
1 Deviation of Eq (12)1

For a generated path containing nL + 1 states, L = {s0, s1, · · · , snL
}, v(st) is the estimated state2

value, and z(st) =
∑nL

j=t+1 rj is the ground truth for value estimation by setting discount factor3

γ = 1. PC loss’s learning target for state st is f̄(st), the mean of f values along the path, minus4

g(st). f̄(st) is calculated as Equation 1.5

f̄(st) =
1

nL + 1

nL∑
i=0

f(si) =
1

nL + 1

nL∑
i=0

 i∑
j=1

rj + v(si)


=

1

nL + 1

 nL∑
i=0

v(si) +

nL∑
i=0

i∑
j=1

ri

 =
1

nL + 1

[
nL∑
i=0

v(si) +

nL∑
i=1

(nL + 1− i)ri

]

=

nL∑
i=1

ri +

nL∑
i=0

v(si)−
nL∑
i=1

i× ri

nL + 1
=

t∑
i=1

ri +

nL∑
i=t+1

ri +

nL∑
i=0

v(si)−
nL∑
i=1

nL∑
j=i

ri

nL + 1

= g(st) + z(st) +

nL∑
i=0

[v(si)− z(si)]

nL + 1
(1)

Therefore, PC loss is6

LPC(st) =[v(st)− (f̄(st)− g(st))]
2

=

v(st)− z(st)−

nL∑
i=0

[v(si)− z(si)]

nL + 1


2

=

{∑
i ̸=t

[v(st)− z(st)− v(si) + z(si)]

}2

(nL + 1)2

=
1

(nL + 1)2

∑
i>t

v(st; θ)−
 i∑

j=t+1

rj + v(si)


−
∑
i<t

v(si)−
 t∑

j=i+1

rj + v(st; θ)


2

. (2)

Eq (13) is derived.7

2 Deviation of Theorem 4.38

To prove Theorem 4.3, we first introduce three lemmas.9

Lemma 2.1. Assume x ∼ N (µ1, σ
2
1), y ∼ N (µ2, σ

2
2), where N (·, ·) denotes normal distribution. If10

x, y are independent of each other and µ2 > µ1, then11

P (x > y) =
1

2
exp

{
−1

2

[(µ2 − µ1)/
√
σ2
1 + σ2

2]
2

cos2 ξ

}
(3)

where 0 < ξ < π/2 is a constant.12

Lemma 2.2. Assume xi ∼ N (µi, σ
2
i),∀i = 1, 2, · · · ,m. Variables in {xi} are independent of each13

other. µ1 > µi,∀i = 2, 3, · · · ,m. Then14

P [x1 = max{x1, x2, · · · , xm}] =
m∏
i=2

{
1− 1

2
exp

{
− (µ1 − µi)

2

2(σ2
1 + σ2

i) cos
2 ξi

}}
(4)

1

Proof of Lemma 2.1 was previously given in [4], and the details are summarized as follows.15

∵ f(x, y) = f(x)f(y), to see Fig 1 (a), we have16

P (x > y) =

∫∫
x>y

f(x)f(y)dxdy

=

∫∫
x>y

1√
2πσ0

exp

{
−1

2

(
x− µ0

σ0

)2
}
× 1√

2πσ1

exp

{
−1

2

(
y − µ1

σ1

)2
}
dxdy (5)

Let (x − µ0)/(
√
2σ0) = u, (y − µ1)/(

√
2σ1) = v, then |J | = 2σ0σ1, where |J | is the Jacobian17

determinant.18

Domain D: x > y become D1:
√
2σ0 + µ0 >

√
2σ1v + µ1.19

By formula20 ∫∫
D

f(x, y)dxdy =

∫∫
D1

f [x(u, v), y(u, v)]|J |dudv (6)

P (x > y) =
1

π

∫∫
D1

exp[−(u2 + v2)]dudv

=
1

π

∫∫
D1+D2

exp[−(u2 + v2)]dudv − 1

π

∫∫
D2

exp[−(u2 + v2)]dudv (7)

See Fig. 1 (b), let u = ρ cosϕ, v = ρ sinϕ.21 ∫∫
D1+D2

exp[−(u2 + v2)]dudv =

∫ ϕ1

−π+ϕ1

dϕ

∫ ∞

0

exp(−ρ2)dρ = π/2 (8)

where r = [(µ1 − µ0)/(
√
2σ0)]× [sinϕ1/ sin(ϕ1 − ϕ)].22 ∫∫

D2

exp[−(u2 + v2)]dudv =

∫ ϕ1

−π+ϕ1

[∫ r

0

ρ exp(−ρ2)dρ
]
dϕ

=
π

2
− 1

2

∫ ϕ1

−π+ϕ1

exp

{
−
(

(µ1 − µ0)× sinϕ1√
2σ0 × sin(ϕ1 − ϕ)

)2
}
dϕ

=
π

2
− 1

2

∫ π/2

−π/2

exp

{
−
(
(µ1 − µ0)× sinϕ1√

2σ0 × cos θ

)2
}
dθ (9)

Let θ = ϕ1 − ϕ− π/2. Therefore,23

P (x > y) =
1

π

∫ π
2

0

exp

{
−
(
µ1 − µ0√

2σ0

sinϕ1

)2

/ cos2 θ

}
dθ

=
1

π

∫ π
2

0

exp

−1

2

(
µ1 − µ0

cos θ
√

σ2
0 + σ2

1

)2
 dθ (10)

∵ arctanϕ1 = σ0/σ1, ∴ sinϕ1 = σ0/
√

σ2
0 + σ2

1 . From the Mean-value theorem for integrals [1]24

P (x > y) =
1

π

∫ π
2

0

exp

−1

2

(
µ1 − µ0√
σ2
0 + σ2

1

)2

/ cos2 θ

 dθ

=
1

2
exp

−1

2

(
µ1 − µ0√
σ2
0 + σ2

1

)2

/ cos2 ξ

 (11)

2

Figure 1: Left: (a), Right: (b)

Where 0 < ξ < π/2 is a constant. Q.E.D.25

Lemma 2.2 is proved according to Eq. (3) on the basis of Lemma 2.1, as follows:26

P [x1 = max{x1, x2, · · · , xm}] =
m∏
i=2

P (x1 ≥ xi)

=

m∏
i=2

[1− P (xi > x1)]

=

m∏
i=2

{
1− 1

2
exp

{
− (µ1 − µi)

2

2(σ2
1 + σ2

i) cos
2 ξi

}}
. (12)

Lemma 2.3. Lindeberg–Lévy Central Limit Theory [2]: Suppose {X1, · · · , Xn} is a sequence of27

i.i.d. random variables with E[Xi] = µ and V ar[Xi] = σ2 <∞. Then28

lim
n→∞

X̄n ∼ N (µ, σ2/n). (13)

Next, we give the proof of the Theorem 4.3. While doing MCTS, a scouted subtree T (st) is generated29

and it contains K + 1 nodes including st after K simulations as illustrated in the left of Figure 2.30

Based on Eq. (8), the estimated root state value v(st) is calculated as:31

v(st) =

∑
s′∈T (st)

f(s′)

K + 1
− g(st). (14)

32

For a Markov sequential decision problem, the probability of the optimal path L∗ = {s0, . . . , snL
}33

being found by MCTS is:34

Pg = P (s0 → s1, s1 → s2, · · · ,→ snL
)

=

nL−1∏
t=0

P (st → st+1), (15)

where P (st → st+1) denotes the probability that st+1 is selected while searching with state st as the35

root node. As shown in the right of Figure 2, assume state st has m children and the first child s1t+136

is in the optimal path. According to Assumption 4.2, f values of {sit+1, i = 2, 3, · · · ,m} as well as37

their descendant states are variables sampled from i.i.d. distribution Pr(µf
1 , σ

2
1), because the optimal38

path is in the subtree of s1t+1. Based on Lemma 2.3 and Eq. (14), rit+1 + v(sit+1) ∼ N (µf
1 − g(st),39

σ2
1/K

i
t+1) where Ki

t+1 is the simulation times of sit+1. The s1t+1 is assumed to be the optimal child40

of st and T (s1t+1) is composed by both the states in the optimal path and the ones not in the optimal41

path. Assume there are K∗
t+1 descendants in the optimal path and K1

t+1 −K∗
t+1 descendants are42

3

Figure 2: Left: a simulation of MCTS. st is current state and T (st) is the scouted subtree rooted with
st, containing K nodes. st+k is the expanded node in kth simulation; Right: s1t+1 is selected after
MCTS simulation rooted with st.

not in the optimal path. Let T ∗ and T ∗ represent the descendant set in or not in the optimal path43

separately. T (s) = T ∗ ∪ T ∗ and T ∗ ∩ T ∗ = ∅. In this situation:44

f̄ =

∑
s′∈T (sit+1)

f(s′)

K1
t+1

=

∑
s′∈T∗ f(s′) +

∑
s′∈T∗ f(s′)

K1
t+1

=
K∗

t+1

K1
t+1

µf
0 +

K1
t+1 −K∗

t+1

K1
t+1

1

K1
t+1 −K∗

t+1

∑
s′∈T∗

f(s′). (16)

∑
s′∈T∗ f(s′)/(K1

t+1 − K∗
t+1) is the mean of K1

t+1 − K∗
t+1 variables sampled from Pr(µf

1 , σ
2
1).45

Therefore,
∑

s′∈Tr∗ f(s
′)/(K1

t+1 −K∗
t+1) ∼ N (µf

1 , σ
2
1/(K

1
t+1 −K∗

t+1)) according to the central46

limit theory in Lemma 2.3. Therefore,47

K1
t+1 −K∗

t+1

K1
t+1

1

K1
t+1 −K∗

t+1

∑
s′∈T∗

f(s′) ∼ N (
K1

t+1 −K∗
t+1

K1
t+1

µf
1 ,

K1
t+1 −K∗

t+1

(K1
t+1)

2
σ2
1)

48

f̄ ∼ N (
K∗

t+1

K1
t+1

µf
0 +

K1
t+1 −K∗

t+1

K1
t+1

µf
1 ,

K1
t+1 −K∗

t+1

(K1
t+1)

2
σ2
1)

= N (
K∗

t+1

K1
t+1

(µf
0 − µf

1) + µf
1 ,

K1
t+1 −K∗

t+1

(K1
t+1)

2
σ2
1)

Therefore, r1t+1 + v(s1t+1) = f̄ − g(st) ∼ N (µf
1 − g(st) +

K∗
t+1

K1
t+1

(µf
0 − µf

1),
K1

t+1−K∗
t+1

(K1
t+1)

2 σ2
1). When49

the simulation is finished, the decision is made based on50

at+1 = argmax
i

{
rit+1 + v(sit+1)

}
. (17)

In summary, for the optimal child s1t+1, we have r1t+1 + v(s1t+1) ∼ N (µf
1 − g(st) +

K∗
t+1

K1
t+1

(µf
0 −51

µf
1),

K1
t+1−K∗

t+1

(K1
t+1)

2 σ2
1) and for state sit+1(i > 1), rit+1 + v(sit+1) ∼ N (µf

1 − g(st),
σ2
1

Ki
t+1

). The52

probability that the optimal child s1t+1 is selected is53

P (st → s1t+1) = P (r1t+1 + v(s1t+1) = maxi{rit+1 + v(sit+1)|i ∈ [1,m]}) (18)

According to the Lemma 2.2, we have54

P (st → s1t+1) =

m∏
i=2

1− 1

2
exp

−
(

K∗
t+1

K1
t+1

(µf
0 − µf

1)
)2

2
(

σ2
1

Ki
t+1

+
(K1

t+1−K∗
t+1)σ

2
1

(Ki
t+1)

2

)
cos2 ξi


 . (19)

4

Let K ′ denotes the least simulation times, that is Ki
t+1 ≥ K ′ for all states. cos2 ξi ≤ 1 always55

established. Therefore,56

P (st → s1t+1) ≥

1− 1

2
exp

−
(

K∗
t+1

K1
t+1

(µf
0 − µf

1)
)2

2
(

1
K′ +

K1
t+1−K∗

t+1

(K′)2

)
σ2
1




m−1

. (20)

Based on Eq 15, the probability of the optimal path L∗ = {s0, · · · , snL
} being found by MCTS is57

Pg =

nL−1∏
t=0

P (st → st+1) ≥
nL−1∏
t=0

1− 1

2
exp

−
(

K∗
t+1

K1
t+1

(µf
0 − µf

1)
)2

2
(

1
K′ +

K1
t+1−K∗

t+1

(K′)2

)
σ2
1




m−1

=

nL∏
t=1

{
1− 1

2
exp

{
− [bt(µ

f
0 − µf

1)]
2

2(1/K ′ +mt)σ2
1

}}
(21)

where bt = K∗
t /K

1
t , mt = (K1

t −K∗
t)/(K

1
t)

2, and K ′ denotes the least simulation times, that is58

Ki
t ≥ K ′ for an arbitrary state. If MCTS’s simulation times K is large enough, every child will be59

visited enough times because of the exploration term in Eq. (6), that are K ′ → +∞, mt → 0, and60

bt approaches a constant when K → +∞. If bt = ∞, the optimal branch will always be selected61

according to Eq. (6) until bt becoming a limited constant. Therefore, we have62

lim
K→∞

Pg ≥
nL∏
t=1

{
1− 1

2
exp

{
− [bt(µ

f
0 − µf

1)]
2

2(1/K ′)σ2
1

}}
(22)

Theorem 4.3 has been proven.

Table 1: Winning rate of PCZero against AlphaZero without PC (in percentage %).

BoardSize 8× 8 9× 9 13× 13

Player Greedy Player MCTS Player Greedy Player MCTS Player Greedy Player MCTS Player

λ = 0.1 53.1 56.3 51.9 56.8 47.6 49.4
λ = 0.5 49.2 54.7 54.3 49.4 51.5 49.1
λ = 1.0 48.4 50.0 53.1 54.3 44.7 53.6
λ = 2.0 51.6 53.1 53.1 59.9 52.1 63.9

Table 2: Test results with 32 seeds, presented as mean±standard deviation.

Game EfficientZero† GW-PCZero Game EfficientZero† GW-PCZero

Alien 850.6± 339.2 699.7± 130.7 Amidar 60.6± 2.42 97.0± 12.3
Assault 994.8± 181.4 1224.1± 371.2 Asterix 17734.4± 2921.9 14771.9± 5018.8

BankHeist 276.9± 40.4 207.2± 59.8 BattleZone 15875.0± 4614.9 13500.0± 6557.4
Boxing 28.2± 7.2 41.6± 11.7 Breakout 366.7± 56.1 450.0± 160.8

ChopperCmd 818.8± 323.5 1150.0± 362.3 CrazyClimber 8059.4± 2242.9 9734.4± 4233.3
DemonAttack 7940.8± 3835.9 24074.1± 15593.6 Freeway 0.0± 0.0 0.0± 0.0

Frostbite 229.1± 19.9 249.7± 16.3 Gopher 1325.6± 638.3 1286.9± 803.1
Hero 7537.2± 81.7 8171.3± 795.3 Jamesbond 300.0± 179.0 525.0± 252.5

Kangaroo 525.0± 277.3 262.5± 145.2 Krull 3818.5± 600.5 7782.0± 1018.6
KungFuMaster 8956.3± 1816.4 20543.8± 5216.1 MsPacman 967.5± 320.9 1594.1± 746.8

Pong 15.6± 4.5 19.8± 1.2 PrivateEye 0.0± 0.0 96.9± 17.4
Qbert 8120.3± 632.2 13651.6± 2216.1 RoadRunner 3443.7± 1058.6 16809.4± 3635.1

Seaquest 478.1± 82.8 768.1± 210.8 UpNDown 7592.5± 3997.6 12344.7± 5173.7

63

3 Investigation of λ on board games64

Table 1 shows the winning rate of PCZero against AlphaZero without path consistency in Hex game65

with different board sizes. The larger the size of the board, the more complex the problem becomes.66

We can see that the game with a smaller board size should have a smaller PC loss weight λ and the67

game with a larger board size should have a larger λ to fully utilize path consistency.68

5

4 Variance of the result69

Tested with 32 seeds, result with standard deviation is summarized in Table 2.70

5 Hyper-parameters setting71

Neural network in this paper is the same as EfficientZero. Hyper-parameters are listed in Table 3,72

which are the same with EfficientZero except that training steps are changed from 120k to 60k and73

the off-policy value correction is disabled. State value is reanalyzed with value network instead of74

MCTS’s root value.

Table 3: Hyper-parameters of the learning process

Parameter Setting

Observation down-sampling shape 96× 96
Frames stacked 4

Frames skip 4
Discount factor 0.9974

Batch size 256
Optimizer SGD

Learning rate 0.2→ 0.02
Momentum 0.9

Weight decay 0.0001
Max gradient norm 5
Priority exponent 0.6
Priority correction 0.4→ 1

Training steps 60k
Evaluation episodes 32

Min replay size for sampling 2, 000
Self-play network updating interval 100

Target network updating interval 200
Unroll steps 5

TD steps 5
Policy loss coefficient 1.0
Value loss coefficient 0.25

Self-supervised consistency loss coefficient 2.0
Value prefix loss coefficient 1.0

Dirichlet noise ratio 0.3
Number of simulations in MCTS 50

Reanalyzed policy ratio 0.99
Selfplay max moves 108, 000

Test max moves 12, 000
LSTM horizon 5

LSTM hidden size 512
Network parameter initialize zero True

Clip reward True
RGB image based True

Do self-supervised consistency True
Use value-prefix True

MCTS Off-policy value correction False

75

6 Comparison of evaluation curves76

Learning curves of all 26 Atari games are displayed in Figure 3, 4 & 5.77

6

Figure 3: Learning curves (Part 1)

7 Experiment on more games78

7.1 Hex game79

In this section, the idea of weighting path consistency is applied to PCZero on 13× 13 Hex game. In80

PCZero [6], the learning target is calculated as the mean of l upstream states and k downstream states81

in Eq (23).82

tPC(st) =
1

l + k

k∑
i=−l

v(st+i). (23)

Considering weighting mechanism, the learning target is calculated by:83

tPC(st) =

k∑
i=−l

wiv(st+i)/

k∑
i=−l

wi, (24)

where wi is linear decay weight. As the distance from st increases, wi decreases proportionally as84

shown in Eq (25)85

wi = b0 − a0 × |i|. (25)

7

Figure 4: Learning curves (Part 2)

In the experiment, b0 = 1.0 and a0 = 0.1. Trained with the same dataset with PCZero, which86

is consist of 900k selfplay games, Weighted PCZero beats the original PCZero with 175 : 16387

score, when the simulation times of MCTS is 800, demonstrating that weighting mechanism is also88

beneficial to PCZero and it deserves further investigation.89

7.2 Classic control problem90

We also investigate the idea of generalized weighted path consistency on MuZero [3]. The implemen-91

tation of PC is exactly the same as GW-PCZero, except that the underlying EfficientZero has been re-92

placed with MuZero, which is available in https://github.com/koulanurag/muzero-pytorch.93

The CartPole problem is used for comparison, for which the goal is to balance the pole by applying94

forces in the left and right direction on the cart. The learning cures are displayed in Figure 6. On the95

left is MuZero without reanalyzing. on the right is MuZero with reanalyzing and the proportion of96

reanalyzing is 0.99. Path consistency significantly improves the model’s performance in both cases.97

The idea of generalized weighted path consistency is also effective for MuZero.98

8

https://github.com/koulanurag/muzero-pytorch

Figure 5: Learning curves (Part 3)

Figure 6: Learning curves for MuZero with and without path consistency. (Left: MuZero without
reanalyze; Right: MuZero with 0.99 reanalyze rate.)

8 Pseudocode for GW-PCZero99

In this section, we will provide a brief summary of the pseudocode for GW-PCZero algorithm. As100

shown in Algorithm 1, the entire training process can be divided into three parts. The first part101

involves collecting game frames by employing a MCTS player guided by the policy and value102

network. The second part entails reanalyzing the collected states in the playing path to generate labels103

for training the model. This process is illustrated in Algorithm 1, and the PC target is prepared by104

calculating the weighted average of the f values along the path, as depicted in Algorithm 3. The105

third part entails updating the policy model and value model using the prepared data, where the loss106

function is defined in Equation (2). In this equation, LRL is the same as that used in EfficientZero107

[5], and LPC is defined in Equation (10).

Algorithm 1: Framework for GW-PCZero
Input: Training steps N
Output: Policy and value network.

1: Initialize policy network π and value network v.
2: n← 0
3: while n < N do
4: Collect playing game frames with MCTS player guided by π and v.
5: Prepare learning target by reanalyzation with MCTS in Algorithm 2.
6: Update π and v using the loss function defined in Eq. (2).
7: end while
8: return tPC = T/

∑
wi.

9

Algorithm 2: Sample Preparation for GW-PCZero
Input: Replay bufferR, Unrolled steps l.
Output: (π, z, tPC).

1: Sample unrolled sequences with l + 1 states fromR.
2: for each sampled sequence do
3: Reanalyze policy target π by MCTS.
4: Recalculate value target z by bootstrapping in Eq. (9).
5: Estimate PC target tPC according to Algorithm 3.
6: end for
7: return Tuple (π, z, tPC).

Algorithm 3: Weighted PC target tPC estimation
Input: S = {st, rt+1, st+1, · · · , st+l}, value function v(s) and weights w = {w0, w1, · · · , wl}.
Output: Target tPC .

1: Initialize T = 0.
2: for each state st+i in S do

3: T = T + wi ×

[
i∑

j=1

rt+j + v(st+i)

]
4: end for
5: return tPC = T/

∑
wi.

References108

[1] Tom M Apostol and CM Ablow. Mathematical analysis. Physics Today, 11(7):32, 1958.109

[2] Radha G Laha and Vijay K Rohatgi. Probability theory. Courier Dover Publications, 2020.110

[3] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,111

Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and shogi112

by planning with a learned model. Nature, 588(7839):604–609, 2020.113

[4] Lei Xu, Pingfan Yan, and Tong Chang. Algorithm cnneim-a and its mean complexity. In Proc. of 2nd114

international conference on computers and applications. IEEE Press, Beijing, pages 494–499, 1987.115

[5] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games with116

limited data. Advances in Neural Information Processing Systems, 34:25476–25488, 2021.117

[6] Dengwei Zhao, Shikui Tu, and Lei Xu. Efficient learning for AlphaZero via path consistency. In Proceedings118

of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning119

Research, pages 26971–26981. PMLR, 17–23 Jul 2022.120

10

	Deviation of Eq (12)
	Deviation of Theorem 4.3
	Investigation of on board games
	Variance of the result
	Hyper-parameters setting
	Comparison of evaluation curves
	Experiment on more games
	Hex game
	Classic control problem

	Pseudocode for GW-PCZero

