the scalability of SHADOWKV, we
present experiments with Llama-3-8B-1M on 1M con-
texts and Llama-3-70B-1M on 512K contexts, using
the RULER benchmark (Hsieh et al., 2024). Addition-
ally, we evaluate Llama-3-70B-1M on the Needle In A
Haystack dataset, testing context lengths ranging from
16K to 1M tokens.

As shown in Figure 10 and Table 11, SHADOWKV
maintains robust performance across increasing context
lengths and model sizes, demonstrating its scalability
in handling large-scale inputs. This scalability allows SHADOWKV to process extensive contexts
with high accuracy, making it a valuable solution for real-world applications requiring extensive
sequences.

Table 11: Performance of different methods on RULER (Hsieh et al., 2024) evaluated at length of
1M. The Llama-3-8B-1M is evaluated on 1M contexts while the Llama-3-70B-1M is evaluated on
512K contexts.

Methods N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3-70B-1M 100.00 82.29 90.63 54.17 85.16 96.61 69.79 35.42 68.75 69.44 75.23
Loki 100.00 1.04 0.00 0.00 0.00 0.00 13.54 11.46 34.30 22.92 18.33
Loki (V only) 100.00 15.63 26.04 0.00 0.00 0.00 25.00 19.79 40.00 31.94 25.84
Quest 100.00 76.04 78.13 35.42 85.47 92.19 53.21 34.38 38.33 58.33 65.15
Quest (V only) 100.00 77.08 79.17 36.49 86.19 95.31 54.17 36.58 47.70 58.68 67.14
SHADOWKV 100.00 82.29 88.54 53.04 88.02 94.79 67.71 37.50 68.54 68.25 74.87

Llama-3-8B-1M 96.88 100.00 96.88 69.79 91.15 85.68 64.58 42.71 25.00 56.25 72.89
Loki 9.38 1.04 10.42 0.00 2.60 4.43 38.54 11.46 1.67 0.69 8.02
Loki (V only) 68.75 29.17 60.42 1.04 26.56 43.23 59.38 15.63 6.46 0.69 31.13
Quest 94.79 92.71 80.21 4.17 76.30 69.27 57.29 28.13 25.67 30.56 55.91
Quest (V only) 94.79 93.75 81.25 4.17 79.69 69.27 62.50 31.25 26.00 32.99 57.57
SHADOWKV 96.88 100.00 96.88 65.63 89.38 83.16 69.79 42.71 26.04 59.38 72.98
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A.6 LATENCY BREAKDOWN

We present a detailed latency breakdown in Table 12 and Table 13 to illustrate the efficiency of each
operation under various context lengths for both the prefilling and decoding stages.

Scalability for Longer Sequences. As shown in Table 12, the overhead of SVD, reduce, cosine
similarity, topK, and gather computing is very low and tends to decrease as the sequence scales,
proving that SHADOWKV’s scalability to longer sequences.

Table 12: Latency breakdown (ms) of a Transformer block of Llama-3-8B-1M during prefilling.

Context Attention FFN SVD Reduce CosineSimilarity TopK Gather Cost

64K 186.23 96.47 17.19 0.10 1.41 0.08 0.01 6.65%
128K 721.13 193.32 26.62 0.20 2.77 0.14 0.02 3.25%
256K 2880.21 392.77 50.56 0.42 6.11 0.11 0.03 1.75%
512K 11720.30 789.23 108.38 0.84 12.19 0.15 0.06 0.97%

Overlapping Operations for Latency Reduction. In Table 13, we demonstrate how overlapping
the recomputation of the key cache with value cache fetching from the CPU significantly reduces de-
coding latency. This concurrent processing approach ensures that SHADOWKV minimizes overhead
when handling long-context models.

Table 13: Latency breakdown (ms) of a Transformer block of Llama-3-8B-1M during decoding.

Context GEMM+
Softmax Max TopK

Recompute K
(Overlapped) Fetch V Attention FFN QKV

48×64K 0.56 0.07 0.14 1.25 1.84 0.23 0.33 0.05
24×128K 0.58 0.07 0.15 1.36 1.66 0.21 0.29 0.05
12×256K 0.65 0.07 0.16 1.49 1.75 0.19 0.25 0.05
6×512K 0.71 0.07 0.17 1.51 1.69 0.18 0.23 0.05

A.7 EFFICIENCY COMPARISON WITH QUEST

We present an efficiency comparison with Quest, particularly under long contexts or high batch
sizes where the GPU memory alone cannot accommodate the KV cache. In such cases, both Full
Attention and Quest must offload the KV cache to the CPU. As shown in Table 14, SHADOWKV
significantly outperforms both Full Attention and Quest under the same sparse budget.

The efficiency advantage of SHADOWKV over Quest is due to two key factors: (1) SHADOWKV
only fetches the value cache from the CPU, rather than the entire KV pair, minimizing data transfer
and reducing latency, and (2) SHADOWKV integrates a cache mechanism that leverages the temporal
locality of the KV cache.

Table 14: Efficiency comparsion with Quest.

Context Full Attention Full Attention (CPU) Quest Quest (CPU) SHADOWKV

3×1M OOM 0.21 tokens/s OOM 9.34 tokens/s 45.32 tokens/s
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A.8 ACCURACY CONTRIBUTION OF OUTLIER KV CACHE

We conduct experiments using different numbers of outlier chunks for Llama-3-8B-1M on the
RULER benchmark with 128K context length. As presented in Table 15, our findings indicate that
outliers play a crucial role. For instance, the first chunk, a significant outlier, has previously been
shown to act as an attention sink (Xiao et al., 2023b), underscoring its importance in maintaining
model accuracy.

The results demonstrate that increasing the number of outlier chunks has a positive impact on ac-
curacy, especially in complex tasks. This indicates that even a small number of outliers can effec-
tively capture essential information, reducing the need for full attention. Remarkably, with just 8
outliers (0.049%), SHADOWKV outperforms the Quest baseline and nearly matches the accuracy
achieved by full attention. However, when outliers are not adequately managed, the performance of
the mean-based landmarks in SHADOWKV may fall below the min-max approach used by Quest,
underscoring the importance of handling outliers properly.

Table 15: Performance across different number of outlier chunks on RULER (Hsieh et al., 2024)
evaluated at length of 128K.

# Outliers N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

0 (0.000 %) 100.00 100.00 96.88 85.42 73.18 70.83 43.75 39.58 73.54 57.29 74.05
1 (0.006 %) 100.00 100.00 97.92 98.96 95.83 94.79 70.83 51.04 70.63 70.14 85.01
2 (0.012 %) 100.00 100.00 97.92 98.96 95.57 95.57 70.83 51.04 72.08 70.49 85.25
4 (0.024 %) 100.00 100.00 97.92 98.96 95.83 95.57 71.88 51.04 74.38 71.18 85.68
8 (0.049 %) 100.00 100.00 97.92 98.96 95.57 95.05 72.92 51.04 78.13 72.57 86.22

16 (0.098 %) 100.00 100.00 97.92 98.96 96.09 95.31 72.92 51.04 80.42 71.53 86.42
32 (0.195 %) 100.00 100.00 97.92 98.96 96.35 95.57 72.92 52.08 81.25 72.22 86.73
48 (0.293 %) 100.00 100.00 97.92 98.96 96.88 95.83 72.92 52.08 81.67 72.57 86.88

Quest (Ref.) 100.00 100.00 98.96 77.08 97.65 93.49 60.42 50.00 77.08 65.63 82.03
Full Attn (Ref.) 100.00 100.00 98.96 98.96 98.96 95.57 75.00 48.96 78.54 71.85 86.68

A.9 DETAILED COMPARISON WITH INFINIGEN

We provide further clarification on the key distinctions and conduct additional experiments between
SHADOWKV and InfiniGen. These experiments show that SHADOWKV significantly outperforms
InfiniGen across a wide range of downstream tasks.

Differences in SVD Usage. Infinigen performs an offline SVD to get a projection matrix, which is
applied to post-RoPE key and query states for KV selection, while SHADOWKV applies an online,
prompt-dependent SVD directly to the pre-RoPE key cache for compression, not for KV selection.

Methodological Differences. While InfiniGen uses SVD for KV selection, it requires fetching
selected, exact KV pairs from the CPU. In contrast, SHADOWKV only fetches the value cache from
the CPU, reconstructing the key cache from its low-rank storage on the GPU. By overlapping these
processes, SHADOWKV reduces data-fetch overhead and achieves improved efficiency in KV cache
management.

Accuracy Comparison. To empirically validate SHADOWKV’s advantages, we conducted accu-
racy evaluations. Results confirm SHADOWKV’s effectiveness in maintaining accuracy while op-
timizing memory usage. Although InfiniGen performs well on simpler tasks like RULER-N-S1, it
shows significant accuracy drops on more complex tasks, such as RULER-N-MK2, RULER-FWE,
LongBench-LCC, and others, where SHADOWKV maintains consistently high accuracy.
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B EXPERIMENT DETAILS

In this section, our goal is to provide the details of the system implementation (mentioned in Sec-
tion 4.2), experiment settings, and additional experiments (mentioned in Section 5).

B.1 SYSTEM IMPLEMENTATION.

We implement the framework based on PyTorch (Paszke et al., 2019; Wolf, 2019) and dedicated
kernels (Thakkar et al., 2023). FlashAttention (Dao et al., 2022; Dao, 2023; Hong et al., 2023) is
used for attention computation and some efficient fused kernels in Flashinfer (Ye et al., 2024) and
vLLM (Kwon et al., 2023) are used, including layer norm. To reduce memory movement and kernel
launch overhead, we fuse some operations into CUDA kernels, including attention approximation,
key cache low-rank reconstruction, value cache fetching, cache mechanism, etc. We leverage multi-
streams to overlap the reconstruction of key cache and value cache fetching. We set the rank of
pre-RoPE key cache to 160, chunk size to 8, and sparse KV cache budget to 1.56% for most cases.

B.2 DATASET DETAILS

LLMs are widely used in various fields (Li et al., 2023; Yuan et al., 2024; QwenTeam, 2024; Wang
et al., 2024a; Song et al., 2024), and we select three long-context benchmarks, detailed below.

• RULER (Hsieh et al., 2024) consists of 13 complex tasks and supports adjustable context lengths,
including retrieval, multi-hop tracking, aggregation, and QA tasks. For the test with MInference
(Jiang et al., 2024), we set up test sets scaling from 8K to 256K for evaluation.

• LongBench (Bai et al., 2023) is a challenging long-context benchmark that assesses the perfor-
mance of LLMs in extended contexts. Featuring Chinese and English languages, LongBench
encompasses 6 main categories and 21 diverse tasks, evaluating LLM capabilities across crucial
long-text applications like single-/multi-document QA, summarization, code completion, etc.

• Needle In A Haystack (Kamradt, 2023) is a long-context retrieval benchmark testing LLM’s per-
formance with context window scales up to 1M tokens where information placed at various posi-
tions. We tested the retrieval capabilities of six long-context LLMs based on their context length.

B.3 NEEDLE IN A HAYSTACK

In addition to the Needle In A Haystack results for Llama-3-8B-1M shown in Figure 6, we also
present results for GLM-4-9B-1M, Llama-3.1-8B, Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-
128K, shown in Figure 11. Compared to full attention, using SHADOWKV has minimal impact on
the ability to understand semantic information across different context windows and needle depths.
There is even a slight performance improvement for Yi-9B-200K.

B.4 INFINITEBENCH

InfiniteBench (Zhang et al., 2024b) is a challenging long-context benchmark that consists of 10
tasks, including QA, coding, dialogue, summarization, and retrieval, with an average length of 214K.

Table 16: Accuracy of different methods on InfiniteBench (Zhang et al., 2024b).

Methods En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Num

Llama-3-8B-1M 23.05 18.14 65.06 10.50 12.47 24.36 37.14 100.00 100.00
SHADOWKV 21.50 17.73 64.63 10.50 12.45 23.86 37.43 100.00 100.00

GLM-4-9B-1M 28.61 9.25 68.12 39.50 11.77 30.20 40.00 100.00 100.00
SHADOWKV 23.22 8.48 68.56 32.50 11.27 30.46 40.00 100.00 100.00

Llama-3.1-8B 26.42 14.48 66.38 16.00 12.92 21.07 34.00 100.00 99.66
SHADOWKV 24.23 13.83 66.38 16.50 12.76 21.07 34.00 100.00 94.41

Yi-9B-200K 8.88 10.61 61.57 5.50 13.88 21.57 23.71 100.00 99.66
SHADOWKV 8.92 10.06 59.39 6.00 13.89 20.56 24.29 100.00 99.83
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(a) GLM-4-9B-1M

16
K

87
K

15
7K

22
7K

29
7K

36
8K

43
8K

50
8K

57
8K

64
9K

71
9K

78
9K

85
9K

93
0K 1M

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h 
Pe

rc
en

t (
%

)

Needle in A Haystack GLM-4-9B-1M w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

(b) GLM-4-9B-1M w/ SHADOWKV
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(c) Llama-3.1-8B-Instruct
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(d) Llama-3.1-8B-Instruct w/ SHADOWKV
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(e) Yi-9B-200K
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(f) Yi-9B-200K w/ SHADOWKV
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(g) Phi-3-Mini-128K

16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K

88
K

96
K

10
4K

11
2K

12
0K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h 
Pe

rc
en

t (
%

)

Needle in A Haystack Phi-3-Mini-128K-Instruct w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

(h) Phi-3-Mini-128K w/ SHADOWKV
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(i) Qwen2-7B-128K
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(j) Qwen2-7B-128K w/ SHADOWKV

Figure 11: Needle In A Haystack (Kamradt, 2023) results using GLM-4-9B-1M (GLM et al., 2024),
Llama-3.1-8B-Instruct (Meta AI, 2024), Yi-9B-200K (AI et al., 2024), Phi-3-Mini-128K (Abdin
et al., 2024), and Qwen2-7B-128K (Yang et al., 2024a).
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