1 **Deviation of Eq** (12)

For a generated path containing $n_L + 1$ states, $L = \{s_0, s_1, \dots, s_{n_L}\}, v(s_t)$ is the estimated state value, and $z(s_t) = \sum_{j=t+1}^{n_L} r_j$ is the ground truth for value estimation by setting discount factor $\gamma = 1$. PC loss's learning target for state s_t is $\bar{f}(s_t)$, the mean of f values along the path, minus $g(s_t), \bar{f}(s_t)$ is calculated as Equation 1.

$$\bar{f}(s_t) = \frac{1}{n_L + 1} \sum_{i=0}^{n_L} f(s_i) = \frac{1}{n_L + 1} \sum_{i=0}^{n_L} \left(\sum_{j=1}^i r_j + v(s_i) \right)$$

$$= \frac{1}{n_L + 1} \left[\sum_{i=0}^{n_L} v(s_i) + \sum_{i=0}^{n_L} \sum_{j=1}^i r_i \right] = \frac{1}{n_L + 1} \left[\sum_{i=0}^{n_L} v(s_i) + \sum_{i=1}^{n_L} (n_L + 1 - i) r_i \right]$$

$$= \sum_{i=1}^{n_L} r_i + \frac{\sum_{i=0}^{n_L} v(s_i) - \sum_{i=1}^{n_L} i \times r_i}{n_L + 1} = \sum_{i=1}^t r_i + \sum_{i=t+1}^{n_L} r_i + \frac{\sum_{i=0}^{n_L} v(s_i) - \sum_{i=1}^{n_L} \sum_{j=i}^n r_i}{n_L + 1}$$

$$= g(s_t) + z(s_t) + \frac{\sum_{i=0}^{n_L} [v(s_i) - z(s_i)]}{n_L + 1}$$
(1)

6 Therefore, PC loss is

$$\mathcal{L}_{PC}(s_t) = [v(s_t) - (\bar{f}(s_t) - g(s_t))]^2$$

$$= \left\{ v(s_t) - z(s_t) - \frac{\sum_{i=0}^{n_L} [v(s_i) - z(s_i)]}{n_L + 1} \right\}^2$$

$$= \frac{\left\{ \sum_{i \neq t} [v(s_t) - z(s_t) - v(s_i) + z(s_i)] \right\}^2}{(n_L + 1)^2}$$

$$= \frac{1}{(n_L + 1)^2} \left\{ \sum_{i>t} \left[v(s_t; \theta) - \left(\sum_{j=t+1}^{i} r_j + v(s_i) \right) \right] \right\}^2.$$

$$- \sum_{i < t} \left[v(s_i) - \left(\sum_{j=i+1}^{t} r_j + v(s_t; \theta) \right) \right] \right\}^2.$$
(2)

7 Eq (13) is derived.

8 2 Deviation of Theorem 4.3

⁹ To prove Theorem 4.3, we first introduce three lemmas.

10 **Lemma 2.1.** Assume $x \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $y \sim \mathcal{N}(\mu_2, \sigma_2^2)$, where $\mathcal{N}(\cdot, \cdot)$ denotes normal distribution. If 11 x, y are independent of each other and $\mu_2 > \mu_1$, then

$$P(x > y) = \frac{1}{2} \exp\left\{-\frac{1}{2} \frac{[(\mu_2 - \mu_1)/\sqrt{\sigma_1^2 + \sigma_2^2}]^2}{\cos^2 \xi}\right\}$$
(3)

12 where $0 < \xi < \pi/2$ is a constant.

13 **Lemma 2.2.** Assume $x_i \sim \mathcal{N}(\mu_i, \sigma_i^2), \forall i = 1, 2, \cdots, m$. Variables in $\{x_i\}$ are independent of each 14 other. $\mu_1 > \mu_i, \forall i = 2, 3, \cdots, m$. Then

$$P[x_1 = \max\{x_1, x_2, \cdots, x_m\}] = \prod_{i=2}^{m} \left\{ 1 - \frac{1}{2} \exp\left\{ -\frac{(\mu_1 - \mu_i)^2}{2(\sigma_1^2 + \sigma_i^2) \cos^2 \xi_i} \right\} \right\}$$
(4)

- ¹⁵ Proof of Lemma 2.1 was previously given in [4], and the details are summarized as follows.
- 16 $\therefore f(x,y) = f(x)f(y)$, to see Fig 1 (a), we have

$$P(x > y) = \iint_{x > y} f(x)f(y)dxdy$$
$$= \iint_{x > y} \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left\{-\frac{1}{2}\left(\frac{x - \mu_0}{\sigma_0}\right)^2\right\} \times \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{1}{2}\left(\frac{y - \mu_1}{\sigma_1}\right)^2\right\} dxdy$$
(5)

17 Let $(x - \mu_0)/(\sqrt{2}\sigma_0) = u$, $(y - \mu_1)/(\sqrt{2}\sigma_1) = v$, then $|J| = 2\sigma_0\sigma_1$, where |J| is the Jacobian determinant.

- 19 Domain D: x > y become D1: $\sqrt{2}\sigma_0 + \mu_0 > \sqrt{2}\sigma_1 v + \mu_1$.
- 20 By formula

$$\iint_{D} f(x,y)dxdy = \iint_{D_1} f[x(u,v), y(u,v)]|J|dudv$$
(6)

$$P(x > y) = \frac{1}{\pi} \iint_{D_1} \exp[-(u^2 + v^2)] du dv$$

= $\frac{1}{\pi} \iint_{D_1 + D_2} \exp[-(u^2 + v^2)] du dv - \frac{1}{\pi} \iint_{D_2} \exp[-(u^2 + v^2)] du dv$ (7)

21 See Fig. 1 (b), let $u = \rho \cos \phi$, $v = \rho \sin \phi$.

$$\iint_{D_1+D_2} \exp[-(u^2+v^2)] du dv = \int_{-\pi+\phi_1}^{\phi_1} d\phi \int_0^\infty \exp(-\rho^2) d\rho = \pi/2$$
(8)

22 where $r = [(\mu_1 - \mu_0)/(\sqrt{2}\sigma_0)] \times [\sin \phi_1 / \sin(\phi_1 - \phi)].$

$$\iint_{D_2} \exp[-(u^2 + v^2)] du dv = \int_{-\pi+\phi_1}^{\phi_1} \left[\int_0^r \rho \exp(-\rho^2) d\rho \right] d\phi$$
$$= \frac{\pi}{2} - \frac{1}{2} \int_{-\pi+\phi_1}^{\phi_1} \exp\left\{ -\left(\frac{(\mu_1 - \mu_0) \times \sin\phi_1}{\sqrt{2}\sigma_0 \times \sin(\phi_1 - \phi)}\right)^2 \right\} d\phi$$
$$= \frac{\pi}{2} - \frac{1}{2} \int_{-\pi/2}^{\pi/2} \exp\left\{ -\left(\frac{(\mu_1 - \mu_0) \times \sin\phi_1}{\sqrt{2}\sigma_0 \times \cos\theta}\right)^2 \right\} d\theta \tag{9}$$

23 Let $\theta = \phi_1 - \phi - \pi/2$. Therefore,

$$P(x > y) = \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \exp\left\{-\left(\frac{\mu_{1} - \mu_{0}}{\sqrt{2}\sigma_{0}}\sin\phi_{1}\right)^{2} / \cos^{2}\theta\right\} d\theta$$
$$= \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \exp\left\{-\frac{1}{2} \left(\frac{\mu_{1} - \mu_{0}}{\cos\theta\sqrt{\sigma_{0}^{2} + \sigma_{1}^{2}}}\right)^{2}\right\} d\theta$$
(10)

24 $\therefore \arctan \phi_1 = \sigma_0 / \sigma_1, \therefore \sin \phi_1 = \sigma_0 / \sqrt{\sigma_0^2 + \sigma_1^2}$. From the Mean-value theorem for integrals [1]

$$P(x > y) = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \exp\left\{-\frac{1}{2} \left(\frac{\mu_1 - \mu_0}{\sqrt{\sigma_0^2 + \sigma_1^2}}\right)^2 / \cos^2\theta\right\} d\theta$$
$$= \frac{1}{2} \exp\left\{-\frac{1}{2} \left(\frac{\mu_1 - \mu_0}{\sqrt{\sigma_0^2 + \sigma_1^2}}\right)^2 / \cos^2\xi\right\}$$
(11)

Figure 1: Left: (a), Right: (b)

- 25 Where $0 < \xi < \pi/2$ is a constant. Q.E.D.
- Lemma 2.2 is proved according to Eq. (3) on the basis of Lemma 2.1, as follows:

$$P[x_{1} = \max\{x_{1}, x_{2}, \cdots, x_{m}\}] = \prod_{i=2}^{m} P(x_{1} \ge x_{i})$$
$$= \prod_{i=2}^{m} [1 - P(x_{i} > x_{1})]$$
$$= \prod_{i=2}^{m} \left\{1 - \frac{1}{2} \exp\left\{-\frac{(\mu_{1} - \mu_{i})^{2}}{2(\sigma_{1}^{2} + \sigma_{i}^{2}) \cos^{2} \xi_{i}}\right\}\right\}.$$
(12)

Lemma 2.3. Lindeberg–Lévy Central Limit Theory [2]: Suppose $\{X_1, \dots, X_n\}$ is a sequence of i.i.d. random variables with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$. Then

$$\lim_{n \to \infty} \bar{X}_n \sim \mathcal{N}(\mu, \sigma^2/n).$$
(13)

29 Next, we give the proof of the Theorem 4.3. While doing MCTS, a scouted subtree $T(s_t)$ is generated

and it contains K + 1 nodes including s_t after K simulations as illustrated in the left of Figure 2.

Based on Eq. (8), the estimated root state value $v(s_t)$ is calculated as:

$$v(s_t) = \frac{\sum_{s' \in T(s_t)} f(s')}{K+1} - g(s_t).$$
(14)

32

For a Markov sequential decision problem, the probability of the optimal path $L^* = \{s_0, \dots, s_{n_L}\}$

34 being found by MCTS is:

$$P_g = P(s_0 \to s_1, s_1 \to s_2, \cdots, \to s_{n_L})$$
$$= \prod_{t=0}^{n_L - 1} P(s_t \to s_{t+1}), \tag{15}$$

where $P(s_t \rightarrow s_{t+1})$ denotes the probability that s_{t+1} is selected while searching with state s_t as the 35 root node. As shown in the right of Figure 2, assume state s_t has m children and the first child s_{t+1}^1 36 is in the optimal path. According to Assumption 4.2, f values of $\{s_{t+1}^i, i = 2, 3, \dots, m\}$ as well as 37 their descendant states are variables sampled from i.i.d. distribution $Pr(\mu_1^f, \sigma_1^2)$, because the optimal 38 path is in the subtree of s_{t+1}^1 . Based on Lemma 2.3 and Eq. (14), $r_{t+1}^i + v(s_{t+1}^i) \sim \mathcal{N}(\mu_1^f - g(s_t))$, 39 σ_1^2/K_{t+1}^i) where K_{t+1}^i is the simulation times of s_{t+1}^i . The s_{t+1}^1 is assumed to be the optimal child 40 of s_t and $T(s_{t+1}^1)$ is composed by both the states in the optimal path and the ones not in the optimal 41 path. Assume there are K_{t+1}^* descendants in the optimal path and $K_{t+1}^1 - K_{t+1}^*$ descendants are 42

Figure 2: Left: a simulation of MCTS. s_t is current state and $T(s_t)$ is the scouted subtree rooted with s_t , containing K nodes. s_{t+k} is the expanded node in kth simulation; Right: s_{t+1}^1 is selected after MCTS simulation rooted with s_t .

not in the optimal path. Let T^* and $\overline{T^*}$ represent the descendant set in or not in the optimal path 43 separately. $T(s) = T^* \cup \overline{T^*}$ and $T^* \cap \overline{T^*} = \emptyset$. In this situation: 44

$$\bar{f} = \frac{\sum_{s' \in T(s_{t+1}^i)} f(s')}{K_{t+1}^1} = \frac{\sum_{s' \in T^*} f(s') + \sum_{s' \in \overline{T^*}} f(s')}{K_{t+1}^1}$$
$$= \frac{K_{t+1}^*}{K_{t+1}^1} \mu_0^f + \frac{K_{t+1}^1 - K_{t+1}^*}{K_{t+1}^1} \frac{1}{K_{t+1}^1 - K_{t+1}^*} \sum_{s' \in \overline{T^*}} f(s').$$
(16)

45

 $\sum_{s'\in\overline{T^*}} f(s')/(K_{t+1}^1-K_{t+1}^*)$ is the mean of $K_{t+1}^1-K_{t+1}^*$ variables sampled from $Pr(\mu_1^f,\sigma_1^2)$. Therefore, $\sum_{s'\in\overline{Tr^*}} f(s')/(K_{t+1}^1-K_{t+1}^*) \sim \mathcal{N}(\mu_1^f,\sigma_1^2/(K_{t+1}^1-K_{t+1}^*))$ according to the central limit theory in Lemma 2.3. Therefore, 46 47

$$\frac{K_{t+1}^{1} - K_{t+1}^{*}}{K_{t+1}^{1}} \frac{1}{K_{t+1}^{1} - K_{t+1}^{*}} \sum_{s' \in \overline{T^{*}}} f(s') \sim \mathcal{N}(\frac{K_{t+1}^{1} - K_{t+1}^{*}}{K_{t+1}^{1}} \mu_{1}^{f}, \frac{K_{t+1}^{1} - K_{t+1}^{*}}{(K_{t+1}^{1})^{2}} \sigma_{1}^{2})$$

$$\bar{f} \sim \mathcal{N}(\frac{K_{t+1}^{*}}{K_{t+1}^{1}} \mu_{0}^{f} + \frac{K_{t+1}^{1} - K_{t+1}^{*}}{K_{t+1}^{1}} \mu_{1}^{f}, \frac{K_{t+1}^{1} - K_{t+1}^{*}}{(K_{t+1}^{1})^{2}} \sigma_{1}^{2})$$

$$= \mathcal{N}(\frac{K_{t+1}^{*}}{K_{t+1}^{1}} (\mu_{0}^{f} - \mu_{1}^{f}) + \mu_{1}^{f}, \frac{K_{t+1}^{1} - K_{t+1}^{*}}{(K_{t+1}^{1})^{2}} \sigma_{1}^{2})$$

Therefore, $r_{t+1}^1 + v(s_{t+1}^1) = \bar{f} - g(s_t) \sim \mathcal{N}(\mu_1^f - g(s_t) + \frac{K_{t+1}^*}{K_{t+1}^1}(\mu_0^f - \mu_1^f), \frac{K_{t+1}^1 - K_{t+1}^*}{(K_{t+1}^1)^2}\sigma_1^2).$ When 49 the simulation is finished, the decision is made based on 50

$$a_{t+1} = \arg\max_{i} \left\{ r_{t+1}^{i} + v(s_{t+1}^{i}) \right\}.$$
(17)

In summary, for the optimal child s_{t+1}^1 , we have $r_{t+1}^1 + v(s_{t+1}^1) \sim \mathcal{N}(\mu_1^f - g(s_t) + \frac{K_{t+1}^*}{K_{t+1}^1}(\mu_0^f - \mu_1^f), \frac{K_{t+1}^i - K_{t+1}^*}{(K_{t+1}^1)^2}\sigma_1^2)$ and for state $s_{t+1}^i(i > 1), r_{t+1}^i + v(s_{t+1}^i) \sim \mathcal{N}(\mu_1^f - g(s_t), \frac{\sigma_1^2}{K_{t+1}^i})$. The 51 52 probability that the optimal child s_{t+1}^1 is selected is 53

$$P(s_t \to s_{t+1}^1) = P(r_{t+1}^1 + v(s_{t+1}^1) = max_i\{r_{t+1}^i + v(s_{t+1}^i) | i \in [1, m]\})$$
(18)

According to the Lemma 2.2, we have 54

48

$$P(s_t \to s_{t+1}^1) = \prod_{i=2}^m \left\{ 1 - \frac{1}{2} \exp\left\{ -\frac{\left(\frac{K_{t+1}^*}{K_{t+1}^1} (\mu_0^f - \mu_1^f)\right)^2}{2\left(\frac{\sigma_1^2}{K_{t+1}^i} + \frac{(K_{t+1}^1 - K_{t+1}^*)\sigma_1^2}{(K_{t+1}^i)^2}\right) \cos^2 \xi_i} \right\} \right\}.$$
 (19)

- 55 Let K' denotes the least simulation times, that is $K_{t+1}^i \ge K'$ for all states. $\cos^2 \xi_i \le 1$ always
- 56 established. Therefore,

$$P(s_t \to s_{t+1}^1) \ge \left\{ 1 - \frac{1}{2} \exp\left\{ -\frac{\left(\frac{K_{t+1}^*}{K_{t+1}^1} (\mu_0^f - \mu_1^f)\right)^2}{2\left(\frac{1}{K'} + \frac{K_{t+1}^1 - K_{t+1}^*}{(K')^2}\right) \sigma_1^2} \right\} \right\}^{m-1}.$$
 (20)

⁵⁷ Based on Eq 15, the probability of the optimal path $L^* = \{s_0, \cdots, s_{n_L}\}$ being found by MCTS is

$$Pg = \prod_{t=0}^{n_L-1} P(s_t \to s_{t+1}) \ge \prod_{t=0}^{n_L-1} \left\{ 1 - \frac{1}{2} \exp\left\{ -\frac{\left(\frac{K_{t+1}}{K_{t+1}^1}(\mu_0^f - \mu_1^f)\right)^2}{2\left(\frac{1}{K'} + \frac{K_{t+1}^1 - K_{t+1}^*}{(K')^2}\right)\sigma_1^2} \right\} \right\}^{m-1}$$
$$= \prod_{t=1}^{n_L} \left\{ 1 - \frac{1}{2} \exp\left\{ -\frac{[b_t(\mu_0^f - \mu_1^f)]^2}{2(1/K' + m_t)\sigma_1^2} \right\} \right\}$$
(21)

where $b_t = K_t^*/K_t^1$, $m_t = (K_t^1 - K_t^*)/(K_t^1)^2$, and K' denotes the least simulation times, that is $K_t^i \ge K'$ for an arbitrary state. If MCTS's simulation times K is large enough, every child will be visited enough times because of the exploration term in Eq. (6), that are $K' \to +\infty$, $m_t \to 0$, and b_t approaches a constant when $K \to +\infty$. If $b_t = \infty$, the optimal branch will always be selected according to Eq. (6) until h becoming a limited constant. Therefore, we have

according to Eq. (6) until b_t becoming a limited constant. Therefore, we have

$$\lim_{K \to \infty} P_g \ge \prod_{t=1}^{n_L} \left\{ 1 - \frac{1}{2} \exp\left\{ -\frac{[b_t(\mu_0^f - \mu_1^f)]^2}{2(1/K')\sigma_1^2} \right\} \right\}$$
(22)

Theorem 4.3 has been proven.

Table 1: Winning rate of PCZero against AlphaZero without PC (in percentage %).

BoardSize	8×8		9 imes 9		13 imes 13	
Player	Greedy Player	MCTS Player	Greedy Player	MCTS Player	Greedy Player	MCTS Player
$\lambda = 0.1$	53.1	56.3	51.9	56.8	47.6	49.4
$\lambda = 0.5$ $\lambda = 1.0$	$49.2 \\ 48.4$	$54.7 \\ 50.0$	54.3 53.1	$49.4 \\ 54.3$	$51.5 \\ 44.7$	$49.1 \\ 53.6$
$\lambda = 1.0$ $\lambda = 2.0$	51.6	53.1	53.1	59.9	52.1	63.9

Table 2: Test results with 32 seeds, presented as mean±standard deviation.

Game	EfficientZero [†]	GW-PCZero	Game	EfficientZero [†]	GW-PCZero
Alien	850.6 ± 339.2	699.7 ± 130.7	Amidar	60.6 ± 2.42	97.0 ± 12.3
Assault	994.8 ± 181.4	1224.1 ± 371.2	Asterix	17734.4 ± 2921.9	14771.9 ± 5018.8
BankHeist	276.9 ± 40.4	207.2 ± 59.8	BattleZone	15875.0 ± 4614.9	13500.0 ± 6557.4
Boxing	28.2 ± 7.2	41.6 ± 11.7	Breakout	366.7 ± 56.1	450.0 ± 160.8
ChopperCmd	818.8 ± 323.5	1150.0 ± 362.3	CrazyClimber	8059.4 ± 2242.9	9734.4 ± 4233.3
DemonAttack	7940.8 ± 3835.9	24074.1 ± 15593.6	Freeway	0.0 ± 0.0	0.0 ± 0.0
Frostbite	229.1 ± 19.9	249.7 ± 16.3	Gopher	1325.6 ± 638.3	1286.9 ± 803.1
Hero	7537.2 ± 81.7	8171.3 ± 795.3	Jamesbond	300.0 ± 179.0	525.0 ± 252.5
Kangaroo	525.0 ± 277.3	262.5 ± 145.2	Krull	3818.5 ± 600.5	7782.0 ± 1018.6
KungFuMaster	8956.3 ± 1816.4	20543.8 ± 5216.1	MsPacman	967.5 ± 320.9	1594.1 ± 746.8
Pong	15.6 ± 4.5	19.8 ± 1.2	PrivateEye	0.0 ± 0.0	96.9 ± 17.4
Qbert	8120.3 ± 632.2	13651.6 ± 2216.1	RoadRunner	3443.7 ± 1058.6	16809.4 ± 3635.1
Seaquest	478.1 ± 82.8	768.1 ± 210.8	UpNDown	7592.5 ± 3997.6	12344.7 ± 5173.7

63

⁶⁴ **3** Investigation of λ on board games

Table 1 shows the winning rate of PCZero against AlphaZero without path consistency in Hex game with different board sizes. The larger the size of the board, the more complex the problem becomes. We can see that the game with a smaller board size should have a smaller PC loss weight λ and the

game with a larger board size should have a larger λ to fully utilize path consistency.

69 4 Variance of the result

⁷⁰ Tested with 32 seeds, result with standard deviation is summarized in Table 2.

71 **5** Hyper-parameters setting

- 72 Neural network in this paper is the same as EfficientZero. Hyper-parameters are listed in Table 3,
- ⁷³ which are the same with EfficientZero except that training steps are changed from 120k to 60k and
- ⁷⁴ the off-policy value correction is disabled. State value is reanalyzed with value network instead of MCTS's root value.

Parameter	Setting
Observation down-sampling shape	96×96
Frames stacked	4
Frames skip	4
Discount factor	0.997^{4}
Batch size	256
Optimizer	SGD
Learning rate	$0.2 \rightarrow 0.02$
Momentum	0.9
Weight decay	0.0001
Max gradient norm	5
Priority exponent	0.6
Priority correction	$0.4 \rightarrow 1$
Training steps	60k
Evaluation episodes	32
Min replay size for sampling	2,000
Self-play network updating interval	100
Target network updating interval	200
Unroll steps	5
TD steps	5
Policy loss coefficient	1.0
Value loss coefficient	0.25
Self-supervised consistency loss coefficient	2.0
Value prefix loss coefficient	1.0
Dirichlet noise ratio	0.3
Number of simulations in MCTS	50
Reanalyzed policy ratio	0.99
Selfplay max moves	108,000
Test max moves	12,000
LSTM horizon	5
LSTM hidden size	512
Network parameter initialize zero	True
Clip reward	True
RGB image based	True
Do self-supervised consistency	True
Use value-prefix	True
MCTS Off-policy value correction	False

Table 3: Hyper-parameters of the learning process

75

76 6 Comparison of evaluation curves

⁷⁷ Learning curves of all 26 Atari games are displayed in Figure 3, 4 & 5.

Figure 3: Learning curves (Part 1)

78 7 Experiment on more games

79 7.1 Hex game

 $_{80}$ $\,$ In this section, the idea of weighting path consistency is applied to PCZero on 13×13 Hex game. In

- ⁸¹ PCZero [6], the learning target is calculated as the mean of l upstream states and k downstream states in Eq. (23)
- ⁸² in Eq (23).

$$t_{PC}(s_t) = \frac{1}{l+k} \sum_{i=-l}^{k} v(s_{t+i}).$$
(23)

⁸³ Considering weighting mechanism, the learning target is calculated by:

$$t_{PC}(s_t) = \sum_{i=-l}^{k} w_i v(s_{t+i}) / \sum_{i=-l}^{k} w_i,$$
(24)

- where w_i is linear decay weight. As the distance from s_t increases, w_i decreases proportionally as
- shown in Eq (25)

$$w_i = b_0 - a_0 \times |i|.$$
(25)

Figure 4: Learning curves (Part 2)

In the experiment, $b_0 = 1.0$ and $a_0 = 0.1$. Trained with the same dataset with PCZero, which is consist of 900k selfplay games, Weighted PCZero beats the original PCZero with 175 : 163 score, when the simulation times of MCTS is 800, demonstrating that weighting mechanism is also beneficial to PCZero and it deserves further investigation.

90 7.2 Classic control problem

We also investigate the idea of generalized weighted path consistency on MuZero [3]. The implementation of PC is exactly the same as GW-PCZero, except that the underlying EfficientZero has been replaced with MuZero, which is available in https://github.com/koulanurag/muzero-pytorch.

⁹⁴ The CartPole problem is used for comparison, for which the goal is to balance the pole by applying

⁹⁵ forces in the left and right direction on the cart. The learning cures are displayed in Figure 6. On the

left is MuZero without reanalyzing. on the right is MuZero with reanalyzing and the proportion of

reanalyzing is 0.99. Path consistency significantly improves the model's performance in both cases.

⁹⁸ The idea of generalized weighted path consistency is also effective for MuZero.

Figure 5: Learning curves (Part 3)

Figure 6: Learning curves for MuZero with and without path consistency. (Left: MuZero without reanalyze; Right: MuZero with 0.99 reanalyze rate.)

99 8 Pseudocode for GW-PCZero

In this section, we will provide a brief summary of the pseudocode for GW-PCZero algorithm. As 100 shown in Algorithm 1, the entire training process can be divided into three parts. The first part 101 involves collecting game frames by employing a MCTS player guided by the policy and value 102 network. The second part entails reanalyzing the collected states in the playing path to generate labels 103 for training the model. This process is illustrated in Algorithm 1, and the PC target is prepared by 104 calculating the weighted average of the f values along the path, as depicted in Algorithm 3. The 105 third part entails updating the policy model and value model using the prepared data, where the loss 106 function is defined in Equation (2). In this equation, \mathcal{L}_{RL} is the same as that used in EfficientZero 107 [5], and \mathcal{L}_{PC} is defined in Equation (10).

Algorithm 1: Framework for GW-PCZero

Input: Training steps N
Output: Policy and value network.
1: Initialize policy network π and value network v.
2: n ← 0
3: while n < N do
4: Collect playing game frames with MCTS player guided by π and v.
5: Prepare learning target by reanalyzation with MCTS in Algorithm 2.
6: Update π and v using the loss function defined in Eq. (2).
7: end while
8: return t_{PC} = T/∑w_i.

Algorithm 2: Sample Preparation for GW-PCZero

Input: Replay buffer \mathcal{R} , Unrolled steps l.

Output: (π, z, t_{PC}) .

1: Sample unrolled sequences with l + 1 states from \mathcal{R} .

- 2: **for** each sampled sequence **do**
- 3: Reanalyze policy target π by MCTS.
- 4: Recalculate value target z by bootstrapping in Eq. (9).
- 5: Estimate PC target t_{PC} according to Algorithm 3.
- 6: **end for**
- 7: **return** Tuple (π, z, t_{PC}) .

Algorithm 3: Weighted PC target t_{PC} estimation

Input: $S = \{s_t, r_{t+1}, s_{t+1}, \cdots, s_{t+l}\}$, value function v(s) and weights $w = \{w_0, w_1, \cdots, w_l\}$. Output: Target t_{PC} . 1: Initialize T = 0. 2: for each state s_{t+i} in S do 3: $T = T + w_i \times \left[\sum_{j=1}^{i} r_{t+j} + v(s_{t+i})\right]$ 4: end for 5: return $t_{PC} = T/\sum w_i$.

108 References

- 109 [1] Tom M Apostol and CM Ablow. Mathematical analysis. *Physics Today*, 11(7):32, 1958.
- 110 [2] Radha G Laha and Vijay K Rohatgi. Probability theory. Courier Dover Publications, 2020.
- Iulian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
 Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and shogi
 by planning with a learned model. *Nature*, 588(7839):604–609, 2020.
- [4] Lei Xu, Pingfan Yan, and Tong Chang. Algorithm cnneim-a and its mean complexity. In *Proc. of 2nd international conference on computers and applications. IEEE Press, Beijing*, pages 494–499, 1987.
- [5] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games with
 limited data. *Advances in Neural Information Processing Systems*, 34:25476–25488, 2021.
- [6] Dengwei Zhao, Shikui Tu, and Lei Xu. Efficient learning for AlphaZero via path consistency. In *Proceedings* of the 39th International Conference on Machine Learning, volume 162 of *Proceedings of Machine Learning*
- 120 *Research*, pages 26971–26981. PMLR, 17–23 Jul 2022.