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Abstract

Reinforcement learning with the help of neural-guided search consumes huge
computational resources to achieve remarkable performance. Path consistency
(PC), i.e., f values on one optimal path should be identical, was previously imposed
on MCTS by PCZero to improve the learning efficiency of AlphaZero. Not only
PCZero still lacks a theoretical support but also considers merely board games.
In this paper, PCZero is generalized into GW-PCZero for real applications with
non-zero immediate reward. A weighting mechanism is introduced to reduce the
variance caused by scouting’s uncertainty on the f value estimation. For the first
time, it is theoretically proved that neural-guided MCTS is guaranteed to find
the optimal solution under the constraint of PC. Experiments are conducted on
the Atari 100k benchmark with 26 games and GW-PCZero achieves 198% mean
human performance, higher than the state-of-the-art EfficientZero’s 194%, while
consuming only 25% of the computational resources consumed by EfficientZero.

1 Introduction

In recent years, combining neural networks with search algorithms has achieved remarkable success
in Reinforcement Learning (RL) [22, 24, 23]. The application scenarios include not only board games
but also knowledge-free real-world problems [19]. One critical challenge is that huge computational
resources are required to collect interactive experiences in order to obtain reliable policy and value
networks with remarkable performance. For example, 1000 third-generation TPUs were used to
generate selfplay games in MuZero [19], roughly 10 ∼ 50 years of experience per Atari game, which
is unaffordable in regular situations. It is essential for an algorithm to achieve high performance with
limited computational cost. Otherwise, it is difficult to generalize the algorithm to more applications.

For sequential decision problems, an interactive process between an agent and the environment
is regarded as a playing path, which is collected to update the parameters of the policy and value
network. In turn, the learned policy and value provide guidance for Monte Carlo Tree Search (MCTS)
in determining the next action. This iterative process generates a large number of playing paths in
order to obtain reliable policy and value estimators. The evaluation function f at state st is defined
as the summation of g(st), the accumulated reward from the initial state s0 to st, and h(st), the
expected return received after st, which is equivalent to the state value v(st). That is, we have

f(st) = g(st) + h(st). (1)
To find the optimal path L∗ that leads to the desired termination state, the A∗ search algorithm [5]
establishes an optimality condition for f values, i.e., f(st) = f(s0) for all st ∈ L∗, where s0 is
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the initial state that definitely belongs to the optimal path. In 1987, CNNEIM-A [30] relied on this
optimality to improve A∗ by estimating the f -values on L∗ with the average of the f -values on
the historical trajectory and on a lookahead scouting segment, plus revealing an implication that
the f -values are regarded as i.i.d. samples from a same distribution. This idea has been adopted
to equations.(8)&(9)&(10) in [29] with a regularization term added into the loss function of deep
reinforcement learning such as AlphaZero [23]. The term aims at reducing the deviation of f(st)
from ones on L∗ towards satisfying path consistency (PC)– "f values on one optimal path should
be identical". Simplifying equation (10) in [29] by considering L2 error and ignoring weighting,
recently PCZero [33] realised the PC constraint for the first time by considering

L(θ) = LRL(θ) + λLPC(θ), (2)

where LRL(θ) is the loss function of AlphaZero, λ is a hyperparameter, LPC is implemented as
(v(st) − v̄(st))

2, the squared L2 deviation of the state value v(st) from the learning target v̄(st),
which is the average state value along the estimated optimal path. Experiments on three board games
have demonstrated that PCZero improves the learning efficiency of AlphaZero.

However, ignoring weighting by PCZero is oversimplified because deeper states along the search
path have greater uncertainty due to the exploration randomness of self-play and policy reanalysis
[19]. Thus, it is essential to take into account of the uncertainty levels in LPC . Also, PCZero has only
been applied to board games, wherein the immediate reward is always zero until the game terminates.
Thus, g(st) = 0 holds for all states in PCZero, while PC has degenerated into the consistency of
state values. It is unclear whether PC is effective generally as suggested by equation (8) in [29] to
take g(st) in consideration for applications with non-zero immediate rewards, such as Atari games.
Moreover, there lacks a strong theoretical support for the effectiveness of PC, and the advantage
conferred by the PC constraint has not been clearly explained.

This paper tackles the above problems by generalizing PCZero into GW-PCZero (short for
Generalized Weighted PCZero), with the main contributions summarized as follows1.

• The application of PC is extended to scenarios where the environment emits immediate
rewards, such as Atari games. Loss function in EfficientZero [32] is adopted as LRL(θ) in
Eq. (2), instead of using the loss function of AlphaZero like PCZero [33]. LPC(θ) ensures
the consistency of f values in Eq (1) across the search path, rather than only maintaining
the consistency of h value like PCZero. f̄(st), the mean of the f values of states along the
path, is adopted as the learning target for LPC .

• An uncertainty-aware weighting mechanism is introduced for accurately estimating f̄(st).
States farther away from st are considered less reliable and given larger discounts to reduce
noise in f̄(st). Experiments are conducted on the Atari 100k benchmark with 26 games
to evaluate GW-PCZero in diverse environments. Under the same computing resource
consumption, our GW-PCZero achieves 198% mean human normalized performance, sig-
nificantly outperforms the state-of-the-art EfficientZero’s 121%. Additionally, GW-PCZero
surpasses the original version of EfficientZero, which achieved a score of 194% [32], while
utilizing only 25% of the computational resources required by EfficientZero.

• For the first time, it is theoretically proved that neural-guided MCTS is guaranteed to
find the optimal solution under the constraint of PC, and that the optimal solution for
minimizing LPC(st) is achieved by satisfying the multi-step temporal difference (TD) value
estimation relationship between state st and its neighboring states in the same path. Instead
of estimating state value independently, PC leads to a more reliable value estimator.

2 Related work

The Arcade Learning Environment (ALE) is an evaluation platform that contains plenty of Atari
games, which is used to evaluate the general competency of AI agents [2]. Interaction steps are
restricted to 100k, which is roughly two hours of experience for human [14], to explore models’
sample efficiency. SimPLe [8] further selects 26 games from ALE on the basis of being solvable
with existing state-of-the-art reinforcement learning algorithms, which is adopted as the benchmark
by many following works [9, 12, 20, 31, 13, 16]. So far, EfficientZero [32] is the only model that

1The source code is available at https://github.com/CMACH508/GW_PCZero.
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has achieved super-human performance on Atari 100k. Here, our generalized PC is applied to
EfficientZero and improves its performance with theoretical support.

In A∗ search algorithm [5], the heuristic function f̂(s) is used to approximately estimate the optimal
cost f∗(s) to guide the search process. If f̂(s) is never over-estimated, A∗ search will be guaranteed
to find the optimal solution. Otherwise, A∗ search may fail. MCTS [10, 3] is a best-first search
method, which is generally not guaranteed to converge to the optimal solution. UCT [10] chose
Upper Confidence Bounds (UCB) [1] as MCTS’s tree policy to do simulations, and it has been proved
that UCT definitely finds the optimal solution for the infinite memory case [11]. UCT evaluates states
by simulating the real outcomes by fast rollouts in a Monte Carlo manner, which provides reliable
information for making decisions. However, feedback value used in neural-guided MCTS in recent
RL algorithms [23, 19] is provided by the predictive value network. The decision’s quality highly
depends on the guidance network. The optimality of MCTS is only established for part of heuristic
functions and neural-guided MCTS will hardly find the optimal solution if the value estimation is
poor. Though originated from A∗ search, PC was also promising on MCTS with deep RL algorithms
like AlphaZero [29, 33]. In this paper, we prove that when constraining value estimator with PC,
neural-guided MCTS used in those modern RL algorithms is guaranteed to find the optimal solution.

3 Preliminary

3.1 Path consistency

For a Markov decision process (MDP), the agent observes state st from state space S, chooses an
action at+1 from action space A, and receives reward rt+1 according to the mapping S ×A → R.
Starting from s0, a playing path L consisting of nL + 1 states is generated while the agent interacts
with the environment for nL steps:

L = {s0, s1, s2, · · · , snL−1, snL
}. (3)

If snL
is the preferred termination state, i.e., the path L receives the most accumulated reward, then

L becomes the optimal path L∗. In Eq. (1), g(st) is the accumulated reward from s0 to st and the f
value can be reformulated as

f(st) = g(st) + v(st; θ) =

t∑
i=1

ri + v(st; θ), ∀st ∈ L. (4)

where v(st; θ) is the state value estimated by the policy-value neural network with parameter θ. The
general PC is defined as the consistency of f values.
Definition 3.1. Path consistency (PC for short) is that f values of states along any optimal path in a
search graph should be identical, i.e.

f(s0) = f(s1) = f(s2) = · · · = f(snL∗ ),∀s ∈ L∗ (5)

3.2 The neural-guided Monte Carlor Tree Search (MCTS)

In MCTS, for each possible action a ∈ A in a given state s, a set of statistics is used to record
the situation, including visit count N(s, a), prior policy p(a|s), cumulative reward from multiple
simulations W (s, a), and reward r(s, a). The action value Q(s, a) is calculated as W (s, a)/N(s, a).
Starting from the current root state st, each simulation first traverses to a leaf node st+ℓ by maximizing
over a probabilistic upper confidence tree (PUCT) bound at each time-step, i.e.,

a = argmax
a′∈A

{
W (s, a′)

N(s, a′)
+ p(a′|s)

√∑
b∈A N(s, b)

1 +N(s, a′)

}
. (6)

The children states of st+ℓ are expanded and v(st+ℓ) is backed up to all edges (si, ai+1) in the
traversing path {(st, at+1), (st+1, at+2), · · · , (st+ℓ−1, at+ℓ)} via

N(si, ai+1)← N(si, ai+1) + 1,

W (si, ai+1)←W (si, ai+1) +

ℓ−1−i∑
τ=0

γτri+1+τ + γℓ−iv(st+ℓ), (7)
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where γ is the discount factor. If γ is set to 1.0, the above equation is rewritten as:
W (si, ai+1)←W (si, ai+1) + f(st+ℓ)− g(si). (8)

After K time simulations, the action with the maximum visit count will be selected as the next move,
and the selected child will become the new root of the search tree.

3.3 Reanalyze

To improve the sample efficiency, MuZero [19] proposes a reanalyze technique to revisit its past time
steps. MCTS is re-executed with the latest model parameters, potentially resulting in a better-quality
policy πcurrent than the original policy πold. The l-step bootstrapped value target is estimated based
on multi-step TD value relationships

zt =

l∑
j=1

γj−1rt+j + γlv(st+l; θ). (9)

The reanalyze technique updates zt with the most recent value network parameters θcurrent. Effi-
cientZero [32] employs an off-policy value correction method, which conducts an additional MCTS to
estimate the value as vMCTS(st+l; θ) and computes zt by replacing v(st+1; θ) with vMCTS(st+l; θ)
in Eq. (9). Enabling off-policy value correction for reanalysis requires running two MCTS for each
sample, resulting in a doubling of the computational cost.

4 Methodology

The proposed GW-PCZero is built on EfficientZero with a generalized PC constraint. The PC
constraint enables our GW-PCZero to not only remove the time-consuming off-policy value correction
which has a significant contribution to the performance of EfficientZero, but also improve the
performance to surpass EfficientZero with theoretical guarantee on the optimality. The loss function
for learning the policy-value network is taken as the same form of Eq. (2). Different from PCZero,
here LRL(θ) is set to be the same as EfficientZero’s loss function, consisting of policy loss, value
loss, value prefix loss, and self-supervised consistency loss [32], while LPC(θ) is evaluated by the
deviation of f value from its mean along the path. Specifically, on the state st, we can rewrite the
squared L2 deviation [f(st)− f̄(st)]

2 by noticing v(st; θ) = h(st) in Eq. (1) as follows:

LPC(st; θ) =
{
v(st; θ)− [f̄(st)− g(st)]

}2
. (10)

Built on the basis of MuZero, EfficientZero has achieved superhuman performance on Atari games
[32] with limited 100k training data. EfficientZero has made three critical changes to MuZero.
First, a self-supervised consistency loss was proposed to help model the environment’s state transi-
tion dynamics. Second, one-step reward prediction was replaced by the estimation of value prefix∑l

j=1 γ
j−1rt+j . Third, MCTS value target correction was executed by replacing the policy-value

network’s output with root values estimated by MCTS. To take advantage of the merits of Effi-
cientZero, we keep the first two changes and disable the third one, because the MCTS’s root value
target correction doubles the need of computing resources. Experimental results indicate that values
estimated by the network trained under the PC constraint is more reliable than this time-consuming
value correction method. With the help of the PC constraint, our method is able to improve the
efficiency of the policy-value network parameter learning and save computing resources.

4.1 The optimality of the PC loss

It is noted from Eq. (10) that LPC(st) is the square error loss and LPC(st) ≥ 0 holds. We present
the following theorem for the optimality of the PC loss.
Theorem 4.1. The PC loss of state st achieves the optimal value when the following equation holds:

v(st) =

i∑
j=t+1

rj + v(si), i > t,

v(si) =

t∑
j=i+1

rj + v(st), i < t.

(11)
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The above Eq. (11) actually represents the multi-step TD value estimation relationships between st
and all other states {si}i̸=t in the same path.

The estimated values given by an effective value function predictor should satisfy the multi-step
TD value relationships specified by the Bellman equation. Theorem 4.1 indicates that LPC will be
minimized if multi-step TD value relationships are established for the estimated values, indicating
that path consistency is a nature that a well-learned value predictor should have. The term of PC loss
guides the learning process towards it proactively, which gives an explanation about why the adoption
of PC improves learning efficiency. State values learned by minimizing LPC will establish the
relationship among them, rather than learning the value predictions for different states independently.
In particular, by setting discount factor γ = 1 in Eq. (9), the bootstrapping target for the state si’s
value learning in MuZero becomes the right formula of Eq. (11), implying that PC is beneficial to the
learning of value estimation. It should be noted that Theorem 4.1 is also established for any Lp norm
deviation loss with p ≥ 1, not limited to L2 norm used in this paper.

To prove Theorem 4.1, we define tPC(st) = f̄(st)−g(st) as the learning target for the value network
in Eq. (10), and let f̄(st) be the mean over all states in the path L. Based on Eq. (3) & (4), LPC(st; θ)
is equivalently derived to be

LPC(st; θ) =
1

(nL + 1)2

∑
i>t

v(st; θ)−
 i∑

j=t+1

rj + v(si)


−
∑
i<t

v(si)−
 t∑

j=i+1

rj + v(st; θ)


2

. (12)

According to Eq. (12), the PC loss is a square error function with LPC(st; θ) ≥ 0. When the multi-step
TD value relationships by Eq. (11) are satisfied, each term in the square brackets of Eq. (12) is equal
to zero. Then, LPC(st; θ) is minimized at zero, and it implies that PC is established, which suggests
that Theorem 4.1 holds. The derivation details of Eq. (12) are given in Appendix 1.

Previous research extensively employed TD error for training value function models in various
algorithms. Minimizing TD error is a commonly utilized learning objective among model-free RL
algorithms, such as Q learning [28] and its variants [15, 27, 6, 26]. For model-based RL algorithms,
the TD error is employed as one of the auxiliary training objective during the learning process of the
environment model. Dyna [25] updated the estimated values to be consistent with the environment
model by minimizing the TD(0) error, while TD(k) is adopted by value equivalent models, such as
MuZero [19] and Muesli [7]. SCZero [4] utilizes the TD(0) error to update the environment model
and value function simultaneously to encourage them to be jointly self-consistent, demonstrating
that the TD constraint on value estimations is beneficial for both policy evaluation and environment
model construction. Compared with those TD based algorithms, PC is a global constraint for all
states on the optimal path. As illustrated in Eq. (12), PC loss of st is minimized if the TD errors
for state st with all states on the same path are minimized to be 0, while TD error itself represents
a local constraint that pertains to the relationship between two states. The PC constraint on state
st encompasses both consistency with subsequent states and consistency with preceding states. In
contrast, the TD error only takes into account the consistency with subsequent states. Both SCZero
and our GW-PCZero propose a consistency constraint to improve the learning efficiency. SCZero [4]
is built on model-based algorithms, encouraging the learned environment model and value function to
be consistent by minimizing the TD(0) error. The concept of path consistency, explored in this paper,
is conceptually different from the notion of self-consistency discussed in SCZero. PC requires that
estimated f values on the same optimal path are consistent, which is applicable to all value-based RL
algorithms, regardless of their reliance on a model-based framework.

We further prove that the PC constraint on the estimated values guarantee the neural-guided MCTS
to find the optimal solution, under an assumption below, which is made from the perspective of
probability based on Definition 3.1. We use the notationN (µ, σ2) to denote a normal distribution and
use Pr(µ, σ2) to denote an arbitrary distribution, where µ denotes mean and σ2 denotes variance.

Assumption 4.2. For the state s on the optimal path, suppose f(s) = µf
0 ; For every state s′ not on

the optimal path, {f(s′)} are assumed to be sampled from an i.i.d. Pr(µf
1 , σ

2
1).
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The µf
0 and µf

1 are the expected total rewards for optimal and non-optimal solutions respectively
according to the definition of f , and the inequality µf

0 > µf
1 holds.

Theorem 4.3. Under the PC condition, Pg, defined as the probability of finding the optimal path
with the neural-guided MCTS, satisfies the following inequality as the number of simulations K goes
sufficiently large,

lim
K→+∞

Pg ≥ lim
K→+∞

nL∏
t=1

{
1− 1

2
exp

{
− [bt(µ

f
0 − µf

1 )]
2

2σ2
1/K

′

}}m−1

, (13)

where bt is a constant, and K ′ is the minimum simulation times for nodes in the search tree.

The proof of Theorem 4.3 is given in Appendix 2. Intuitively, if K goes large (K → +∞), every
child in the search tree will be visited enough times because of the exploration term in Eq. (6), leading
to K ′ → +∞. Then, the lower bound of Eq. (13) approaches one, which pushes the probability of
finding the optimal path to be one. Formally, we have the following result.
Theorem 4.4. For any Markov decision process, the neural-guided MCTS with path consistency as
the constraint of the estimated values is guaranteed to find the optimal solution, when the number of
simulations K is sufficiently large,

lim
K→+∞

Pg = 1. (14)

4.2 Empirical computation of PC on f consistency

Considering that interaction sequences in practical applications like Atari games are quite long, the
generated samples are used to update parameters before reaching the termination. In practice, the
state st and its ℓ following unrolled states are sampled from the replay buffer as a small training batch
Lb = {st, st+1, · · · , st+ℓ}. Reanalyzing is adopted to re-estimate the learning target with the latest
policy-value network for all states in Lb. States in Lb share part of the cumulative reward before st.
The PC target tPC for the value network in Eq. (10) is calculated as

tPC(st) =
1

l + 1

l∑
i=0

 i∑
j=1

rt+j + v(st+i; θ)

 . (15)

Only st is considered to be constrained with PC loss in real implementation because the sampled
batch Lb is too short to deal with the subsequent states in the same way. The reanalyze technique is
used to prepare the learning targets for policy and value without enabling off-policy value correction.
All target preparations are summarized in Algorithm 1.

Algorithm 1: Sample Preparation for GW-PCZero
Input: Replay bufferR, Unrolled steps l, Batch size N .
Output: (π, z, tPC).

1: Sample N unrolled sequences fromR and each sequence consists of l + 1 consecutive states.
2: for each sampled sequence Li = {sit, sit+1, · · · , sit+l} do
3: Reanalyze policy target π by performing one iteration MCTS for each state in Li.
4: Recalculate value target z by bootstrapping in Eq. (9) for each state in Li.
5: Estimate PC target tPC(st) according to Algorithm 2.
6: end for
7: return Tuple (π, z, tPC).

4.3 Weighting the PC target

The estimation of tPC(st) in Eq. (15) takes the mean of all f values, treating all states equally.
However, the states far away from st are less reliable than the ones near st, which is mainly caused by
two operations, as shown in Figure 1. One is the exploration uncertainty during the iteration process
with the environment. As st+i is sampled from the policy distribution injected with noise, it may
not be the optimal choice. The other more important reason is policy reanalyzing. As illustrated in
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the right of Figure 1, st+1 is the following state of st in the real iteration sequence collected with
an older policy πold, but the optimal choice of the latest reanalyzed policy πcurrent may be another
state s∗t+1. According to Definition 3.1, PC requires that all states should be on the same optimal
path, and it will be violated due to the above two operations. Especially, the probability that st+i and
st are not in the same optimal path grows as i increases.

Figure 1: Left: exploration uncertainty when playing the game. Action is sampled from π and ε is a
Gaussian noise. Right: difference between collected sequence {st+i} and current reanalyzed policy’s
optimal choice {s∗t+i}.

In order to mitigate the high variance brought by the above uncertainty, a weighting mechanism is
devised to give a larger discount to farther states. Specifically, tPC(st) is calculated by a weighted
summation and the weight wi decreases linearly with index i, i.e.,

wi = max{cb − ca × i, 0}, (16)

where ca and cb are two constants.While there are numerous algorithms available for weighting, the
linear weighting method employed in this paper is simple and highly interpretable, which deserves
further investigation in future research. The PC target tPC is calculated as:

tPC(st) =

l∑
i=0

w̃i

 i∑
j=1

rt+j + v(st+i;θ)

 , (17)

where w̃i = wi/
∑l

i=0 wi is the normalized weight. The details are summarized in Algorithm 2.

Algorithm 2: Weighted PC target tPC estimation
Input: S = {st, rt+1, st+1, · · · , st+l}, value function v(s).
Output: Target tPC(st).

1: Initialize the value summation T ← 0 and weight summation W ← 0.
2: for each state st+i in S do
3: Calculate weight wi for state st+i according to Eq. (16).

4: T ← T + wi ×

[
i∑

j=1

rt+j + v(st+i)

]
, W ←W + wi

5: end for
6: return target tPC(st)← T/W .

4.4 The coefficient for the PC loss

PC is incorporated into the policy-network learning as a regularization term in Eq. (2), and there
is a non-negative coefficient λ to be determined. GW-PCZero degenerates back to a variant of
EfficientZero (without MCTS value target correction) when λ = 0. In general, an appropriate λ is
required to balance between maximizing the accumulated reward and satisfying the PC constraint.
According to the empirical experience of PCZero on Hex game [33], it has been found that PC
improves the generalization ability for testing while sacrificing the prediction accuracy for training.
For games with low complexity, it is easy to generate all possible states for training and λ should be
small to improve the training accuracy. For games with high complexity, the generalization ability
should be paid more attention by giving a larger λ. See the details in Appendix 3.
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Therefore, λ is adjusted with the game complexity, which is evaluated by two criteria. One is the
action space size |A|, which determines the number of brunch factors for tree search. The other
is the difficulty for the computer program to master, which is approximately evaluated by Dm =
MuZero Score/Human Score in Atari games, where MuZero is trained without 100k limitation. In
the experiment, if |A| < 18, λ is set to be 0.2. For games with |A| ≥ 18, if Dm is larger than 100,
indicating that this game is easier to master, λ will be set to be 0.35. Otherwise, this game is difficult
to master, and λ = 0.4.

5 Experiments

Experiments are conducted on Atari 100k benchmark containing 26 games [8]. Only 100k interaction
steps are allowed to be collected, i.e., 400k frames based on a frameskip of 4, which is roughly the
number of experiences played by a human in two hours. The mean performance of human players
was collected [17], which is used to evaluate the model’s performance against the baseline of the
random player’s score. The human normalized score of a learned agent is defined as (Scoreagent −
Scorerandom)/(Scorehuman − Scorerandom).

Table 1: Comparison of different algorithms. The computational cost is measured by the number of
MCTS executions.

Value correction Weighting Adjustable ca Frames Train steps Cost Score

EfficientZero ✓ N/A N/A 100k 120k 61.54M 1.943
EfficientZero† × N/A N/A 100k 60k 15.46M 1.218

G-PCZero × × × 100k 60k 15.46M 1.378
GW-PCZero × ✓ × 100k 60k 15.46M 1.980

GW-PCZero(ca) × ✓ ✓ 100k 60k 15.46M 2.066

Table 2: Scores on the Atari 100k benchmark tested with 32 evaluation seeds. Benchmark methods
include SimPLE [8], CURL[12], DrQ [31], and SPR+resets [16]. EfficientZero† [32] is retrained
under the same computational resources as GW-PCZero.

Game Human SimPLe CURL DrQ SPR+resets EfficientZero† G-PCZero GW-PCZero

Alien 7127.7 616.9 558.2 771.2 911.2 850.6 761.3 699.7
Amidar 1719.5 88.0 142.1 102.8 201.7 60.6 91.6 97.0
Assault 742.0 527.2 600.6 452.4 953.0 994.8 1093.3 1224.1
Asterix 8503.3 1128.3 734.5 603.5 1005.8 17734.4 15712.5 14771.9
BankHeist 753.1 34.2 131.6 168.9 547.0 276.9 280.9 207.2
BattleZone 37187.5 5184.4 14870.0 12954.0 8821.2 15875.0 13875.0 13500.0
Boxing 12.1 9.1 1.2 6.0 32.2 28.2 11.8 41.6
Breakout 30.5 16.4 4.9 16.1 23.4 366.7 402.7 450.0
ChopperCmd 7387.8 1246.9 1058.5 780.3 1380.6 818.8 1221.9 1150.0
CrazyClimber 35829.4 62583.6 12146.5 20516.5 28936.2 8059.4 8031.3 9734.4
DemonAttack 1971.0 208.1 817.6 1113.4 2778.0 7940.8 15163.4 24074.1
Freeway 29.6 20.3 26.7 9.8 18.0 0.0 0.0 0.0
Frostbite 4334.7 254.7 1181.3 331.1 1834.3 229.1 245.6 249.7
Gopher 2412.5 771.0 669.3 636.3 930.4 1325.6 851.3 1286.9
Hero 30826.4 2656.6 6279.3 3736.3 6735.6 7537.2 9958.1 8171.3
Jamesbond 302.8 125.3 471.0 236.0 415.7 300.0 298.4 525.0
Kangaroo 3035.0 323.1 872.5 940.6 2190.6 525.0 1012.5 262.5
Krull 2665.5 4539.9 4229.6 4018.1 4772.4 3818.5 4233.0 7782.0
KungFuMaster 22736.3 17527.2 14307.8 9111.0 14682.1 8956.3 10059.4 20543.8
MsPacman 6951.6 1480.0 1465.5 960.5 1324.6 967.5 784.7 1594.1
Pong 14.6 12.8 −16.5 −8.5 −9.0 15.6 19.8 19.8
PrivateEye 69571.3 58.3 218.4 −13.6 82.2 0.0 100.0 96.9
Qbert 13455.0 1288.8 1042.4 854.4 3955.3 8120.3 8281.3 13651.6
RoadRunner 7845.0 5640.6 5661.0 8895.1 13088.2 3443.7 9262.5 16809.4
Seaquest 42054.7 683.3 384.5 301.2 655.6 478.1 838.1 768.1
UpNDown 11693.2 3350.3 2955.2 3180.8 30185.0 7592.5 6129.4 12344.7

Normed Mean 1.000 0.443 0.381 0.357 0.901 1.212 1.378 1.980
# >Human 0 2 2 2 7 7 7 11
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Table 3: Scores on the Atari 100k benchmark with different ca in Eq. 16. ca = 0 means no weighting.
ca = 0.1 has been used in Table 2.

ca Seaquest Asterix Boxing Alien BattleZone

0.0 838.1 15712.5 11.8 761.3 13875.0
0.05 1215.6 22131.3 22.0 568.1 14281.3
0.1 768.1 14771.9 41.6 699.7 13500.0
0.2 776.9 14950.0 53.8 982.5 16812.5

ca Breakout Qbert KungFuMaster Krull Kangaroo
0.0 402.7 8281.3 10059.4 4233.0 1012.5

0.05 443.9 12568.8 12575.0 6874.9 787.5
0.1 450.0 13651.6 20543.8 7782.0 262.5
0.2 396.7 11269.5 10990.6 2182.5 206.3

In EfficientZero [32], MCTS consumes the majority of computing resources, much more than network
updating. The number of MCTS is determined by two factors: data collection, which requires 100k
MCTS for 100k steps, and data reanalysis. 120k updating steps are performed with a batch size of
256. A total of 30.72 million samples are reanalyzed, with each sample requiring two MCTS runs:
one for policy re-estimation and the other for MCTS value correction. Thus, a total of 61.44 million
MCTS runs are used to prepare the training data, and the computational cost for data generation
is relatively negligible. Therefore, the limit of 100k interaction steps does not fully constrain the
computational resources used, and the total number of MCTS runs should be considered. Due to the
reanalysis operation, EfficientZero requires a total of 61.54 million MCTS runs, which accounts for
the majority of the computational resources consumed.

In this paper, we evaluate our GW-PCZero’s learning efficiency under a more difficult setting than
the original EfficientZero [32]. As summarized in Table 1, the updating steps are limited to 60k,
and MCTS off-policy value correction is disabled. Models in our experiment only consume 25%
computational resources of the original EfficientZero. G-PCZero is included for comparisons by
using the unweighted computation of the PC target in Eq. (15). EfficientZero† is retrained under
identical conditions. Experiments are conducted on 4 NVIDIA Tesla A100 GPUs with 16 CPU cores.
We set cb = 1.0 and ca = 0.1 in Eq. (16). Totally 32 of different random seeds are used. Other
hyperparameter settings are the same as EfficientZero, as summarized in Appendix 5.

The mean testing results are reported in Table 2. GW-PCZero performs better than EfficientZero†

in 19 out of all 26 Atari games. The mean of the human normalized score of GW-PCZero achieves
198.0%, much higher than EfficientZero†’s 121.2%. Moreover, GW-PCZero slightly outperforms the
original EfficientZero [32], which achieved a score of 194.3%. It should be noted that GW-PCZero
only consumes 25% computational resources of the original EfficientZero, as shown in Table 1.
Experiment results demonstrate the effectiveness of our GW-PCZero, and indicate that PC improves
the learning efficiency remarkably in Atari games. Notice that GW-PCZero performs poorly in
several games requiring great exploratory, such as Freeway, probably due to the quick convergence of
PC. Moreover, examples of learning curves of GW-PCZero and EfficientZero∗ on Atari games are
displayed in Appendix 6. Analysis of test variances is included in Appendix 4.

GW-PCZero outperforms G-PCZero in 15 games and achieves a significantly higher mean normalized
score. This ablation study indicates that the weighting mechanism is important to provide a more
accurate target for PC learning. The performance is greatly improved by considering different
uncertainty levels in the states along the path while calculating the mean f values. It is critical to
observe that G-PCZero outperforms EfficientZero† in 16 Atari games, and its mean score of 137.8%
is slightly higher than that of EfficientZero†, indicating that PC improves the model’s performance
even without the weighting mechanism. We also employ the weighting mechanism in PCZero [33]
and conduct experiments on board games. The game performance exhibits improvement as well.
Details are included in Appendix 7.

Path consistency requires that f values on the optimal path should be identical. The selection of
the optimal path from the collected interaction experiences is not only necessary but also presents a
significant challenge. Due to the difficulty of definitively determining the optimality of a particular
path, one alternative approach is to strive for the collection of training paths that are near-optimal, thus
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satisfying the requirement of PC. In on-policy reinforcement learning, game experiences collected
through interactions between the updated policy and the environment improve gradually and approach
a near-optimal level throughout the training process. Alternatively, near-optimal paths obtained from
human experts or other high-level computer players can also fulfill the requirement of PC, allowing
the model to be trained in an off-policy manner. Both aforementioned training approaches have been
demonstrated to be effective in PCZero [33]. The critical factor for the success of PC lies in the
selection of the optimal path, and is relatively unaffected by whether the path is collected through
on-policy or off-policy methods. However, in many scenarios, the availability of near-optimal paths
provided by experts is limited, and on-policy learning methods demonstrate low sample efficiency.
Therefore, in addition to the aforementioned methods, it is crucial to investigate the training of PC
using suboptimal paths. For example, game frames in Atari 100k are collected using a poorly trained
model in the early state, which are far from near-optimal. GW-PCZero implements a weighting
mechanism to address the limitation of suboptimal paths by excluding unreliable nodes along the
collected path from consideration, and experimental results in Table 2 demonstrate the effectiveness
of this node filtering approach.

We further investigate the weighting mechanism in more detail. As shown in Eq. (16), linear decay
is adopted from the initial value cb = 1.0, with the decay rate controlled by ca. A larger ca gives
less weight to the latter states, while ca = 0 represents the situation without weighting. The effects
of ca are illustrated in Table 3. The optimal ca varies across different games, indicating that there
is still room for improving the weighting strategy. On one hand, more reliable neighboring states
should be considered to reduce the variance of the mean f value. On the other hand, unreliable
neighbors increase uncertainty in the estimation of the mean f value. ca is to achieve a trade-off
between including more neighbors and reducing unreliability. Notice that when considering Asterix,
Alien, BattleZone, and Kangaroo, GW-PCZero is inferior to EfficientZero in Table 2, but it becomes
better than EfficientZero under appropriate values of ca. When ca is adjustable, GW-PCZero(ca)
achieves a mean score of 2.066, with only 2 out of 26 games performing worse than EfficientZero†.
These results suggest that there is potential for further improvement in the weighting strategy and
that more effort should be devoted to exploring this area in future research.

6 Conclusion

In this paper, we have proposed GW-PCZero to consider path consistency (PC) in a general setting
and provided a theoretical analysis of the convergence property of MCTS with the PC constraint.
GW-PCZero extends the previous PCZero from board games to more practical applications, for which
the environment emits immediate rewards, such as Atari games. An uncertainty-aware weighting
mechanism, which gives a larger discount to the farther states along the searching path, is devised to
compute a more reliable learning target for PC. What’s more, we have theoretically proved that MCTS
is guaranteed to find the optimal solution under the constraint of PC. Experiments demonstrate that
PC is beneficial to obtain strong artificial intelligence programs but consumes fewer computational
resources. Neural-guided MCTS has been extensively utilized to address optimization problems in
various practical applications, such as de novo drug molecular generation [18], organic molecule
retrosynthesis [21] and so on. There is potential for the development of PC to contribute to addressing
these critical problems by providing more robust value estimators. This work is still in the nascent
stages without further applications related to people’s daily lives currently and thus there is no
immediate ethical or harmful social impacts.
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Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model based
reinforcement learning for atari. In International Conference on Learning Representations, 2019.

[9] Kacper Piotr Kielak. Do recent advancements in model-based deep reinforcement learning really improve
data efficiency? 2019.

[10] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference on
machine learning, pages 282–293. Springer, 2006.

[11] Levente Kocsis, Csaba Szepesvári, and Jan Willemson. Improved monte-carlo search. Univ. Tartu, Estonia,
Tech. Rep, 1, 2006.

[12] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations for
reinforcement learning. In International Conference on Machine Learning, pages 5639–5650. PMLR,
2020.

[13] Alexander Long, Alan Blair, and Herke van Hoof. Fast and data efficient reinforcement learning from
pixels via non-parametric value approximation. 2022.

[14] Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael
Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems for general
agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

[16] Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The primacy
bias in deep reinforcement learning. In International Conference on Machine Learning, pages 16828–16847.
PMLR, 2022.

[17] Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Budden, Gabriel
Barth-Maron, Hado Van Hasselt, John Quan, Mel Večerík, et al. Observe and look further: Achieving
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