
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SHADOWKV: KV CACHE IN SHADOWS FOR HIGH-
THROUGHPUT LONG-CONTEXT LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

With the widespread deployment of long-context large language models (LLMs),
there has been a growing demand for efficient support of high-throughput infer-
ence. However, as the key-value (KV) cache expands with the sequence length,
the increasing memory footprint and the need to access it for each token generation
both result in low throughput when serving long-context LLMs. While various dy-
namic sparse attention methods have been proposed to speed up inference while
maintaining generation quality, they either fail to sufficiently reduce GPU mem-
ory consumption or introduce significant decoding latency by offloading the KV
cache to the CPU. We present SHADOWKV, a high-throughput long-context LLM
inference system that stores the low-rank key cache and offloads the value cache to
reduce the memory footprint for larger batch sizes and longer sequences. To min-
imize decoding latency, SHADOWKV employs an accurate KV selection strategy
that reconstructs minimal sparse KV pairs on-the-fly. By evaluating SHADOWKV
on a broad range of benchmarks, including RULER, LongBench, and Needle In
A Haystack, and models like Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M,
Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-128K, we demonstrate that it can
support up to 6× larger batch sizes and boost throughput by up to 3.04× on an
A100 GPU without sacrificing accuracy, even surpassing the performance achiev-
able with infinite batch size under the assumption of infinite GPU memory.

1 INTRODUCTION

Large language models (LLMs) have increasingly demonstrated their ability to scale and handle
long contexts (Microsoft, 2024; Liu et al., 2024a; Achiam et al., 2023; Team et al., 2023), enabling
them to tackle complex tasks like multi-document question answering and information retrieval from
extensive contexts of up to 1M tokens (Achiam et al., 2023; Wang et al., 2024b). However, efficiently
serving these long-context LLMs presents challenges related to the key-value (KV) cache (Liu et al.,
2024b; Ge et al., 2023), which stores previous key-value activations to avoid re-computation. As the
KV cache scales with sequence length, its growing memory footprint and the need to access it for
each token generation lead to low throughput during long-context LLM inference. To address these
issues, KV cache eviction or sparse attention methods have been widely explored.

However, existing methods face three primary limitations: accuracy degradation, inadequate mem-
ory reduction, and significant decoding latency overhead. KV cache eviction strategies (Zhang et al.,
2024d;c) aim to reduce the memory footprint by discarding KV pairs based on specific policies, but
they often result in information loss and accuracy degradation in tasks such as multi-turn conversa-
tions (Yang et al., 2024b; Tang et al., 2024a). Dynamic sparse attention methods (Tang et al., 2024b)
preserve all KV pairs on the GPU and accelerate inference by computing attention with selected KV
pairs. However, this line of work does not mitigate the memory footprint, thereby limiting the batch
size and preventing accommodation of extremely long contexts (e.g., 1M tokens). A naive solution
based on sparse attention involves offloading the KV cache to the CPU to reduce memory usage
(Lee et al., 2024a; He & Zhai, 2024). Nonetheless, this approach incurs significant overhead due to
the latency of fetching the selected sparse KV pairs from the CPU during decoding.

Consequently, an ideal effective system for long-context LLM inference with sparse attention
should: (i) reduce GPU memory usage, (ii) minimize inference latency, and (iii) maintain accuracy

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Component

10
3

10
2

10
1

10
0

R
el

at
iv

e
S

in
gu

la
r V

al
ue

Low-rank

X
K (pre-RoPE)
K (post-RoPE)

V
WK

WV

(a)

0 5 10 15 20 25 30
Layer Index

0.75

0.80

0.85

0.90

0.95

1.00

S
ub

sp
ac

e
S

im
ila

rit
y

Context
Extended Context
Inter-context

(b)

64K 128K 192k 256K 384K
Sequence Length

0

1000

2000

3000

4000

5000

6000

7000

Ti
m

e
(m

s)

1

2

3

4

5

SV
D

pe
r c

en
t (

%
)

FFN
Attention
SVD
SVD percentage

(c)

Figure 1: (a) For a sample from PG-19 (Rae et al., 2019; Gao et al., 2020) fed into Llama-3.1-8B,
the pre-RoPE keys are the most low-rank, as indicated by the sharpest decay in singular values. (b)
Average similarities, defined in Section 3.1, between rank-256 truncated SVD projections of pre-
RoPE keys from PG-19 sequences using Llama-3.1-8B. Similarity is measured between a length
16K “Context” and either a 16K+2K continuation on “Context” (“Extended context”) or a new
length 16K sequence (“Inter-context”). Pre-RoPE keys within sequences exhibit similar low-rank
subspaces, while those between sequences show different patterns. (c) The relative overhead of
singular value decomposition (SVD) decreases as sequence length scales for the pre-filling stage.

within limited sparse KV cache budgets. Fortunately, we can potentially overcome these challenges
by leveraging our discovery that pre-Rotary Position Embedding (Su et al., 2024) (RoPE) keys are
exceptionally low-rank compared to the layer inputs, post-RoPE keys, values, key weight matrix,
and value weight matrix, as indicated in Figure 1a. Furthermore, our analysis in Figure 1b reveals
that pre-RoPE keys lack significant similarities in low-rank subspaces across different sequences,
while a sequence and its continuation tend to strongly share low-rank subspaces, enabling high
compression rates within each sequence. Motivated by these findings, we have developed two key
insights that pave the way for the design of an applicable system, detailed in Section 3.

Low-rank Keys and Offloaded Values for Storage: In long-context LLM inference, the quadratic
scaling of attention computation with sequence length makes the linear cost of low-rank decom-
position during pre-filling negligible, as illustrated in Figure 1c1. To reduce memory footprint, we
retain the low-rank pre-RoPE key cache on the GPU and offload the value cache to the CPU since
the value cache does not exhibit low-rank properties, minimizing memory footprint without sacri-
ficing accuracy. During decoding with sparse attention, we employ CUDA multi-streams to overlap
the recovery of the selected key cache with the fetching of the corresponding value cache. This
approach conceals key cache reconstruction and reduces data fetching overhead by 2× compared to
the naive offloading strategy, thereby decreasing the latency of sparse attention during decoding.

Accurate KV Selection for Fast Decoding: To further reduce decoding latency in sparse attention,
we propose an accurate KV selection method that maintains accuracy with minimal number of se-
lected tokens (i.e. the K of TopK), which we refer to as sparse budgets (1.56%). Our analysis reveals
that most post-RoPE keys exhibit high cosine similarity with adjacent tokens, enabling chunk-level
approximations for selecting important tokens. A minimal number of outlier chunks (0.3%), which
are more challenging to approximate (Figure 3b), are stored as static cache on the GPU to preserve
accuracy. As shown in Figure 2, our method outperforms the naive sparse attention approach (Tang
et al., 2024b) and achieves higher sparsity, accelerating decoding.

Building on these insights, we present SHADOWKV in Section 4, depicted in Figure 2, a high-
throughput system for long-context LLM inference. Specifically, during pre-filling, we offload the
value cache to the CPU, retaining only the low-rank pre-RoPE keys, along with compressed land-
marks of the key cache and detected outliers for larger batch sizes. During decoding, landmarks are
used to select chunk indices for key cache recovery and value cache fetching. We perform accurate
sparse attention computation with selected KV pairs and static outliers to achieve high throughput.

Empirically, we conduct extensive experiments and ablation studies to demonstrate the effectiveness
and efficiency of SHADOWKV. In Section 5.1, we evaluate across various long-context LLMs, such

1In practical scenarios, the key cache can be offloaded to the CPU to perform SVD asynchronously or
precomputed and stored as part of the prefix cache (Juravsky et al., 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

GPU

CPU

KV
Sel.

Cache
Hit/Miss

Low-rank Key Cache
Reconstruction + RoPE

Value Cache Fetching
Selected Missed
Chunk IDs

Sparse
Attention

GPU

CPU

Pre-filling

Decoding

Value
Cache

Pre-RoPE
Key Cache

Value Cache
Offload

Low-rank Key Cache (Cached)

Landmarks (Cached)

SVD

RoPE & Reduce

31.5 GB/s (PCIe) 2 TB/s (A100) 7 TB/s

Theoretical Equivalent Bandwidth for ShadowKV

Outliers (Cached)
Find Outliers

Landmarks Low-rank Key Cache Outliers

Figure 2: Left: SHADOWKV enhances long-context LLM inference throughput by offloading the
value cache to the CPU while maintaining a low-rank key cache, landmarks, and outliers on the
GPU. During decoding, it employs landmarks for efficient sparse attention, reducing computation
and data movement. Right: SHADOWKV effectively utilizes a limited KV budget to achieve high
accuracy, theoretically reaching over 7 TB/s equivalent bandwidth on an A100, and empirically
boosts generation throughput by 3.04× for Llama-3.1-8B with on a batch of 122K contexts.

as Llama-3-8B-1M (Gradient., 2024), Llama-3.1-8B (Meta AI, 2024), GLM-4-9B-1M (GLM et al.,
2024), Yi-9B-200K (AI et al., 2024), Phi-3-Mini-128K (Abdin et al., 2024) and Qwen2-7B-128K
(Yang et al., 2024a) using benchmarks including RULER (Hsieh et al., 2024), LongBench (Bai et al.,
2023), and Needle In A Haystack (Kamradt, 2023) with contexts up to 1M.

In Section 5.2, we demonstrate that SHADOWKV can support 6× larger batch sizes and boost
throughput by 3.04× compared to small batches on an A100 using Llama-3.1-8B, with each sample
having a context length of 122K. We also present results across different models and context lengths,
increasing throughput up to 2.97× for Llama-3-8B-1M, 2.56× for GLM-4-9B-1M, and 2.66× for
Yi-9B-200K, even surpassing infinite batch size under the assumption of infinite GPU memory.

2 RELATED WORKS

Token Eviction. To reduce memory footprint, eviction-based strategies keep a fixed size of KV
cache to store the critical token KV pairs and discard unnecessary tokens. StreamingLLM (Xiao
et al., 2023b) addresses the limitations of window attention by retaining attention sinks and recent
KV pairs. H2O (Zhang et al., 2024d) introduces a low-cost eviction policy, updating the KV cache
based on cumulative attention scores. LESS (Dong et al., 2024b) accumulates evicted token in-
formation by a constant-sized low-rank cache, which allows partial access to previously evicted
information, along with tokens maintained by a sparse policy. SnapKV (Li et al., 2024) uses the lo-
cal window of prompts to select important tokens for future generations. However, they suffer from
performance degradation and information loss since the evicted tokens will never be recovered.

Dynamic Sparse Attention. This line of work retains all KV cache but performs dynamic sparse
attention within selected KV pairs to reduce inference latency. SparQ (Ribar et al., 2023) uses the
norm of the query to decide an important subset of the key cache’s channels to calculate a metric
to select relevant tokens. Quest (Tang et al., 2024b) segments tokens into pages and selects pages
by approximating the highest attention within each page. Loki (Singhania et al., 2024) performs
principal component analysis on key caches using a calibration dataset, selecting tokens based on
attention scores computed in low-dimensional space. TriForce (Sun et al., 2024) combines sparse
attention with speculative decoding (Leviathan et al., 2023) for lossless acceleration. InfiniGen
(Lee et al., 2024a) offloads the entire KV cache to the CPU and prefetches essential entries using
an predefined projection matrix via SVD for KV selection. In contrast, SHADOWKV employs an
online, prompt-dependent SVD for key cache compression rather than for KV selection.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 256 512 768 1024
SVD Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Value Cache
Post-RoPE Key Cache
Pre-RoPE Key Cache

(a)

0 4096 8192 12288 16384
Chunk Index (Chunk Size=8)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

M
in

im
um

 S
im

ila
rit

y
wi

th
in

 C
hu

nk

Layer-0, Head-1
Layer-16, Head-7
Outlier Chunks

(b)

0 50 100 150 200 250
Generated Token Index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

KV
 C

ac
he

 H
it

Ra
te

Layer-5, KV Head-0
Layer-15, KV Head-3
Layer-25, KV Head-7

(c)

Figure 3: (a) Accuracy on the needle retrieval task across various ranks shows that the pre-RoPE
key cache can be compressed by over 6 times without a drop in accuracy. (b) The number of notable
outlier chunks is small, taking only 0.2-0.3%. (c) The KV cache has a high hit rate, reducing
computations and data movements by over 60% for each decoding step.

Quantization. Several methods have been introduced to optimize KV cache quantization (Hooper
et al., 2024; Yue et al., 2024; Xiao et al., 2023a), reducing memory consumption while retaining
accuracy. KIVI (Liu et al., 2024c) applies different quantization strategies for keys and values,
quantizing the keys per-channel and the values per-token to 2-bit. Palu (Chang et al., 2024) decom-
poses KV weight matrices offline, caching low-rank KV projections to achieve a higher compression
rate. Quantization methods reduce the KV cache bit width, which is orthogonal to our approach.

3 OBSERVATIONS

We present two key insights of long-context LLMs that inspire SHADOWKV’s design, as follows.

3.1 LOW-RANK KEYS AND OFFLOADED VALUES FOR STORAGE

To reduce memory footprint, the low-rank nature of the KV cache has been explored by recent
studies (DeepSeek-AI, 2024; Xu et al., 2024; Chang et al., 2024). However, these methods focus on
data-independent decomposition, either requiring training or achieving limited compression rates.

Observation. In our study, by conducting SVD on the model weights Wk, Wv , the input X , the
pre-/post-RoPE key cache, and the value cache of Llama-3.1-8B, we visualize the relative singular
value distributions in Figure 1a together with the accuracy in Figure 3a. As we observed, pre-RoPE
keys have the lowest rank and can be compressed by 6× without performance degradation.

We also identify striking dynamic and static behaviors in low-rank keys between and within se-
quences, inspired by a related investigation in FFN layers (Dong et al., 2024a). Analogous to cosine
similarity, we define D(H1,H2) = ⟨H1,H2⟩/r to be the similarity metric between low-rank sub-
spaces of two rank-r projection matrices, H1 and H2, where ⟨·, ·⟩ is the Frobenius inner product2. In
our case with truncated SVDs of pre-RoPE keys, let K1,K2 ∈ Rn×d have rank-r truncated SVDs,
Φ1Σ1Ψ

⊤
1 and Φ2Σ2Ψ

⊤
2 , respectively, where Φ1 ∈ Rn×r,Σ1 ∈ Rr×r,Ψ1 ∈ Rd×r, and similarly

for Φ2, Σ2, and Ψ2. Then, D(Ψ1Ψ
⊤
1 ,Ψ2Ψ

⊤
2) can measure the similarity between the low-rank

subspaces of the two right singular matrices. Depicted in Figure 1b, pre-RoPE keys between se-
quences do not strongly share similar low-rank subspaces, but extensions of the same sequence do.

Insights. Our observation of the low-rank nature in the pre-RoPE keys indicates that storing the
low-rank projections is sufficient for each sequence. By keeping the low-rank key cache on the GPU
and offloading the value cache to the CPU since it is not low-rank, we can largely reduce the memory
footprint. During decoding, selected KV pairs can be reconstructed on-the-fly for computation.

2Since H1 and H2 are projection matrices, their squared Frobenius norms are the sum of their singular
values which consist of r 1’s and d − r 0’s, i.e., ∥H1∥2F = r. Thus, by Cauchy-Schwarz, |D(H1,H2)| ≤ 1.
Additionally, D(H1,H2) ≥ 0 by the cyclic property of trace and positive semidefiniteness of projection
matrices. Together, this shows D(H1,H2) ∈ [0, 1], maximized or minimized when the projection matrices
project onto identical or orthogonal subspaces, respectively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: SHADOWKV Pre-filling

Input: K,KRoPE,V ∈ Rb×hkv×s×d, SVD rank r,
chunk size c, number of outlier chunks o
▷ Store low-rank projection of pre-RoPE key cache
A ∈ Rb×s×r, B ∈ Rb×hkv×r×d ← SVD(K)
▷ Segment post-RoPE key cache into chunks and
compute the mean of each chunk
C ∈ Rb×hkv×s/c×d ← Reduce(KRoPE)
▷ Compute cosine similarity within each chunk
S ∈ Rb×hkv×s/c×c ← CosineSimilarity(C,KRoPE)
▷ Find lowest cosine similarity as outliers
I ∈ Rb×hkv×o ← ArgTopK(−Min(S, dim = −1), o)
Koutlier,V outlier ← Gather(KRoPE,V , I)
▷ Offload the rest of values to the CPU and store the
non-outlier chunks’ mean as landmarks
V CPU ← V \ V outlier, L← C \ Gather(C, I)

Pre-RoPE Key 𝑨

𝑩

Low-Rank
(Cached)

SVD

...

0.2

0.8

Post-RoPE
Key Cache

Value
Cache

...

Outlier Chunks
(Cached)

...

Landmarks
(Cached)

0.2

0.6

0.9

0.8

Figure 4: SHADOWKV pre-filling.

3.2 ACCURATE KV SELECTION FOR FAST DECODING

To further reduce the latency overhead in sparse attention, including fetching the selected value
cache from the CPU and reconstructing the corresponding key cache, an accurate KV selection
method is needed to minimize the sparse KV cache budget while maintaining the accuracy.

Observation. We found most post-RoPE key cache exhibits spatial locality, with high cosine sim-
ilarity to adjacent tokens, except for a few outliers. To quantify this, we conducted inference experi-
ments on 128K contexts. We divided the post-RoPE keys into chunks of eight tokens and visualized
the minimum cosine similarity between the chunk’s mean and its key cache, as shown in Figure 3b.
The results indicate that, apart from a few outliers, there is generally high cosine similarity, suggest-
ing the mean values can serve as landmarks to approximate attention well within normal chunks.

Analysis. This finding suggests that for the majority of chunks, we can maintain the mean value as
compressed landmarks to select minimal important KV pairs (1.56%) accurately during decoding.
Outlier chunks, which may contain dense or critical information and are difficult to approximate,
are retained to ensure accuracy. Given their relatively small number (0.2–0.3%), storing them on the
GPU is feasible without affecting memory capacity. Furthermore, as shown in Figure 3c, considering
the temporal locality of the KV cache—meaning that the KV pairs selected by the queries of two
adjacent decoding steps have a high repetition rate, a cache policy (Zhang et al., 2024a) can be
leveraged to further reduce the latency overhead by 60% during decoding with optimized kernels.

4 SHADOWKV

In this section, we introduce SHADOWKV, a high-throughput long-context LLM inference system.
We first elaborate our algorithm in Section 4.1, covering both the pre-filling and decoding phases.
Subsequently, in Section 4.2, we discuss the concept of theoretical equivalent bandwidth to illustrate
the benefits of our approach.

4.1 ALGORITHM

The algorithm of SHADOWKV is divided into two main phases: pre-filling and decoding. The
pre-filling phase involves low-rank decomposition of the post-RoPE key cache, offloading the value
cache, and constructing landmarks to facilitate subsequent high-throughput decoding. The decoding
phase includes accurate KV selection and efficient sparse KV cache reconstruction.

Pre-filling. During the pre-filling phase, we optimize GPU memory usage by performing low-
rank compression on the key cache of each layer and offloading values to the CPU. Specifically, as
demonstrated in Algorithm 1 and Figure 4, we apply SVD on the pre-RoPE key cache and store only

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2: SHADOWKV Decoding

Input: A, B, L, V CPU, Q ∈ Rb×hq×sq×d, Koutlier,
V outlier, K,V ∈ Rb×hkv×sq×d, number of chunks nc,
number of selected chunk budget k
▷ Compute chunk attention score
P ∈ Rb×hq×sq×nc ← MatMul(Q,L⊤)

S ∈ Rb×hq×sq×nc ← Softmax(P /
√
d)

S1 ∈ Rb×hq×nc ← sum(S, dim = −2)
S2 ∈ Rb×hkv×nc ← maxkv group(S1)
▷ Select top-k chunks for each KV head
I ∈ Rb×hkv×k ← ArgTopK(S2, k)
▷ Gather values from CPU
V sparse ← Gather(V CPU, I)
V ← [V outlier;V sparse;V]
▷ Recover keys from low-rank projection
Ksparse ← MatMul(Gather(A, I),B)
K ← [Koutlier;RoPE(Ksparse);K]

Low-Rank Pre-RoPE
Key Cache

Query

...

#125

#531

Top-K

#1

#2

#n

Landmarks

#125

#531 Hit
#125 Miss

Reconstruction
+ RoPE

Value
Cache

Fetch

Selected
Chunk IDs

Current KV Cache

Figure 5: SHADOWKV decoding phase.

the low-rank representations for each layer. Post-RoPE key cache is segmented into chunks, with
the mean of each chunk computed as landmarks. By computing the cosine similarity within these
chunks, we identify poorly approximated tokens as outliers. This small set of outliers is gathered
and stored on the GPU as the static cache, while the remaining key cache is maintained as compact
landmarks, with the corresponding values offloaded to the CPU memory.

High-throughput Decoding. For incoming queries, we first compute the approximate attention
scores using the landmarks. As detailed in Algorithm 2, by identifying the top-k scoring chunk
indices, the corresponding values are retrieved from the CPU, and the key cache is simultaneously
reconstructed from low-rank projections, effectively concealing the construction of the key cache.
Based on the insight that the KV cache has temporal locality, we build cache-aware CUDA kernels,
reducing computation and value fetching by 60%. As shown in Figure 5, we conduct an index scan
to detect the missed chunks and only rebuild the necessary KV pairs on-the-fly.

Based on our observations in Section 3.1, future pre-RoPE keys within a sequence reside in a shared
low-rank subspace with the context. As a result, an extension of our algorithm would be to store
generated tokens as low-rank states using the same projections obtained from pre-filling to reduce
the memory usage for future generations3. We evaluate it and include the results in Appendix A.1.

4.2 THEORETICAL EQUIVALENT BANDWIDTH

The benefit of SHADOWKV in terms of increasing throughput can be analyzed through the concept
of equivalent bandwidth. Consider each K or V vector as being M bytes in size, with a sequence
length of S, a chunk size of C, a selected chunk budget of K, O outliers, and hit rate α. During KV
selection, SHADOWKV loads M × S/C bytes using the GPU memory bandwidth BGPU. For value
cache fetching, it loads M×K×C bytes using the PCIe bandwidth BPCIe (Sheng et al., 2023). Since
value movement and key cache reconstruction can be overlapped, we do not need to count key cache
reconstruction here. Following this, SHADOWKV performs standard attention computation for the
top-k chunks and predefined outliers, requiring 2M×(K+O)×C bytes. The equivalent bandwidth
of SHADOWKV is defined as below and the GPU memory savings is detailed in Appendix A.2.

Bequivalent =
2SBGPU

S/C + 2(K +O)C + (1− α)KCBGPU/BPCIe

For example, assuming C=8, S=128K, K=256, O=48, BPCIe=31.5 GB/s, and BGPU=2 TB/s for A100,
the equivalent bandwidth of SHADOWKV is calculated as 7.2 TB/s, which is 3.6× higher than A100
memory bandwidth. This result indicates that SHADOWKV theoretically achieves a high equivalent
bandwidth to accelerate attention computation. System implementation is detailed in Appendix B.1.

3If Ψ ∈ Rd×r is the right singular matrix calculated from the SVD of pre-RoPE context keys K ∈ Rs×d,
new pre-RoPE keys K′ ∈ Rsq×d can be stored as K′Ψ and projected back up with Ψ⊤ when needed.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance of different models and different methods on RULER (Hsieh et al., 2024)
evaluated at length of 128K. SHADOWKV outperforms other methods with a 1.56% sparse budget.

Methods N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3-8B-1M 100.00 100.00 98.96 98.96 98.96 95.57 75.00 48.96 78.54 71.85 86.68
Loki 18.75 1.04 2.08 0.00 1.56 0.78 4.17 13.54 26.04 25.35 9.33
Loki (V only) 41.67 6.25 37.50 1.04 8.07 30.73 10.42 19.79 51.67 37.50 24.46
InfiniGen 100.00 98.96 84.38 53.13 63.28 54.95 65.63 48.96 81.67 50.35 70.13
InfiniGen (V only) 100.00 98.96 96.88 76.04 81.25 77.08 67.71 50.00 81.67 53.47 78.31
Quest 100.00 100.00 98.96 77.08 97.65 93.49 60.42 50.00 77.08 65.63 82.03
Quest (V only) 100.00 100.00 98.96 85.42 97.92 95.49 70.83 46.88 78.75 65.63 83.99
SHADOWKV 100.00 100.00 97.92 98.96 96.88 95.83 72.92 52.08 81.67 72.57 86.88

GLM-4-9B-1M 100.00 100.00 94.79 87.50 99.74 93.75 67.71 55.21 97.29 72.22 86.82
Loki 71.88 27.08 22.92 2.08 9.90 11.46 28.13 27.08 31.04 54.17 28.57
Loki (V only) 96.88 55.21 56.25 18.75 51.04 50.52 45.83 39.58 72.71 59.72 54.65
InfiniGen 100.00 93.75 82.29 0.00 79.43 60.16 57.29 53.13 92.71 57.29 67.60
InfiniGen (V only) 100.00 96.88 87.50 7.29 95.31 75.26 56.25 54.17 95.63 60.76 72.91
Quest 100.00 95.83 90.62 54.17 94.01 76.30 55.21 52.08 95.83 64.58 77.86
Quest (V only) 100.00 96.88 93.75 72.92 95.83 83.07 56.25 53.13 96.88 65.97 81.47
SHADOWKV 100.00 100.00 95.83 83.33 98.70 87.76 69.79 55.21 97.50 68.06 85.62

Llama-3.1-8B 100.00 100.00 98.96 91.67 98.96 95.31 82.29 47.92 68.96 71.18 85.53
Loki 68.75 32.29 32.29 20.83 42.71 28.65 41.67 33.33 24.79 29.86 35.52
Loki (V only) 95.83 36.46 57.29 62.50 77.86 70.83 69.79 39.58 35.21 37.50 58.29
InfiniGen 100.00 77.08 78.13 13.54 58.07 47.40 65.63 41.67 60.83 50.35 59.27
InfiniGen (V only) 100.00 88.54 87.50 26.04 79.43 77.08 72.92 43.75 57.08 55.21 68.76
Quest 100.00 98.96 97.92 34.38 93.49 88.54 70.83 44.79 65.63 68.40 76.29
Quest (V only) 100.00 98.96 98.96 56.25 95.83 90.63 76.04 46.88 66.25 67.36 79.72
SHADOWKV 100.00 100.00 100.00 83.33 97.92 92.19 81.25 48.96 67.08 64.93 83.57

5 EMPIRICAL EVALUATION

In this section, we showcase the effectiveness and efficiency of SHADOWKV. Specifically,

• In Section 5.1, we show that SHADOWKV can reduce the GPU memory footprint of the KV cache
by over 6× without accuracy degradation on a wide range of models and evaluation benchmarks.

• In Section 5.2, we demonstrate SHADOWKV can support up to 6× larger batch sizes and increase
the inference throughput by up to 3.04× without compromising model quality.

• In Section 5.3, we present extensive ablation studies that validate the effectiveness of each com-
ponent of SHADOWKV in optimizing GPU memory usage and enhancing performance.

5.1 ACCURACY EVALUATION

We demonstrate that SHADOWKV can reduce the GPU memory usage of the KV cache by 6×while
maintaining accuracy on a range of long-context tasks with a minimal sparse KV cache budget.

Setup. We choose four widely used long-context models for our evaluation: Llama-3-8B-1M
(Gradient., 2024), GLM-4-9B-1M (GLM et al., 2024), Llama-3.1-8B (Meta AI, 2024), and Yi-9B-
200K (AI et al., 2024). We evaluate our approach on three challenging long-context benchmarks:
RULER (Hsieh et al., 2024), LongBench (Bai et al., 2023), and Needle In A Haystack (Kamradt,
2023), covering QA, multi-hop, reasoning, summarization, code completion4. We set the chunk size
to 8, the rank to 160, and the number of outliers to 48 for SHADOWKV.

Baselines. We include three dynamic sparse attention methods as baselines: Quest (Tang et al.,
2024b), Loki (Singhania et al., 2024), and InfiniGen (Lee et al., 2024b). For all methods, we retain
exact pre-filling and perform dynamic sparse attention during decoding, where the computation cost
is set to 1/16 of full attention for selecting sparse KV pairs. We include two variants for each base-
line: one where all the KV cache is offloaded, and another where only the value cache is offloaded.

4We include results for Yi-9B-200K and other models (e.g., Llama-3-70B-1M) in Appendix A. Needle In
A Haystack is also tested on Phi-3-Mini-128K (Abdin et al., 2024) and Qwen2-7B-128K (Yang et al., 2024a).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance of various methods on different models with LongBench (Bai et al., 2023)
samples exceeding 4K tokens. SHADOWKV outperforms other methods and maintains the accuracy.

Methods NarrQA MultiFQA HotpotQA MuSiQue DuRead GovRep SAMSum PassRetr LCC Avg.

Llama-3-8B-1M 18.98 41.84 36.79 21.47 31.93 34.18 35.96 81.50 56.07 39.86
Loki 2.26 10.19 5.48 3.16 12.17 28.97 7.84 40.52 31.44 15.78
Loki (V only) 3.20 21.01 12.41 3.86 17.07 31.24 16.23 52.57 38.10 21.74
InfiniGen 14.39 31.46 33.63 17.94 26.65 27.38 21.97 74.30 38.58 31.81
InfiniGen (V only) 17.83 36.08 35.28 19.64 28.39 29.28 28.12 74.85 45.53 35.00
Quest 20.13 36.63 35.00 18.14 24.55 27.11 35.63 79.00 53.64 36.65
Quest (V only) 17.26 39.51 36.78 18.71 26.41 29.49 35.80 79.50 60.05 38.17
SHADOWKV 17.17 39.73 38.29 21.08 31.77 31.62 35.87 80.00 63.93 39.94

GLM-4-9B-1M 25.44 51.09 58.67 39.61 32.04 29.97 40.31 99.00 58.02 48.24
Loki 5.82 30.60 22.73 9.20 30.09 30.35 22.70 98.92 40.77 32.35
Loki (V only) 10.89 44.97 45.44 23.51 32.07 30.56 35.34 99.50 50.27 41.39
InfiniGen 23.67 46.31 55.69 33.91 27.49 25.44 33.48 91.83 36.96 41.64
InfiniGen (V only) 25.63 48.44 57.23 36.94 29.77 26.67 36.64 93.58 46.69 44.62
Quest 23.81 44.53 56.41 35.49 23.54 21.73 37.39 87.00 43.80 41.52
Quest (V only) 26.00 46.32 57.54 36.42 24.58 24.52 37.71 93.50 46.52 43.68
SHADOWKV 26.50 51.31 59.09 38.87 32.92 28.54 38.70 96.50 58.55 47.89

Llama-3.1-8B 31.56 55.10 57.65 29.46 35.26 34.45 29.84 100.00 67.31 48.96
Loki 2.31 18.89 10.64 5.47 19.30 31.16 15.91 94.88 44.60 27.02
Loki (V only) 3.93 38.59 22.85 12.96 27.43 32.22 26.43 98.25 56.11 35.42
InfiniGen 27.23 52.72 53.89 26.81 27.72 29.61 24.42 98.93 56.89 44.25
InfiniGen (V only) 29.73 53.47 55.11 28.72 28.55 31.42 26.76 99.17 62.66 46.18
Quest 29.70 49.04 53.96 27.18 27.16 30.43 29.85 98.50 57.35 44.80
Quest (V only) 30.02 53.97 56.39 27.06 29.06 31.65 30.23 99.00 63.89 46.81
SHADOWKV 30.93 55.20 57.32 29.13 31.85 32.79 30.40 99.50 66.03 48.13

The former has similar latency to SHADOWKV but a smaller sparse budget since SHADOWKV only
needs to fetch the value cache from the CPU. The latter aligns with the same sparse KV cache budget
but significantly increases GPU memory usage. The latter one is marked as “V only” in the table.

RULER. As shown in Table 1, SHADOWKV demonstrates excellent performance on 128K con-
texts. With a fixed sparse budget of 1.56%, other methods experience performance degradation. In
contrast, SHADOWKV is more robust and even outperforms original full attention on certain tasks,
such as variable tracking. For complex tasks like multi-document QA or multi-key needle retrieval,
other methods suffer from significant performance degradation while SHADOWKV does not.

16
K

87
K

15
7K

22
7K

29
7K

36
8K

43
8K

50
8K

57
8K

64
9K

71
9K

78
9K

85
9K

93
0K 1M

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Llama-3-8B-Instruct-1M w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Needle In A Haystack.

LongBench. On LongBench, we evaluate our method with a
range of realistic scenarios, including single-/multi-document
question-answering, document summarization, code comple-
tion, information retrieval, etc. We only test on samples longer
than 4K and set the sparse KV cache budget to 256 for this
benchmark since it has shorter inputs compared to RULER.
As shown in Table 2, SHADOWKV outperforms other meth-
ods consistently and maintains the performance.

Needle In A Haystack. On the Needle In A Haystack dataset, as shown in Figure 6, SHADOWKV
shows the ability to process information at different positions across various context windows, rang-
ing from 16K to 1M tokens. More experiments on a range of models can be found in Appendix B.3.

Integrate with Efficient Pre-filling Methods. We also combined SHADOWKV with a state-of-
the-art efficient pre-filling method MInference (Jiang et al., 2024). As shown in Table 3, following
the setting of MInference, we tested it on RULER with contexts scaling from 8K to 256K. This
demonstrates that our method is compatible with pre-filling acceleration techniques. For some cer-
tain context length settings, we even see a slight performance improvement.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance of different methods on RULER (Hsieh et al., 2024) using MInference (Jiang
et al., 2024) in the pre-filling stage. SHADOWKV is compatible with MInference.

Methods 8K 16K 32K 64K 128K 256K Avg.

Llama-3-8B-1M w/ MInference 89.92 88.02 82.81 78.45 78.12 74.57 81.98
SHADOWKV w/ MInference 90.47 88.12 83.28 77.71 78.32 74.31 82.04

#1 #2 #3 #4 #5 #6 #7 #8
Conversation Turn

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
on

 M
ul

ti-
N

IA
H

Full Attention
SnapKV
StreamingLLM
ShadowKV (Ours)

Figure 7: Multi-turn NIAH.

Multi-turn Conversation Capability. To simulate multi-turn con-
versations, we challenged SHADOWKV with a multi-turn needle
retrieval task (Multi-turn NIAH). We also test two eviction-based
methods in Figure 7, including SnapKV (Li et al., 2024) and
StreamingLLM (Xiao et al., 2023b). The performance of SnapKV
drops significantly from the second round due to the required con-
text information being different from the first round. Since SnapKV
inevitably evicted tokens based on the first-turn conversation, it can-
not successfully retrieve related information for future queries. In
contrast, SHADOWKV can maintain accuracy in the multi-turn con-
versation setting.

5.2 EFFICIENCY EVALUATION

To demonstrate the efficiency of SHADOWKV, we deploy it into real-world large batch serving
scenarios. By measuring the throughput during decoding across different models on A100, we show
that SHADOWKV can support up to 6× larger batch sizes and boost throughput by up to 3.04×. The
detailed latency breakdown can be found in Appendix A.6.

Baselines. The baseline selects the largest batch size that can fit entirely on the GPU with full
attention. We also include results for the same batch size of SHADOWKV and the infinite batch size,
assuming infinite GPU memory capabilities5. We set the sparse budget to 1.56% for SHADOWKV.

Results. As shown in Table 4, SHADOWKV demonstrates significant throughput improvements
for various models on an A100, surpassing even those with infinite GPU memory. Notably, SHAD-
OWKV supports batch sizes up to 6× larger and enhances throughput by up to 3.04× compared to
full attention, even surpassing infinite batch size assuming infinite GPU memory. While the gains
for GLM-4-9B-1M and Yi-9B-200K are slightly lower, the improvements still reach up to 2.56×
and 2.66× respectively, highlighting SHADOWKV’s adaptability even with fewer KV heads.

Table 4: Generation throughput (tokens/s) on an A100. The gray text in brackets denotes batch size.

Model Context Full Attention SHADOWKV Gain Full Attention (Inf)

Llama-3-8B-1M 60K 160.62 (8) 455.14 (48) 2.83× 168.72 (48) / 273.07 (Inf)
(8 KV heads) 122K 80.77 (4) 239.51 (24) 2.97× 83.05 (24) / 134.30 (Inf)

244K 40.37 (2) 119.01 (12) 2.95× 52.00 (12) / 67.15 (Inf)

Llama-3.1-8B 60K 160.93 (8) 472.77 (48) 2.94× 168.72 (48) / 273.07 (Inf)
(8 KV heads) 122K 80.78 (4) 245.90 (24) 3.04× 83.05 (24) / 134.30 (Inf)

GLM-4-9B-1M 60K 241.05 (12) 615.89 (50) 2.56× 266.24 (50) / 436.91 (Inf)
(4 KV heads) 122K 122.67 (6) 293.40 (25) 2.39× 158.83 (25) / 214.87 (Inf)

244K 61.13 (3) 136.51 (12) 2.23× 78.84 (12) / 107.44 (Inf)

Yi-9B-200K 60K 204.81 (10) 544.36 (42) 2.66× 271.21 (42) / 364.09 (Inf)
(4 KV heads) 122K 101.44 (5) 260.03 (21) 2.56× 133.53 (21) / 179.06 (Inf)

244K 46.74 (2) 118.55 (10) 2.54× 65.79 (10) / 89.53 (Inf)

5For the equivalent SHADOWKV batch size, we evaluate a single Transformer block with FlashAttention
and then project the number to the entire model. For the infinite batch size, we leverage A100’s theoretical
memory bandwidth (2 TB/s) for attention computations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Multi-keys NIAH, Llama-3-8B-1M

Full (128K)
Quest
ShadowKV

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Multi-keys NIAH, GLM-4-9B-1M

Full (128K)
Quest
ShadowKV

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

QA, Llama-3-8B-1M

Full (128K)
Quest
ShadowKV

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
cc

ur
ac

y

QA, GLM-4-9B-1M

Full (128K)
Quest
ShadowKV

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

A
cc

ur
ac

y

Variable Tracking, Llama-3-8B-1M

Full (128K)
Quest
ShadowKV

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

A
cc

ur
ac

y

Variable Tracking, GLM-4-9B-1M

Full (128K)
Quest
ShadowKV

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

A
cc

ur
ac

y

Frequent Words Extraction, Llama-3-8B-1M

Full (128K)
Quest
ShadowKV

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.62

0.64

0.66

0.68

0.70

0.72

A
cc

ur
ac

y

Frequent Words Extraction, GLM-4-9B-1M

Full (128K)
Quest
ShadowKV

Figure 8: Comparison results between the models with full cache, our SHADOWKV, and Quest.

1 2 4 8 16 32 64
Chunk Size

0

2

4

6

8

10

B
at

ch
 S

iz
e

S
ca

lin
g

Fa
ct

or

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y
on

 R
U

LE
R

/N
IA

H
-M

K
2

(a)

1 2 4 8 16 32 64
Chunk Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
hu

nk
 H

it
R

at
e

0

2

4

6

8

10

B
at

ch
 S

iz
e

S
ca

lin
g

Fa
ct

or
(b)

0 200 400 600 800 1000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

RULER/NIAH-S
RULER/NIAH-MK
RULER/NIAH-MQ
RULER/FWE
RULER/QA

(c)

Figure 9: (a) Impact of chunk size on batch size and accuracy. (b) Minimal effect of chunk size on
hit rate. (c) Accuracy trends across different ranks with Llama-3-8B-1M on different tasks.

5.3 ABLATION RESULTS

We present extensive ablation studies of SHADOWKV, focusing on three key points: (1) sparse
KV cache budget variations, (2) chunk size selections, and (3) pre-RoPE key cache rank choices.
Additional ablations, including precision sensitivity analysis and the effectiveness of outliers, are
provided in Appendix A.

Sparse KV Cache Budget. We examine SHADOWKV’s performance across various tasks with
different sparse budgets, as illustrated in Figure 8. SHADOWKV consistently surpasses Quest under
the same sparse budgets and achieves higher throughput. On most tasks, it maintains accuracy with
just a 1.56% sparse budget compared to full attention and even improves slightly on some tasks.

Chunk Size. As shown in Figure 9a, increasing the chunk size allows for larger batch sizes. How-
ever, accuracy declines when the chunk size exceeds eight. Meanwhile, the chunk size choice has
minimal impact on the chunk hit rate, which remains around 60%, as illustrated in Figure 9b.

Rank of Pre-RoPE Keys. We assess SHADOWKV’s performance across various tasks using dif-
ferent ranks for pre-RoPE keys. As illustrated in Figure 9c, accuracy increases with the rank up
to approximately 160, after which it stabilizes near full-rank performance. Interestingly, the trends
vary across tasks, and in some cases, low-rank approximations achieve better performance.

6 CONCLUSION

We present SHADOWKV, a high-throughput inference system for long-context LLM inference.
SHADOWKV optimizes GPU memory usage through the low-rank key cache and offloaded value
cache, allowing for larger batch sizes. It reduces decoding overhead by accurate sparse attention,
boosting throughput while maintaining accuracy. Our empirical experiments demonstrate SHAD-
OWKV can support up to 6× larger batch sizes and enhance throughput by up to 3.04× on an A100
across various long-context models, including Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M, and
Yi-9B-200K. SHADOWKV holds great promise for improving long-context LLM inference.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

01. AI, :, Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng
Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue,
Senbin Yang, Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren, Xinyao
Niu, Pengcheng Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu, Zhiyuan Liu,
and Zonghong Dai. Yi: Open foundation models by 01.ai, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, and Kai-Chiang Wu. Palu: Compressing kv-cache with low-rank
projection. arXiv preprint arXiv:2407.21118, 2024.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

Harry Dong, Beidi Chen, and Yuejie Chi. Prompt-prompted adaptive structured pruning for efficient
llm generation. In First Conference on Language Modeling, 2024a.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get more
with less: Synthesizing recurrence with kv cache compression for efficient llm inference. arXiv
preprint arXiv:2402.09398, 2024b.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,
Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,
Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,
Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan
Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language
models from glm-130b to glm-4 all tools, 2024.

Gradient. Llama-3-8b-instruct gradient 4194k (v0.1), 2024. URL https://huggingface.
co/gradientai/Llama-3-8B-Instruct-Gradient-1048k.

11

https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k
https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiaao He and Jidong Zhai. Fastdecode: High-throughput gpu-efficient llm serving using heteroge-
neous pipelines. arXiv preprint arXiv:2403.11421, 2024.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Hanyu Dong,
and Yu Wang. Flashdecoding++: Faster large language model inference on gpus. arXiv preprint
arXiv:2311.01282, 2023.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. arXiv preprint arXiv:2407.02490, 2024.

Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y Fu, Christopher Ré, and Azalia
Mirhoseini. Hydragen: High-throughput llm inference with shared prefixes. arXiv preprint
arXiv:2402.05099, 2024.

Greg Kamradt. Needle in a haystack - pressure testing llms. 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. InfiniGen: Efficient generative infer-
ence of large language models with dynamic kv cache management. In 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 24), 2024a.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative
inference of large language models with dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pp. 155–172, 2024b.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance inference
efficiency of large language models. arXiv preprint arXiv:2310.06201, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024.

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and
language with ringattention. arXiv preprint arXiv:2402.08268, 2024a.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024b.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024c.

Meta AI. Introducing Llama 3.1, 2024. URL https://ai.meta.com/blog/
meta-llama-3-1/. Accessed: 2024-08-21.

Microsoft. Microsoft bingchat, 2024. URL https://www.bing.com/chat.

12

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://www.bing.com/chat

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

QwenTeam. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient llm inference. arXiv preprint arXiv:2312.04985, 2023.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-rank
keys for efficient sparse attention. arXiv preprint arXiv:2406.02542, 2024.

Zezheng Song, Jiaxin Yuan, and Haizhao Yang. Fmint: Bridging human designed and data pre-
trained models for differential equation foundation model. arXiv preprint arXiv:2404.14688,
2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Yiwu Yao, and Gongyi Wang.
Razorattention: Efficient kv cache compression through retrieval heads. arXiv preprint
arXiv:2407.15891, 2024a.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024b.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam, Honghao Lu, Ethan Yan, Jack Kosa-
ian, Mark Hoemmen, Haicheng Wu, Andrew Kerr, Matt Nicely, Duane Merrill, Dustyn Blasig,
Fengqi Qiao, Piotr Majcher, Paul Springer, Markus Hohnerbach, Jin Wang, and Manish Gupta.
CUTLASS, January 2023. URL https://github.com/NVIDIA/cutlass.

Haixin Wang, Xinlong Yang, Jianlong Chang, Dian Jin, Jinan Sun, Shikun Zhang, Xiao Luo, and
Qi Tian. Parameter-efficient tuning of large-scale multimodal foundation model. Advances in
Neural Information Processing Systems, 36, 2024a.

Minzheng Wang, Longze Chen, Cheng Fu, Shengyi Liao, Xinghua Zhang, Bingli Wu, Haiyang Yu,
Nan Xu, Lei Zhang, Run Luo, et al. Leave no document behind: Benchmarking long-context llms
with extended multi-doc qa. arXiv preprint arXiv:2406.17419, 2024b.

T Wolf. Huggingface’s transformers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023a.

13

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://github.com/NVIDIA/cutlass

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2023b.

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming
Xiong, and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. arXiv preprint
arXiv:2407.21018, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024a.

June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable kv cache compression via
importance-aware mixed precision quantization. arXiv preprint arXiv:2402.18096, 2024b.

Zihao Ye, Ruihang Lai, Bo-Ru Lu, Lin Chien-Yu, Size Zheng, Lequn Chen, Tianqi Chen, and
Luis Ceze. Cascade inference: Memory bandwidth efficient shared prefix batch decoding,
2024. URL https://flashinfer.ai/2024/02/02/cascade-inference.html.
Accessed: 2024-09-25.

Yixiao Yuan, Yangchen Huang, Yu Ma, Xinjin Li, Zhenglin Li, Yiming Shi, and Huapeng Zhou.
Rhyme-aware chinese lyric generator based on gpt. arXiv preprint arXiv:2408.10130, 2024.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant:
Quantizing weight and key/value cache for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen,
and Bin Cui. Pqcache: Product quantization-based kvcache for long context llm inference. arXiv
preprint arXiv:2407.12820, 2024a.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. ∞bench: Extending long context
evaluation beyond 100k tokens, 2024b.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024c.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024d.

14

https://flashinfer.ai/2024/02/02/cascade-inference.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL EXPERIMENT RESULTS

In this section, we present additional experiments experiments not covered in the main text, includ-
ing the handling of newly generated tokens (as discussed in Section 4.1), scalability analysis for
larger models and longer sequences (mentioned in Section 5.1), latency breakdown (mentioned in
Section 5.2), additional ablation studies (referenced in Section 5.3), and etc.

A.1 HANDLING OF NEWLY GENERATED TOKENS

To address the handling of newly generated tokens, we project these tokens’ key cache into a low-
rank space using the same projections applied during the prefilling phase. This approach preserves
the benefits of reduced GPU memory usage, particularly for long output sequences.

As shown in Table 5 and Table 6, we refer to this extension as SHADOWKV +. Our evaluation across
various models demonstrates that SHADOWKV + effectively maintains accuracy while optimizing
memory usage.

Table 5: Performance of SHADOWKV and SHADOWKV + across different models on RULER
(Hsieh et al., 2024) evaluated at length of 128K.

Methods N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3-8B-1M 100.00 100.00 98.96 98.96 98.96 95.57 75.00 48.96 78.54 71.85 86.68
SHADOWKV 100.00 100.00 97.92 98.96 96.88 95.83 72.92 52.08 81.67 72.57 86.88
SHADOWKV + 100.00 100.00 98.96 100.00 95.83 93.49 71.88 50.00 80.21 71.88 86.23

GLM-4-9B-1M 100.00 100.00 94.79 87.50 99.74 93.75 67.71 55.21 97.29 72.22 86.82
SHADOWKV 100.00 100.00 95.83 83.33 98.70 87.76 69.79 55.21 97.50 68.06 85.62
SHADOWKV + 100.00 100.00 95.83 85.42 98.17 85.16 69.79 56.25 97.92 67.71 85.63

Llama-3.1-8B 100.00 100.00 98.96 91.67 98.96 95.31 82.29 47.92 68.96 71.18 85.53
SHADOWKV 100.00 100.00 100.00 83.33 97.92 92.19 81.25 48.96 67.08 64.93 83.57
SHADOWKV + 100.00 100.00 100.00 84.38 96.88 91.67 81.25 52.08 65.63 62.85 83.47

Yi-9B-200K 100.00 100.00 86.46 62.50 64.58 32.55 44.79 39.58 36.87 89.93 65.73
SHADOWKV 100.00 100.00 82.29 67.71 63.28 31.51 43.75 38.54 56.04 72.22 65.53
SHADOWKV + 100.00 100.00 81.25 67.71 61.72 31.51 46.88 38.54 53.54 72.92 65.41

Table 6: Performance of SHADOWKV and SHADOWKV + on different models with LongBench
(Bai et al., 2023) samples exceeding 4K tokens.

Methods NarratQA MultiFQA HotpotQA MuSiQue DuRead GovRep SAMSum PassRetr LCC Avg.

Llama-3-8B-1M 18.98 41.84 36.79 21.47 31.93 34.18 35.96 81.50 56.07 39.86
SHADOWKV 17.17 39.73 38.29 21.08 31.77 31.62 35.87 80.00 63.93 39.94
SHADOWKV + 20.42 41.16 37.22 21.03 31.77 31.98 35.80 80.00 63.89 40.36

GLM-4-9B-1M 25.44 51.09 58.67 39.61 32.04 29.97 40.31 99.00 58.02 48.24
SHADOWKV 26.50 51.31 59.09 38.87 32.92 28.54 38.70 96.50 58.55 47.89
SHADOWKV + 27.59 51.31 59.17 38.34 33.55 31.25 39.46 96.50 55.86 48.11

Llama-3.1-8B 31.56 55.10 57.65 29.46 35.26 34.45 29.84 100.00 67.31 48.96
SHADOWKV 30.93 55.20 57.32 29.13 31.85 32.79 30.40 99.50 66.03 48.13
SHADOWKV + 32.25 54.29 57.75 28.37 31.07 32.89 28.73 98.75 67.59 47.97

Yi-9B-200K 13.88 30.02 52.46 28.20 22.29 30.25 19.08 67.00 73.50 37.41
SHADOWKV 12.44 30.82 52.43 27.73 20.79 29.83 20.73 64.00 72.89 36.85
SHADOWKV + 14.08 30.94 51.16 27.00 19.50 29.34 21.16 66.00 73.47 36.96

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 QUANTITATIVE ANALYSIS OF GPU MEMORY SAVINGS

The GPU memory savings provided by SHADOWKV can be quantitatively analyzed as follows. Let
each K or V vector have a size of M bytes, with a sequence length S, a chunk size C, a selected
chunk budget K, O outliers, and a pre-RoPE key cache rank r. The GPU memory savings of
SHADOWKV can then be expressed as:

Memory Savings =
2SM

SM/C + 2(K +O)C + Sr + rM

For example, assuming M = 1024, C = 8, S = 128K,K = 256, O = 48, r = 160, the memory
savings of SHADOWKV is calculated as 7.08×. This result demonstrates that SHADOWKV can
theoretically reduce the KV cache memory footprint on the GPU by 7.08× for longer sequences and
larger batch sizes.

A.3 ACCURACY RESULTS FOR YI-9B-200K

We present accuracy results for Yi-9B-200K (AI et al., 2024) on RULER (Hsieh et al., 2024) and
LongBench (Bai et al., 2023), highlighting SHADOWKV’s superior performance across diverse tasks
compared to other methods.

Table 7: Performance of Yi-9B-200K with different methods on RULER (Hsieh et al., 2024) evalu-
ated at length of 128K. SHADOWKV outperforms other methods with a 1.56% sparse budget.

Methods N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Yi-9B-200K 100.00 100.00 86.46 62.50 64.58 32.55 44.79 39.58 36.87 89.93 65.73
Loki 34.38 2.08 2.08 0.00 0.00 0.52 22.92 21.88 0.00 25.00 10.89
Loki (V only) 59.38 11.46 18.75 5.21 4.43 2.08 22.92 31.25 0.00 35.07 19.06
InfiniGen 100.00 94.79 77.08 1.04 40.10 20.57 37.50 34.38 41.46 46.18 49.31
InfiniGen (V only) 100.00 98.96 78.13 2.08 58.33 24.48 40.63 35.42 52.92 55.90 54.69
Quest 100.00 98.96 79.17 26.04 56.51 31.77 32.29 31.25 51.04 71.88 57.89
Quest (V only) 100.00 100.00 80.21 45.83 59.37 31.90 36.45 34.37 53.54 71.88 61.36
SHADOWKV 100.00 100.00 82.29 67.71 63.28 31.51 43.75 38.54 56.04 72.22 65.53

Table 8: Performance of Yi-9B-200K with LongBench (Bai et al., 2023) samples exceeding 4K
tokens. SHADOWKV outperforms other methods and maintains the accuracy.

Methods NarrQA MultiFQA HotpotQA MuSiQue DuRead GovRep SAMSum PassRetr LCC Avg.

Yi-9B-200K 13.88 30.02 52.46 28.20 22.29 30.25 19.08 67.00 73.50 37.41
Loki 1.63 2.73 16.21 4.87 4.75 2.13 4.95 0.00 38.72 8.44
Loki (V only) 1.96 10.39 21.31 7.36 6.78 9.15 10.02 4.00 58.75 14.41
InfiniGen 10.01 23.61 50.47 25.91 15.11 27.96 18.97 30.00 56.46 28.72
InfiniGen (V only) 11.31 26.46 51.13 26.77 16.09 28.67 19.33 34.00 62.07 30.65
Quest 10.57 25.83 46.06 23.04 17.09 17.11 20.59 50.50 67.70 30.94
Quest (V only) 14.56 25.73 48.73 24.73 18.44 20.83 20.08 57.50 71.13 33.53
SHADOWKV 12.44 30.82 52.43 27.73 20.79 29.83 20.73 64.00 72.89 36.85

A.4 PRECISION SENSITIVITY

In the main experiments, we used BF16 for both model weights and KV cache. To further investi-
gate the impact of precision on SHADOWKV’s performance, we conducted additional experiments
using FP8 precision (torch.float8 e5m2). These tests aim to determine whether SHADOWKV
can retain its accuracy at this lower precision, addressing concerns about precision sensitivity, par-
ticularly in SVD computations.

As detailed in Table 9 and Table 10, SHADOWKV and baseline methods were evaluated using FP8.
Results show that SHADOWKV maintains accuracy and achieves consistently high performance
even with FP8 precision. This robustness, despite FP8’s reduced numerical range, confirms that
SHADOWKV can continue to deliver efficiency gains without compromising accuracy.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 9: Performance comparison of SHADOWKV and baseline methods on the RULER (Hsieh
et al., 2024) using FP8 precision, evaluated at a sequence length of 128K.

Methods N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3-8B-1M 100.00 100.00 98.96 95.83 97.40 95.57 63.54 48.96 75.83 73.26 84.94
Loki 5.21 1.04 0.00 0.00 0.78 0.26 5.21 13.54 28.33 28.82 8.32
Loki (V only) 36.46 9.38 31.25 0.00 6.25 21.09 11.46 15.63 57.08 35.76 22.44
Quest 100.00 98.96 98.96 71.88 96.61 93.49 63.54 45.83 78.13 67.01 81.44
Quest (V only) 100.00 100.00 98.96 85.42 97.40 93.49 70.83 48.96 78.13 65.63 83.88
SHADOWKV 100.00 100.00 97.92 94.79 95.31 93.49 75.00 48.96 80.42 73.61 85.95

Table 10: Evaluation of SHADOWKV and baseline methods on LongBench (Bai et al., 2023) with
sequence lengths exceeding 4K tokens, using FP8 precision.

Methods NarratQA MultiFQA HotpotQA MuSiQue DuRead GovRep SAMSum PassRetr LCC Avg.

Llama-3-8B-1M 18.69 41.21 35.76 21.59 31.81 33.77 35.29 80.50 56.77 39.49
Loki 2.21 11.12 5.70 1.84 15.42 28.59 11.41 41.91 33.99 16.91
Loki (V only) 2.68 22.33 12.69 3.35 21.43 30.57 16.32 47.68 36.64 21.52
Quest 19.41 38.92 34.02 19.64 23.13 26.40 28.04 78.50 49.81 35.32
Quest (V only) 16.19 36.73 36.64 19.59 25.57 29.46 27.14 79.50 60.05 36.76
SHADOWKV 18.29 39.39 36.06 21.04 30.47 31.87 35.56 78.50 62.11 39.25

A.5 SCALABILITY ANALYSIS FOR LARGER MODELS AND LONGER SEQUENCES
16

K
87

K
15

7K
22

7K
29

7K
36

8K
43

8K
50

8K
57

8K
64

9K
71

9K
78

9K
85

9K
93

0K 1M

Context Length

10
20
30
40
50
60
70
80
90

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Llama-3-70B-Instruct-1M w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10: Needle In A Haystack.

To demonstrate the scalability of SHADOWKV, we
present experiments with Llama-3-8B-1M on 1M con-
texts and Llama-3-70B-1M on 512K contexts, using
the RULER benchmark (Hsieh et al., 2024). Addition-
ally, we evaluate Llama-3-70B-1M on the Needle In A
Haystack dataset, testing context lengths ranging from
16K to 1M tokens.

As shown in Figure 10 and Table 11, SHADOWKV
maintains robust performance across increasing context
lengths and model sizes, demonstrating its scalability
in handling large-scale inputs. This scalability allows SHADOWKV to process extensive contexts
with high accuracy, making it a valuable solution for real-world applications requiring extensive
sequences.

Table 11: Performance of different methods on RULER (Hsieh et al., 2024) evaluated at length of
1M. The Llama-3-8B-1M is evaluated on 1M contexts while the Llama-3-70B-1M is evaluated on
512K contexts.

Methods N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3-70B-1M 100.00 82.29 90.63 54.17 85.16 96.61 69.79 35.42 68.75 69.44 75.23
Loki 100.00 1.04 0.00 0.00 0.00 0.00 13.54 11.46 34.30 22.92 18.33
Loki (V only) 100.00 15.63 26.04 0.00 0.00 0.00 25.00 19.79 40.00 31.94 25.84
Quest 100.00 76.04 78.13 35.42 85.47 92.19 53.21 34.38 38.33 58.33 65.15
Quest (V only) 100.00 77.08 79.17 36.49 86.19 95.31 54.17 36.58 47.70 58.68 67.14
SHADOWKV 100.00 82.29 88.54 53.04 88.02 94.79 67.71 37.50 68.54 68.25 74.87

Llama-3-8B-1M 96.88 100.00 96.88 69.79 91.15 85.68 64.58 42.71 25.00 56.25 72.89
Loki 9.38 1.04 10.42 0.00 2.60 4.43 38.54 11.46 1.67 0.69 8.02
Loki (V only) 68.75 29.17 60.42 1.04 26.56 43.23 59.38 15.63 6.46 0.69 31.13
Quest 94.79 92.71 80.21 4.17 76.30 69.27 57.29 28.13 25.67 30.56 55.91
Quest (V only) 94.79 93.75 81.25 4.17 79.69 69.27 62.50 31.25 26.00 32.99 57.57
SHADOWKV 96.88 100.00 96.88 65.63 89.38 83.16 69.79 42.71 26.04 59.38 72.98

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.6 LATENCY BREAKDOWN

We present a detailed latency breakdown in Table 12 and Table 13 to illustrate the efficiency of each
operation under various context lengths for both the prefilling and decoding stages.

Scalability for Longer Sequences. As shown in Table 12, the overhead of SVD, reduce, cosine
similarity, topK, and gather computing is very low and tends to decrease as the sequence scales,
proving that SHADOWKV’s scalability to longer sequences.

Table 12: Latency breakdown (ms) of a Transformer block of Llama-3-8B-1M during prefilling.

Context Attention FFN SVD Reduce CosineSimilarity TopK Gather Cost

64K 186.23 96.47 17.19 0.10 1.41 0.08 0.01 6.65%
128K 721.13 193.32 26.62 0.20 2.77 0.14 0.02 3.25%
256K 2880.21 392.77 50.56 0.42 6.11 0.11 0.03 1.75%
512K 11720.30 789.23 108.38 0.84 12.19 0.15 0.06 0.97%

Overlapping Operations for Latency Reduction. In Table 13, we demonstrate how overlapping
the recomputation of the key cache with value cache fetching from the CPU significantly reduces de-
coding latency. This concurrent processing approach ensures that SHADOWKV minimizes overhead
when handling long-context models.

Table 13: Latency breakdown (ms) of a Transformer block of Llama-3-8B-1M during decoding.

Context GEMM+
Softmax Max TopK

Recompute K
(Overlapped) Fetch V Attention FFN QKV

48×64K 0.56 0.07 0.14 1.25 1.84 0.23 0.33 0.05
24×128K 0.58 0.07 0.15 1.36 1.66 0.21 0.29 0.05
12×256K 0.65 0.07 0.16 1.49 1.75 0.19 0.25 0.05
6×512K 0.71 0.07 0.17 1.51 1.69 0.18 0.23 0.05

A.7 EFFICIENCY COMPARISON WITH QUEST

We present an efficiency comparison with Quest, particularly under long contexts or high batch
sizes where the GPU memory alone cannot accommodate the KV cache. In such cases, both Full
Attention and Quest must offload the KV cache to the CPU. As shown in Table 14, SHADOWKV
significantly outperforms both Full Attention and Quest under the same sparse budget.

The efficiency advantage of SHADOWKV over Quest is due to two key factors: (1) SHADOWKV
only fetches the value cache from the CPU, rather than the entire KV pair, minimizing data transfer
and reducing latency, and (2) SHADOWKV integrates a cache mechanism that leverages the temporal
locality of the KV cache.

Table 14: Efficiency comparsion with Quest.

Context Full Attention Full Attention (CPU) Quest Quest (CPU) SHADOWKV

3×1M OOM 0.21 tokens/s OOM 9.34 tokens/s 45.32 tokens/s

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.8 ACCURACY CONTRIBUTION OF OUTLIER KV CACHE

We conduct experiments using different numbers of outlier chunks for Llama-3-8B-1M on the
RULER benchmark with 128K context length. As presented in Table 15, our findings indicate that
outliers play a crucial role. For instance, the first chunk, a significant outlier, has previously been
shown to act as an attention sink (Xiao et al., 2023b), underscoring its importance in maintaining
model accuracy.

The results demonstrate that increasing the number of outlier chunks has a positive impact on ac-
curacy, especially in complex tasks. This indicates that even a small number of outliers can effec-
tively capture essential information, reducing the need for full attention. Remarkably, with just 8
outliers (0.049%), SHADOWKV outperforms the Quest baseline and nearly matches the accuracy
achieved by full attention. However, when outliers are not adequately managed, the performance of
the mean-based landmarks in SHADOWKV may fall below the min-max approach used by Quest,
underscoring the importance of handling outliers properly.

Table 15: Performance across different number of outlier chunks on RULER (Hsieh et al., 2024)
evaluated at length of 128K.

Outliers N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

0 (0.000 %) 100.00 100.00 96.88 85.42 73.18 70.83 43.75 39.58 73.54 57.29 74.05
1 (0.006 %) 100.00 100.00 97.92 98.96 95.83 94.79 70.83 51.04 70.63 70.14 85.01
2 (0.012 %) 100.00 100.00 97.92 98.96 95.57 95.57 70.83 51.04 72.08 70.49 85.25
4 (0.024 %) 100.00 100.00 97.92 98.96 95.83 95.57 71.88 51.04 74.38 71.18 85.68
8 (0.049 %) 100.00 100.00 97.92 98.96 95.57 95.05 72.92 51.04 78.13 72.57 86.22

16 (0.098 %) 100.00 100.00 97.92 98.96 96.09 95.31 72.92 51.04 80.42 71.53 86.42
32 (0.195 %) 100.00 100.00 97.92 98.96 96.35 95.57 72.92 52.08 81.25 72.22 86.73
48 (0.293 %) 100.00 100.00 97.92 98.96 96.88 95.83 72.92 52.08 81.67 72.57 86.88

Quest (Ref.) 100.00 100.00 98.96 77.08 97.65 93.49 60.42 50.00 77.08 65.63 82.03
Full Attn (Ref.) 100.00 100.00 98.96 98.96 98.96 95.57 75.00 48.96 78.54 71.85 86.68

A.9 DETAILED COMPARISON WITH INFINIGEN

We provide further clarification on the key distinctions and conduct additional experiments between
SHADOWKV and InfiniGen. These experiments show that SHADOWKV significantly outperforms
InfiniGen across a wide range of downstream tasks.

Differences in SVD Usage. Infinigen performs an offline SVD to get a projection matrix, which is
applied to post-RoPE key and query states for KV selection, while SHADOWKV applies an online,
prompt-dependent SVD directly to the pre-RoPE key cache for compression, not for KV selection.

Methodological Differences. While InfiniGen uses SVD for KV selection, it requires fetching
selected, exact KV pairs from the CPU. In contrast, SHADOWKV only fetches the value cache from
the CPU, reconstructing the key cache from its low-rank storage on the GPU. By overlapping these
processes, SHADOWKV reduces data-fetch overhead and achieves improved efficiency in KV cache
management.

Accuracy Comparison. To empirically validate SHADOWKV’s advantages, we conducted accu-
racy evaluations. Results confirm SHADOWKV’s effectiveness in maintaining accuracy while op-
timizing memory usage. Although InfiniGen performs well on simpler tasks like RULER-N-S1, it
shows significant accuracy drops on more complex tasks, such as RULER-N-MK2, RULER-FWE,
LongBench-LCC, and others, where SHADOWKV maintains consistently high accuracy.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B EXPERIMENT DETAILS

In this section, our goal is to provide the details of the system implementation (mentioned in Sec-
tion 4.2), experiment settings, and additional experiments (mentioned in Section 5).

B.1 SYSTEM IMPLEMENTATION.

We implement the framework based on PyTorch (Paszke et al., 2019; Wolf, 2019) and dedicated
kernels (Thakkar et al., 2023). FlashAttention (Dao et al., 2022; Dao, 2023; Hong et al., 2023) is
used for attention computation and some efficient fused kernels in Flashinfer (Ye et al., 2024) and
vLLM (Kwon et al., 2023) are used, including layer norm. To reduce memory movement and kernel
launch overhead, we fuse some operations into CUDA kernels, including attention approximation,
key cache low-rank reconstruction, value cache fetching, cache mechanism, etc. We leverage multi-
streams to overlap the reconstruction of key cache and value cache fetching. We set the rank of
pre-RoPE key cache to 160, chunk size to 8, and sparse KV cache budget to 1.56% for most cases.

B.2 DATASET DETAILS

LLMs are widely used in various fields (Li et al., 2023; Yuan et al., 2024; QwenTeam, 2024; Wang
et al., 2024a; Song et al., 2024), and we select three long-context benchmarks, detailed below.

• RULER (Hsieh et al., 2024) consists of 13 complex tasks and supports adjustable context lengths,
including retrieval, multi-hop tracking, aggregation, and QA tasks. For the test with MInference
(Jiang et al., 2024), we set up test sets scaling from 8K to 256K for evaluation.

• LongBench (Bai et al., 2023) is a challenging long-context benchmark that assesses the perfor-
mance of LLMs in extended contexts. Featuring Chinese and English languages, LongBench
encompasses 6 main categories and 21 diverse tasks, evaluating LLM capabilities across crucial
long-text applications like single-/multi-document QA, summarization, code completion, etc.

• Needle In A Haystack (Kamradt, 2023) is a long-context retrieval benchmark testing LLM’s per-
formance with context window scales up to 1M tokens where information placed at various posi-
tions. We tested the retrieval capabilities of six long-context LLMs based on their context length.

B.3 NEEDLE IN A HAYSTACK

In addition to the Needle In A Haystack results for Llama-3-8B-1M shown in Figure 6, we also
present results for GLM-4-9B-1M, Llama-3.1-8B, Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-
128K, shown in Figure 11. Compared to full attention, using SHADOWKV has minimal impact on
the ability to understand semantic information across different context windows and needle depths.
There is even a slight performance improvement for Yi-9B-200K.

B.4 INFINITEBENCH

InfiniteBench (Zhang et al., 2024b) is a challenging long-context benchmark that consists of 10
tasks, including QA, coding, dialogue, summarization, and retrieval, with an average length of 214K.

Table 16: Accuracy of different methods on InfiniteBench (Zhang et al., 2024b).

Methods En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Num

Llama-3-8B-1M 23.05 18.14 65.06 10.50 12.47 24.36 37.14 100.00 100.00
SHADOWKV 21.50 17.73 64.63 10.50 12.45 23.86 37.43 100.00 100.00

GLM-4-9B-1M 28.61 9.25 68.12 39.50 11.77 30.20 40.00 100.00 100.00
SHADOWKV 23.22 8.48 68.56 32.50 11.27 30.46 40.00 100.00 100.00

Llama-3.1-8B 26.42 14.48 66.38 16.00 12.92 21.07 34.00 100.00 99.66
SHADOWKV 24.23 13.83 66.38 16.50 12.76 21.07 34.00 100.00 94.41

Yi-9B-200K 8.88 10.61 61.57 5.50 13.88 21.57 23.71 100.00 99.66
SHADOWKV 8.92 10.06 59.39 6.00 13.89 20.56 24.29 100.00 99.83

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

16
K

87
K

15
7K

22
7K

29
7K

36
8K

43
8K

50
8K

57
8K

64
9K

71
9K

78
9K

85
9K

93
0K 1M

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack GLM-4-9B-1M

0.0

0.2

0.4

0.6

0.8

1.0

(a) GLM-4-9B-1M

16
K

87
K

15
7K

22
7K

29
7K

36
8K

43
8K

50
8K

57
8K

64
9K

71
9K

78
9K

85
9K

93
0K 1M

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack GLM-4-9B-1M w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

(b) GLM-4-9B-1M w/ SHADOWKV

16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K

88
K

96
K

10
4K

11
2K

12
0K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Llama-3.1-8B-Instruct

0.0

0.2

0.4

0.6

0.8

1.0

(c) Llama-3.1-8B-Instruct
16

K
24

K
32

K
40

K
48

K
56

K
64

K
72

K
80

K
88

K
96

K
10

4K
11

2K
12

0K
12

8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Llama-3.1-8B-Instruct w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

(d) Llama-3.1-8B-Instruct w/ SHADOWKV

16
K

29
K

43
K

56
K

69
K

82
K

95
K

10
8K

12
1K

13
4K

14
8K

16
1K

17
4K

18
7K

20
0K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Yi-9B-200K

0.0

0.2

0.4

0.6

0.8

1.0

(e) Yi-9B-200K

16
K

29
K

43
K

56
K

69
K

82
K

95
K

10
8K

12
1K

13
4K

14
8K

16
1K

17
4K

18
7K

20
0K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Yi-9B-200K w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

(f) Yi-9B-200K w/ SHADOWKV

16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K

88
K

96
K

10
4K

11
2K

12
0K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Phi-3-Mini-128K-Instruct

0.0

0.2

0.4

0.6

0.8

1.0

(g) Phi-3-Mini-128K

16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K

88
K

96
K

10
4K

11
2K

12
0K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Phi-3-Mini-128K-Instruct w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

(h) Phi-3-Mini-128K w/ SHADOWKV

16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K

88
K

96
K

10
4K

11
2K

12
0K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Qwen2-7B-Instruct

0.0

0.2

0.4

0.6

0.8

1.0

(i) Qwen2-7B-128K

16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K

88
K

96
K

10
4K

11
2K

12
0K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Qwen2-7B-Instruct w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

(j) Qwen2-7B-128K w/ SHADOWKV

Figure 11: Needle In A Haystack (Kamradt, 2023) results using GLM-4-9B-1M (GLM et al., 2024),
Llama-3.1-8B-Instruct (Meta AI, 2024), Yi-9B-200K (AI et al., 2024), Phi-3-Mini-128K (Abdin
et al., 2024), and Qwen2-7B-128K (Yang et al., 2024a).

21

	Introduction
	Related Works
	Observations
	Low-Rank Keys and Offloaded Values for Storage
	Accurate KV Selection for Fast Decoding

	ShadowKV
	Algorithm
	Theoretical Equivalent Bandwidth

	Empirical Evaluation
	Accuracy Evaluation
	Efficiency Evaluation
	Ablation Results

	Conclusion
	Additional Experiment Results
	Handling of Newly Generated Tokens
	Quantitative Analysis of GPU Memory Savings
	Accuracy Results for Yi-9B-200K
	Precision Sensitivity
	Scalability Analysis for Larger Models and Longer Sequences
	Latency Breakdown
	Efficiency Comparison with Quest
	Accuracy Contribution of Outlier KV Cache
	Detailed Comparison with InfiniGen

	Experiment Details
	System Implementation.
	Dataset Details
	Needle In A Haystack
	InfiniteBench

