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Abstract

In this paper, we consider non-smooth stochastic convex optimization with two
function evaluations per round under infinite noise variance. In the classical
setting when noise has finite variance, an optimal algorithm, built upon the batched
accelerated gradient method, was proposed in [17]. This optimality is defined in
terms of iteration and oracle complexity, as well as the maximal admissible level
of adversarial noise. However, the assumption of finite variance is burdensome and
it might not hold in many practical scenarios. To address this, we demonstrate how
to adapt a refined clipped version of the accelerated gradient (Stochastic Similar
Triangles) method from [35] for a two-point zero-order oracle. This adaptation
entails extending the batching technique to accommodate infinite variance — a
non-trivial task that stands as a distinct contribution of this paper.

1 Introduction

In this paper, we consider stochastic non-smooth convex optimization problem

min
x∈Rd

{
f(x)

def
= Eξ∼D [f(x, ξ)]

}
, (1)

where f(x, ξ) is M2(ξ)-Lipschitz continuous in x w.r.t. the Euclidean norm, and the expectation
Eξ∼D [f(x, ξ)] is with respect to a random variable ξ with unknown distribution D. The optimization
is performed only by accessing two function evaluations per round rather than sub-gradients, i.e., for
any pair of points x, y ∈ Rd, an oracle returns f(x, ξ) and f(y, ξ) with the same ξ. The primary
motivation for this gradient-free oracle arises from different applications where calculating gradients
is computationally infeasible or even impossible. For instance, in medicine, biology, and physics,
the objective function can only be computed through numerical simulation or as the result of a
real experiment, i.e., automatic differentiation cannot be employed to calculate function derivatives.
Usually, a black-box function we are optimizing is affected by stochastic or computational noise. This
noise can arise naturally from modeling randomness within a simulation or by computer discretization.
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In classical setting, this noise has light tails. However, usually in black-box optimization, we know
nothing about the function, only its values at the requested points are available/computable, so light
tails assumption may be violated. In this case, gradient-free algorithms may diverge. We aim to
develop an algorithm that is robust even to heavy-tailed noise, i.e., noise with infinite variance. In
theory, one can consider heavy-tailed noise to simulate situations where noticeable outliers may occur
(even if the nature of these outliers is non-stochastic). Therefore we relax classical finite variance
assumption and consider less burdensome assumption of finite α-th moment, where α ∈ (1, 2].

In machine learning, interest in gradient-free methods is mainly driven by the bandit optimization
problem [14, 2, 5], where a learner engages in a game with an adversary: the learner selects a point x,
and the adversary chooses a point ξ. The learner’s goal is to minimize the average regret based solely
on observations of function values (losses) f(x, ξ). As feedback, at each round, the learner receives
losses at two points. This corresponds to a zero-order oracle in stochastic convex optimization with
two function evaluations per round. The vast majority of researches assume sub-Gaussian distribution
of rewards. However, in some practical cases (e.g., in finance [33]) reward distribution has heavy-tails
or can be adversarial. For the heavy-tailed bandit optimization, we refer to [9].

Two-point gradient-free optimization for non-smooth (strongly) convex objective is a well-researched
area. Numerous algorithms have been proposed which are optimal with respect to two criteria: oracle
and iteration complexity. For a detailed overview, see the recent survey [15] and the references
therein. Optimal algorithms, in terms of oracle call complexity, are presented in [10, 36, 3]. The
distinction between the number of successive iterations (which cannot be executed in parallel) and
the number of oracle calls was initiated with the lower bound obtained in [6]. It culminated with the
optimal results from [17], which provides an algorithm which is optimal in both criteria. Specifically,
the algorithm produces x̂, an ε-solution of (1), such that we can guarantee E[f(x̂)]− min

x∈Rd
f(x) after

∼ d
1
4 ε−1 successive iterations,

∼ dε−2 oracle calls (number of f(x, ξ) calculations).

The convergence guarantee for this optimal algorithm from [17] was established in the classical
setting of light-tailed noise, i.e., when noise has finite variance: Eξ[M2(ξ)

2] < ∞. However, in many
modern learning problems the variance might not be finite, leading the aforementioned algorithms to
potentially diverge. Indeed, heavy-tailed noise is prevalent in contemporary applications of statistics
and deep learning. For example, heavy-tailed behavior can be observed in training attention models
[41] and convolutional neural networks [37, 20]. Consequently, our goal is to develop an optimal
algorithm whose convergence is not hampered by this restrictive assumption. To the best of our
knowledge, no existing literature on gradient-free optimization allows for Eξ[M2(ξ)

2] to be infinite.
Furthermore, convergence results for all these gradient-free methods were provided in expectation,
that is, without (non-trivial) high-probability bounds. Although the authors of [17] mentioned
(without proof) that their results can be formulated in high probability using [19], this aspect notably
affects the oracle calls complexity bound and complicates the analysis.

A common technique to relax finite variance assumption is gradient clipping [31]. Starting from the
work of [26] (see also [8, 19]), there has been increased interest in algorithms employing gradient
clipping to achieve high-probability convergence guarantees for stochastic optimization problems
with heavy-tailed noise. Particularly, in just the last two years there have been proposed

• an optimal algorithm with a general proximal setup for non-smooth stochastic convex optimization
problems with infinite variance [39] that converges in expectation (also referenced in [27]),

• an optimal adaptive algorithm with a general proximal setup for non-smooth online stochastic
convex optimization problems with infinite variance [42] that converges with high probability,

• optimal algorithms using the Euclidean proximal setup for both smooth and non-smooth stochastic
convex optimization problems and variational inequalities with infinite variance [35, 30, 29] that
converge with high probability,

• an optimal variance-adaptive algorithm with the Euclidean proximal setup for non-smooth stochastic
(strongly) convex optimization problems with infinite variance [24] that converges with high
probability.

None of these papers discuss a gradient-free oracle. Moreover, they do not incorporate acceleration
(given the non-smooth nature of the problems) with the exception of [35]. Acceleration is a crucial
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component to achieving optimal bounds on the number of successive iterations. However, the
approach in [35] presumes smoothness and does not utilize batching. To apply the convergence
results from [35] to our problem, we need to adjust our problem formulation to be smooth. This
is achieved by using the Smoothing technique [27, 36, 17]. In the work [22] authors proposed
an algorithm based on Smoothing technique and non-accelerated Stochastic Mirror Descent with
clipping. However, this work also does not support acceleration, minimization on the whole space
and batching. Adapting the technique from [35] to incorporate batching necessitates a substantial
generalization. We regard this aspect of our work as being of primary interest.

Heavy-tailed noise can also be handled without explicit gradient clipping, e.g., by using Stochastic
Mirror Descent algorithm with a particular class of uniformly convex mirror maps [39]. However, the
convergence guarantee for this algorithm is given in expectation. Moreover, applying batching and
acceleration is a non-trivial task. Without this, we are not able to get the optimal method in terms of
the number of iterations and not only in terms of oracle complexity. There are also some studies on
the alternatives to gradient clipping [21] but the results for these alternatives are given in expectation
and are weaker than the state-of-the-art results for the methods with clipping. This is another reason
why we have chosen gradient clipping to handle the heavy-tailed noise.

1.1 Contributions

We generalize the optimal result from [17] to accommodate a weaker assumption that allows the
noise to exhibit heavy tails. Instead of the classical assumption of finite variance, we require the
boundedness of the α-moment: there exists α ∈ (1, 2] such that Eξ[M2(ξ)

α] < ∞. Notably, when
α < 2, this assumption is less restrictive than the assumption of a finite variance and thus it has
garnered considerable interest recently, see [41, 35, 29] and the references therein. Under this
assumption we prove that for convex f , an ε-solution can be found with high probability after

∼ d
1
4 ε−1 successive iterations,

∼
(√

d/ε
) α

α−1

oracle calls,

and for µ-strongly convex f , the ε-solution can be found with high probability after

∼ d
1
4 (µε)

− 1
2 successive iterations,

∼ (d/(µε))
α

2(α−1) oracle calls.

In both instances, the number of oracle calls is optimal in terms of ε-dependency within the
non-smooth setting [27, 39]. For first-order optimization under heavy-tailed noise, the optimal
ε-dependency remains consistent, as shown in [35, Table 1].

In what follows, we highlight the following several important aspects of our results

• High-probability guarantees. We provide upper-bounds on the number of iterations/oracle calls
needed to find a point x̂ such that f(x̂)−minx∈Rd f(x) ≤ ε with probability at least 1− β. The
derived bounds have a poly-logarithmic dependence on 1/β. To the best of our knowledge, there are
no analogous high-probability results, even for noise with bounded variance.

• Generality of the setup. Our results are derived under the assumption that gradient-free oracle
returns values of stochastic realizations f(x, ξ) subject to (potentially adversarial) bounded noise.
We further provide upper bounds for the magnitude of this noise, contingent upon the target
accuracy ε and confidence level β. Notably, our assumptions about the objective and noise are
confined to a compact subset of Rd. This approach, which differs from standard ones in derivative-
free optimization, allows us to encompass a wide range of problems. This approach differs from
standard ones in derivative-free optimization

• Batching without bounded variance. To establish the aforementioned upper bounds, we obtain
the following: given X1, . . . , XB as independent random vectors in Rd where E[Xi] = x ∈ Rd

and E∥Xi − x∥α2 ≤ σα for some σ ≥ 0 and α ∈ (1, 2], then

E

[∥∥∥∥∥ 1

B

B∑
i=1

Xi − x

∥∥∥∥∥
α

2

]
≤ 2σα

Bα−1
. (2)
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When α = 2, this result aligns with the conventional case of bounded variance (accounting for a
numerical factor of 2). Unlike existing findings, such as [40, Lemma 7] where α < 2, the relation
(2) does not exhibit a dependency on the dimension d. Moreover, (2) offers a theoretical basis to
highlight the benefits of mini-batching, applicable to methods highlighted in this paper as well as
first-order methods presented in [35, 29].

• Dependency on d. As far as we are aware, an open question remains: is the bound
(√

d/ε
) α

α−1

optimal regarding its dependence on d? For smooth stochastic convex optimization problems
using a (d+ 1)-points stochastic zeroth-order oracle, the answer is negative. The optimal bound
is proportional to dε−

α
α−1 . Consequently, for α ∈ (1, 2), our results are intriguing because the

dependence on d in our bound differs from known results in the classical case where α = 2.

1.2 Paper organization

The paper is organized as follows. In Section 2, we give some preliminaries, such as smoothing
technique and gradient estimation, that are workhorse of our algorithms. Section 3 is the main
section presenting two novel gradient-free algorithms along with their convergence results in high
probability. These algorithms solve non-smooth stochastic optimization under heavy-tailed noise,
and they will be reffered to as ZO-clipped-SSTM and R-ZO-clipped-SSTM (see Algorithms 1
and 2 respectively). In Section 4, we extend our results to gradient-free oracle corrupted by additive
deterministic adversarial noise. In Section 5, we describe the main ideas behind the proof and
emphasize key lemmas. In Section 6, we provide numerical experiments on the synthetic task that
demonstrate the robustness of the proposed algorithms towards heavy-tailed noise.

2 Preliminaries

Assumptions on a subset. Although we consider an unconstrained optimization problem, our
analysis does not require any assumptions to hold on the entire space. For our purposes, it is sufficient
to introduce all assumptions only on some convex set Q ∈ Rd since we prove that the considered
methods do not leave some ball around the solution or some level-set of the objective function with
high probability. This allows us to consider fairly large classes of problems.

Assumption 1 (Strong convexity) There exist a convex set Q ⊂ Rd and µ ≥ 0 such that function
f(x, ξ) is µ-strongly convex on Q for any fixed ξ, i.e.

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)−
1

2
µλ(1− λ)∥x1 − x2∥22,

for all x1, x2 ∈ Q,λ ∈ [0, 1].

This assumption implies that f(x) is µ-strongly convex as well.

For a small constant τ > 0, let us define an expansion of set Q namely Qτ = Q + Bd
2 , where +

stands for Minkowski addition. Using this expansion we make the following assumption.

Assumption 2 (Lipschitz continuity and boundedness of α-moment) There exist a convex set
Q ⊂ Rd and τ > 0 such that function f(x, ξ) is M2(ξ)-Lipschitz continuous w.r.t. the Euclidean
norm on Qτ , i.e., for all x1, x2 ∈ Qτ

|f(x1, ξ)− f(x2, ξ)| ≤ M2(ξ)∥x1 − x2∥2.
Moreover, there exist α ∈ (1, 2] and M2 > 0 such that Eξ[M2(ξ)

α] ≤ Mα
2 .

If α < 2, we say that noise is heavy-tailed. When α = 2, the above assumption recovers the standard
uniformly bounded variance assumption.

Lemma 1 Assumption 2 implies that f(x) is M2-Lipschitz on Q.

Randomized smoothing. The main scheme that allows us to develop batch-parallel gradient-free
methods for non-smooth convex problems is randomized smoothing [13, 17, 27, 28, 38] of a non-
smooth function f(x, ξ). The smooth approximation to a non-smooth function f(x, ξ) is defined as
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f̂τ (x)
def
= Eu,ξ[f(x+ τu, ξ)], (3)

where u ∼ U(Bd
2 ) is a random vector uniformly distributed on the Euclidean unit ball

Bd
2

def
= {x ∈ Rd : ∥x∥2 ≤ 1}. In this approximation, a new type of randomization appears in ad-

dition to stochastic variable ξ.

The next lemma gives estimates for the quality of this approximation. In contrast to f(x), function
f̂τ (x) is smooth and has several useful properties.

Lemma 2 [17, Theorem 2.1.] Let there exist a subset Q ⊂ Rd and τ > 0 such that Assumptions 1
and 2 hold on Qτ . Then,

1. Function f̂τ (x) is convex, Lipschitz with constant M2 on Q, and satisfies

sup
x∈Q

|f̂τ (x)− f(x)| ≤ τM2.

2. Function f̂τ (x) is differentiable on Q with the following gradient

∇f̂τ (x) = Ee

[
d

τ
f(x+ τe)e

]
,

where e ∼ U(Sd
2 ) is a random vector uniformly distributed on unit Eucledian sphere

Sd
2

def
= {x ∈ Rd : ∥x∥2 = 1}.

3. Function f̂τ (x) is L-smooth with L =
√
dM2/τ on Q.

Our algorithms will aim at minimizing the smooth approximation f̂τ (x). Given Lemma 2, the output
of the algorithm will also be a good approximate minimizer of f(x) when τ is sufficiently small.

Gradient estimation. Our algorithms will based on randomized gradient estimate, which will then
be used in a first order algorithm. Following [36], the gradient can be estimated by the following
vector:

g(x, ξ, e) =
d

2τ
(f(x+ τe, ξ)− f(x− τe, ξ))e, (4)

where τ > 0 and e ∼ U(Sd
2 ). We also use batching technique in order to allow parallel calculation

of gradient estimation and acceleration. Let B be a batch size, we sample {ei}Bi=1 and {ξi}Bi=1
independently, then

gB(x, {ξ}, {e}) = d

2Bτ

B∑
i=1

(f(x+ τei, ξi)− f(x− τei, ξi))ei. (5)

The next lemma states that gB(x, {ξ}, {e}) from (5) is an unbiased estimate of the gradient of f̂τ (x)
(3). Moreover, under heavy-tailed noise (Assumption 2) with bounded α-moment gB(x, {ξ}, {e})
has also bounded α-moment.

Lemma 3 Under Assumptions 1 and 2, it holds

Eξ,e[g(x, ξ, e)] = E{ξ},{e}[g
B(x, {ξ}, {e})] = ∇f̂τ (x).

and

Eξ,e[∥g(x, ξ, e)− Eξ,e[g(x, ξ, e)]∥α2 ] ≤ σα def
=

(√
dM2

2
1
4

)α

,

E{ξ},{e}[∥gB(x, {ξ}, {e})− E{ξ},{e}[g
B(x, {ξ}, {e})]∥α2 ] ≤

2σα

Bα−1
. (6)
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3 Main Results

In this section, we present two our new zero-order algorithms, which we will refer to as ZO-clipped-
SSTM and R-ZO-clipped-SSTM, to solve problem (1) under heavy-tailed noise assumption. To
deal with heavy-tailed noise, we use clipping technique which clips heavy tails. Let λ > 0 be clipping
constant and g ∈ Rd, then clipping operator clip is defined as

clip (g, λ) =

{
g

∥g∥2
min (∥g∥2, λ) , g ̸= 0,

0, g = 0.
(7)

We apply clipping operator for batched gradient estimate gB(x, {ξ}, {e}) from (5) and then feed it
into first-order Clipped Stochastic Similar Triangles Method (clipped-SSTM) from [18]. We will
refer to our zero-order versions of clipped-SSTM as ZO-clipped-SSTM and R-ZO-clipped-SSTM
for the convex case and strongly convex case respectively.

3.1 Convex case

Let us suppose that Assumption 1 is satisfied with µ = 0.

Algorithm 1 ZO-clipped-SSTM
(
x0,K,B, a, τ, {λk}K−1

k=0

)
Input: starting point x0, number of iterations K, batch size B, stepsize a > 0, smoothing parameter

τ , clipping levels {λk}K−1
k=0 .

1: Set L =
√
dM2/τ , A0 = α0 = 0, y0 = z0 = x0

2: for k = 0, . . . ,K − 1 do
3: Set αk+1 = k+2/2aL, Ak+1 = Ak + αk+1.
4: xk+1 = Aky

k+αk+1z
k

Ak+1
.

5: Sample {ξki }Bi=1 ∼ D and {eki }Bi=1∼ Sd
2 independently.

6: Compute gradient estimation gB(xk+1, {ξk}, {ek}) as defined in (5).
7: Compute clipped g̃k+1 = clip

(
gB(xk+1, {ξk}, {ek}), λk

)
as defined in (7).

8: zk+1 = zk − αk+1g̃k+1.

9: yk+1 = Aky
k+αk+1z

k+1

Ak+1
.

10: end for
Output: yK

Theorem 1 (Convergence of ZO-clipped-SSTM) Let Assumptions 1 and 2 hold with µ = 0 and
Q = Rd. Let ∥x0 − x∗∥2 ≤ R2, where x0 is a starting point and x∗ is an optimal solution
to (1). Then for the output yK of ZO-clipped-SSTM, run with batchsize B, A = ln 4K/β ≥ 1,

a = Θ(max{A2,
√
dM2K

(α+1)
α A

(α−1)
α /LRB

(α−1)
α }), τ = ε/4M2 and λk = Θ(R/(αk+1A)), we can

guarantee f(yK)− f(x∗) ≤ ε with probability at least 1− β ( for any β ∈ (0, 1]) after

K = Õ

max

M2
4
√
dR

ε
,
1

B

(√
dM2R

ε

) α
α−1


 (8)

successive iterations and K ·B oracle calls. Moreover, with probability at least 1− β the iterates of
ZO-clipped-SSTM remain in the ball B2R(x

∗), i.e., {xk}K+1
k=0 , {yk}Kk=0, {zk}Kk=0 ⊆ B2R(x

∗).

Here and below notation Õ means an upper bound on the growth rate hiding logarithms. The first
term in bound (8) is optimal for the deterministic case for non-smooth problem (see [6]) and the
second term in bound (8) is optimal in ε for α ∈ (1, 2] and zero-point oracle (see [27]).

We notice that increasing the batch size B to reduce the number of successive iterations makes sense
only as long as the first term of (8) lower than the second one, i.e. there exists optimal value of
batchsize

B ≤

(√
dM2R

ε

) 1
α−1

.
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3.2 Strongly-convex case

Now we suppose that Assumption 1 is satisfied with µ > 0. For this case we employ ZO-clipped-
SSTM with restarts technique. We will call this algorithm as R-ZO-clipped-SSTM (see Algorithm
2). At each round R-ZO-clipped-SSTM call ZO-clipped-SSTM with starting point x̂t, which is the
output from the previous round, and for Kt iterations.

Algorithm 2 R-ZO-clipped-SSTM

Input: starting point x0, number of restarts N , number of steps {Kt}Nt=1, batchsizes {Bt}Nt=1,
stepsizes {at}Nt=1, smoothing parameters {τt}Nt=1, clipping levels {λ1

k}
K1−1
k=0 , ..., {λN

k }KN−1
k=0

1: x̂0 = x0.
2: for t = 1, . . . , N do
3: x̂t = ZO-clipped-SSTM

(
x̂t−1,Kt, Bt, at, τt, {λt

k}
Kt−1
k=0

)
.

4: end for
Output: x̂N

Theorem 2 (Convergence of R-ZO-clipped-SSTM) Let Assumptions 1, 2 hold with µ > 0 and
Q = Rd. Let ∥x0 − x∗∥2 ≤ R2, where x0 is a starting point and x∗ is the optimal solution to (1).
Let also N = ⌈log2(µR

2
/2ε)⌉ be the number of restarts. Let at each stage t = 1, ..., N of R-ZO-

clipped-SSTM, ZO-clipped-SSTM is run with batchsize Bt, τt = εt/4M2, Lt = M2

√
d/τt,Kt =

Θ̃(max{
√

LtR
2
t−1/εt, (σRt−1/εt)

α
(α−1) /Bt}), at = Θ̃(max{1, σK

α+1
α

t /LtRt}) and λt
k = Θ̃(R/αt

k+1),
where Rt−1 = 2−

(t−1)
2 R, εt = µR2

t−1/4, ln 4NKt/β ≥ 1, β ∈ (0, 1]. Then to guarantee f(x̂N ) −
f(x∗) ≤ ε with probability at least 1− β, R-ZO-clipped-SSTM requires

Õ

max


√

M2
2

√
d

µε
,

(
dM2

2

µε

) α
2(α−1)


 (9)

oracle calls. Moreover, with probability at least 1− β the iterates of R-ZO-clipped-SSTM at stage
t = 1, . . . , N stay in the ball B2Rt−1(x

∗).

The obtained complexity bound (see the proof in Appendix C.2) is the first optimal (up to logarithms)
high-probability complexity bound under Assumption 2 for the smooth strongly convex problems.
Indeed, the first term cannot be improved in view of the deterministic lower bound [27], and the
second term is optimal [41].

4 Setting with Adversarial Noise

Often, black-box access of f(x, ξ) are affected by some deterministic noise δ(x). Thus, now we
suppose that a zero-order oracle instead of objective values f(x, ξ) returns its noisy approximation

fδ(x, ξ)
def
= f(x, ξ) + δ(x). (10)

This noise δ(x) can be interpreted, e.g., as a computer discretization when calculating f(x, ξ). For
our analysis, we need this noise to be uniformly bounded. Recently, noisy «black-box» optimization
with bounded noise has been actively studied [11, 25]. The authors of [11] consider deterministic
adversarial noise, while in [25] stochastic adversarial noise was explored.

Assumption 3 (Boundedness of noise) There exists a constant ∆ > 0 such that |δ(x)| ≤ ∆ for all
x ∈ Q.

This is a standard assumption often used in the literature (e.g., [17]). Moreover, in some applications
[4] the bigger the noise the cheaper the zero-order oracle. Thus, it is important to understand the
maximum allowable level of adversarial noise at which the convergence of the gradient-free algorithm
is unaffected.
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4.1 Non-smooth setting

In noisy setup, gradient estimate from (4) is replaced by

g(x, ξ, e) =
d

2τ
(fδ(x+ τe, ξ)− fδ(x− τe, ξ)) e. (11)

Then (6) from Lemma 3 will have an extra factor driven by noise (see Lemma 2.3 from [22])

E{ξ},{e}

[∥∥gB(x, {ξ}, {e})− E{ξ},{e}[g
B(x, {ξ}, {e})]

∥∥α
2

]
≤ 2

Bα−1

(√
dM2

2
1
4

+
d∆

τ

)α

.

To guarantee the same convergence of the algorithm as in Theorem 1 (see (8)) for the adversarial
deterministic noise case, the variance term must dominate the noise term, i.e. d∆τ−1 ≲

√
dM2. Note

that if the term with noise dominates the term with variance, it does not mean that the gradient-free
algorithm will not converge. In contrast, algorithm will still converge, only slower (oracle complexity
will be ∼ ε−2 times higher). Thus, if we were considering the zero-order oracle concept with
adversarial stochastic noise, it would be enough to express the noise level ∆, and substitute the
value of the smoothing parameter τ to obtain the maximum allowable noise level. However, since
we are considering the concept of adversarial noise in a deterministic setting, following previous work
[11, 1] we can say that adversarial noise accumulates not only in the variance, but also in the bias:

Eξ,e⟨[g(x, ξ, e)]−∇f̂τ (x), r⟩ ≲
√
d∆∥r∥2τ−1, for all r ∈ Rd.

This bias can be controlled by the noise level ∆, i.e., in order to achieve the ε-accuracy algorithm
considered in this paper, the noise condition must be satisfied:

∆ ≲
τε

R
√
d
. (12)

As we can see, we have a more restrictive condition on the noise level in the bias (12) than in the
variance (∆ ≲ γM2/

√
d). Thus, the maximum allowable level of adversarial deterministic noise, which

guarantees the same convergence of ZO-clipped-SSTM, as in Theorem 1 (see (8)) is as follows

∆ ≲
ε2

RM2

√
d
,

where τ = ε/2M2 the smoothing parameter from Lemma 2.

Remark 1 (µ-strongly convex case) Let us assume that f(x) is also µ-strongly convex (see Assump-
tion 1). Then, following the works [11, 22], we can conclude that the R-ZO-clipped-SSTM has the
same oracle and iteration complexity as in Theorem 2 at the following maximum allowable level of
adversarial noise: ∆ ≲ µ1/2ε3/2/

√
dM2.

4.2 Smooth setting

Now we examine the maximum allowable level of noise at which we can solve optimization problem
(1) with ε-precision under the following additional assumption

Assumption 4 (Smoothness) The function f is L-smooth, i.e., it is differentiable on Q and for all
x, y ∈ Q with L > 0:

∥∇f(y)−∇f(x)∥2 ≤ L∥y − x∥2.

If Assumption 4 holds, then Lemma 2 can be rewritten as

sup
x∈Q

|f̂τ (x)− f(x)| ≤ Lτ2

2
.

Thus, we can now present the convergence results of the gradient-free algorithm in the smooth setting.
Specifically, if the Assumptions 2-4 are satisfied, then ZO-clipped-SSTM converges to ε-accuracy
after K = Õ

(√
LR2ε−1

)
iterations with probability at least 1− β. It is easy to see that the iteration

complexity improves in the smooth setting (since the Lipschitz gradient constant L already exists,

8



i.e., no smoothing is needed), but oracle complexity remained unchanged (since we are still using the
gradient approximation via l2 randomization (11) instead of the true gradient ∇f(x)), consistent with

the already optimal estimate on oracle calls: Õ
((√

dM2Rε−1
) α

α−1

)
. And to obtain the maximum

allowable level of adversarial noise ∆ in the smooth setting, which guarantees such convergence, it is
sufficient to substitute the smoothing parameter τ =

√
ε/L in the inequality (12):

∆ ≲
ε3/2

R
√
dL

.

Thus, we can conclude that smooth setting improves iteration complexity and the maximum allowable
noise level for the gradient-free algorithm, but the oracle complexity remains unchanged.

Remark 2 (µ-strongly convex case) Suppose that f(x) is also µ-strongly convex (see Assumption
1). Then we can conclude that R-ZO-clipped-SSTM has the oracle and iteration complexity just
mentioned above at the following maximum allowable level of adversarial noise: ∆ ≲ µ1/2ε/

√
dL.

Remark 3 (Upper bounds optimality) The upper bounds on maximum allowable level of adversar-
ial noise obtained in this section in both non-smooth and smooth settings are optimal in terms of
dependencies on ε and d according to the works [32, 34].

Remark 4 (Better oracle complexity) In the aforementioned approach in the case when f(x, ξ) has

Lipschitz gradient in x (for all ξ) one can improve oracle complexity from Õ
((√

dM2Rε−1
) α

α−1

)
to Õ

(
d
(
M2Rε−1

) α
α−1

)
. This can be done by using component-wise finite-difference stochastic

gradient approximation [15]. Iteration complexity remains Õ
(√

LR2ε−1
)

. The same can be done

for µ-strongly convex case: from Õ
((

dM2
2 (µε)

−1
) α

2(α−1)

)
to Õ

(
d
(
M2

2 (µε)
−1
) α

2(α−1)

)
.

5 Details of the proof

The proof is built upon a combination of two techniques. The first one is the Smoothing technique
from [17] that is used to develop a gradient-free method for convex non-smooth problems based
on full-gradient methods. The second technique is the Accelerated Clipping technique that has
been recently developed for smooth problems with the noise having infinite variance and first-order
oracle [35]. The authors of [35] propose clipped-SSTM method that we develop in our paper. We
modify clipped-SSTM by introducing batching into it. Note that due to the infinite variance, such a
modification is interesting in itself. Then we run batched clipped-SSTM with gradient estimations
of function f obtained via Smoothing technique and two-point zeroth-order oracle. To do this, we
need to estimate the variance of the clipped version of the batched gradient estimation.

In more detail, we replace the initial problem of minimizing f by minimizing its smoothed approx-
imation f̂τ , see Lemma 2 In order to use estimated gradient of f̂τ defined in (4) or (5), we make
sure that it has bounded α-th moment. For these purposes we proof Lemma 3. First part shows
boundness of unbatched estimated gradient g defined in (4). It follows from measure concentration
phenomenon for the Euclidean sphere for M2

τ -Lipschitz function f(x + eτ). According to this
phenomenon probability of the functions deviation from its math expectation becomes exponentially
small and α-th moment of this deviation becomes bounded. Furthermore, the second part of Lemma 3
shows that batching helps to bound α-th moment of batched gradient gB defined in (5) even more.
Also batching allows parallel calculations reducing number of necessary iteration with the same
number of oracle calls. All this is possible thanks to the result, interesting in itself, presented in the
following Lemma.

Lemma 4 Let X1, . . . , XB be d-dimensional martingale difference sequence (i.e.
E[Xi|Xi−1, . . . , X1] = 0 for 1 < i ≤ B) satisfying for 1 ≤ α ≤ 2

E[∥Xi∥α|Xi−1, . . . , X1] ≤ σα.

Then we have

E

[∥∥∥∥∥ 1

B

B∑
i=1

Xi

∥∥∥∥∥
α

2

]
≤ 2σα

Bα−1
.
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Next, we use the clipped-SSTM for function f̂τ with heavy-tailed gradient estimates. This algorithm
was initially proposed for smooth functions in the work [35]. The scheme for proving convergence
with high probability is also taken from it, the only difference is additional randomization caused by
smoothing scheme.

6 Numerical experiments

We tested ZO-clipped-SSTM on the following problem
min
x∈Rd

∥Ax− b∥2 + ⟨ξ, x⟩,

where ξ is a random vector with independent components sampled from the symmetric Levy α-stable
distribution with α = 3/2, A ∈ Rm×d, b ∈ Rm (we used d = 16 and m = 500). For this problem,
Assumption 1 holds with µ = 0 and Assumption 2 holds with α = 3/2 and M2(ξ) = ∥A∥2 + ∥ξ∥2.

Figure 1: Convergence of ZO-clipped-SSTM, ZO-SGD
and ZO-clipped-SSTM in terms of a gap function w.r.t.
the number of consumed samples.

We compared ZO-clipped-SSTM,
proposed in this paper, with ZO-
SGD and ZO-SSTM. For these
algorithms, we gridsearched batchsize
B : 5, 10, 50, 100, 500 and stepsize
γ : 1e− 3, 1e− 4, 1e− 5, 1e− 6. The
best convergence was achieved with the
following parameters:

• ZO-clipped-SSTM: γ = 1e − 3,
B = 10, λ = 0.01,

• ZO-SSTM: γ = 1e− 5, B = 500,
• ZO-SGD: γ = 1e − 4, B = 100,
ω = 0.9, where ω is a heavy-ball
momentum parameter.

The code is written on Pythone and is
publicly available at https://github.com/ClippedStochasticMethods/ZO-clipped-SSTM.
Figure 1 presents the comparison of convergences averaged over 15 launches with different noise. In
contrast to ZO-clipped-SSTM, the last two methods are unclipped and therefore failed to converge
under haivy-tailed noise.

7 Conclusion and future directions

In this paper, we propose a first gradient-free algorithm ZO-clipped-SSTM and to solve problem
(1) under heavy-tailed noise assumption. By using the restart technique we extend this algorithm
for strongly convex objective, we refer to this algorithm as R-ZO-clipped-SSTM. The proposed
algorithms are optimal with respect to oracle complexity (in terms of the dependence on ε), iteration
complexity and the maximal level of noise (possibly adversarial). The algorithms can be adapted to
composite and distributed minimization problems, saddle-point problems, and variational inequalities.
Despite the fact that the algorithms utilize the two-point feedback, they can be modified to the
one-point feedback. We leave it for future work.

Moreover, we provide theoretical basis to demonstrate benefits of batching technique in case of
heavy-tailed stochastic noise and apply it to methods from this paper. Thanks to this basis, it is
possible to use batching in other methods with heavy-tiled noise, e.g. first-order methods presented
in [35, 29].
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A Batching with unbounded variance

To prove batching Lemma 4 we generalize Lemma 4.2 from [7] not only for i.i.d. random variables
with zero mean but for martingale difference sequence.

Lemma 5 Let g(x) = sign(x)|x|α−1 = ∇
(

|x|α
α

)
for 1 < α ≤ 2. Then for any h ≥ 0

max
h

g(x+ h)− g(x) = 22−αhα−1 = 22−αg(h).

Proof. Consider l(x) = g(x+ h)− g(x). We see that l is differentiable everywhere except x = 0
and x = −h. As long as x ̸= 0,−h, we have

l′(x) = g′(x+ h)− g′(x) = (α− 1)(|x+ h|α−2 − |x|α−2).

Since, we have α > 1, x = −h
2 is local maxima for l(x). Furthermore, note that l′(x) ≥ 0 for

x ∈
(
−∞,−h

2

)
\ {−h} and l′(x) ≤ 0 for x ∈

(
−h

2 ,∞
)
\ {0}. Therefore, −h

2 is global maxima.

Lemma 6 Let x1, . . . , xB be one-dimensional martingale difference sequence, i.e.
E[xi|xi−1, . . . , x1] = 0 for 1 < i ≤ B, satisfying for 1 ≤ α ≤ 2

E[|xi|α|xi−1, . . . , x1] ≤ σα.

We have:

E

[∣∣∣∣∣ 1B
B∑
i=1

xi

∣∣∣∣∣
α]

≤ 2σα

Bα−1
.

Proof. Everywhere below we will use the following notations.

E<i[·]
def
= Exi−1,...,x1 [·], E|<i[·]

def
= E[·|xi−1, . . . , x1].

For α = 1 proof follows from triangle inequality for | · |. When α > 1, we start by defining

Si =

i∑
j=1

xj , S0 = 0, f(x) = |x|α.

Then we can calculate desired expectation as

E[f(SB)] = E

[
B∑
i=1

f(Si)− f(Si−1)

]
=

B∑
i=1

E [f(Si)− f(Si−1)]

=

B∑
i=1

E

 Si∫
Si−1

f ′(x)dx


=

B∑
i=1

E

xif
′(Si−1) +

Si∫
Si−1

f ′(x)− f ′(Si−1)dx

 . (13)

While {xi} is martingale difference sequence then E[xif
′(Si−1)] = E<i[E|<i[xif

′(Si−1)]] = 0.
From (13) and Lemma 5 (g(x) = f ′(x)/α) we obtain

E[f(SB)] =

B∑
i=1

E

xif
′(Si−1) +

Si∫
Si−1

f ′(x)− f ′(Si−1)dx

 ≤ 21−α
B∑
i=1

E

 |xi|∫
0

f ′(t/2)dt


=

B∑
i=1

E

 |xi|/2∫
0

2f ′(s)ds

 = 22−α
B∑
i=1

E [f(|xi|/2)]

= 22−α
B∑
i=1

E<i

[
E|<i[f(|xi|/2)]

]
≤ 2Bσα. (14)

Now we are ready to prove batching lemma for random variables with infinite variance.
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Lemma 7 Let X1, . . . , XB be d-dimensional martingale difference sequence, i.e.,
E[Xi|Xi−1, . . . , X1] = 0 for 1 < i ≤ B, satisfying for 1 ≤ α ≤ 2

E[∥Xi∥α2 |Xi−1, . . . , X1] ≤ σα.

We have

E

[∥∥∥∥∥ 1

B

B∑
i=1

Xi

∥∥∥∥∥
α

2

]
≤ 2σα

Bα−1
.

Proof.

Let g ∼ N (0, I) and yi
def
= X⊤

i g. Firstly, we prove that E[yαi ] ≤ E[∥Xi∥α]. Indeed, using
conditional expectation we get

E[|yi|α] = E
[
(|X⊤

i g|)α
]
= EXi

[
Eg|Xi

[
(|X⊤

i g|)α
]]

= EXi

[
Eg|Xi

[(
(|X⊤

i g|)2
)α/2]]

Jensen inq
≤ EXi

[(
Eg|Xi

[
(X⊤

i g)2
])α/2]

= EXi

[(
∥Xi∥22

)α/2]
= E[∥Xi∥α2 ]. (15)

Next, considering X⊤
i g ∼ N (0, ∥X∥2) and, thus, Eg|X⊤

i g| = ∥X∥, we bound desired expectation
as

EX

[∥∥∥∥∥
B∑
i=1

Xi

∥∥∥∥∥
α

2

]
= EX

[(
Eg

∣∣∣∣∣
B∑
i=1

X⊤
i g

∣∣∣∣∣
)α]

(16)

Jensen’s inq
≤ EX,g

[∣∣∣∣∣
B∑
i=1

X⊤
i g

∣∣∣∣∣
α]

= EX,g

[∣∣∣∣∣
B∑
i=1

yi

∣∣∣∣∣
α]

. (17)

Finally, we apply Lemma 6 for yi sequence with bounded α-th moment from (15) and get

EX

∥∥∥∥∥
∣∣∣∣∣

B∑
i=1

Xi

∥∥∥∥∥
α

2

]
≤ EX,g

[∣∣∣∣∣
B∑
i=1

yi

∣∣∣∣∣
α]

≤ 2σαB.

B Smoothing scheme

Lemma 8 Assumption 2 implies that f(x) is M2 Lipschitz on Q.

Proof. For all x1, x2 ∈ Q

|f(x1)− f(x2)| ≤ |Eξ[f(x1, ξ)− f(x2, ξ)]| ≤ Eξ[|f(x1, ξ)− f(x2, ξ)|] (18)
≤ Eξ[M2(ξ)]∥x1 − x2∥2 ≤ M2∥x1 − x2∥2. (19)

The following lemma gives some facts about the measure concentration on the Euclidean unit sphere
for next proof.

Lemma 9 Let f(x) be M2 Lipschitz continuous function w.r.t ∥ · ∥. If e is random and uniformly
distributed on the Euclidean sphere and α ∈ (1, 2], then

Ee

[
(f(e)− Ee[f(e)])

2α
]
≤
(
bM2

2

d

)α

, b =
1√
2
.

Proof. A standard result of the measure concentration on the Euclidean unit sphere implies that
∀t > 0

Pr (|f(e)− E[f(e)]| > t) ≤ 2 exp(−b′dt2/M2
2 ), b′ = 2 (20)
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(see the proof of Proposition 2.10 and Corollary 2.6 in [23]). Therefore,

Ee

[
(f(e)− Ee[f(e)])

2α
]

=

∞∫
t=0

Pr
(
|f(e)− E[f(e)]|2α > t

)
dt

=

∞∫
t=0

Pr
(
|f(e)− E[f(e)]| > t

1/2α
)
dt

≤
∞∫

t=0

2 exp
(
−b′d · t1/α/M2

2

)
dt ≤

(
bM2

2

d

)α

. (21)

Finally, below we prove Lemma 3 which states that batched gradient estimation from (5) has bounded
α-th moment.

Proof of Lemma 3.

1. We will prove equality immediately for gB . Firstly, we notice that distribution of e is
symmetric and by definition (5) we get

Eξ,e[g
B(x, ξ, e)] =

(
d

2Bτ

) B∑
i=1

Eξi,ei [f(x+ τei, ξi)ei − f(x− τei, ξi)ei]

=
d

Bτ

B∑
i=1

Eei [Eξi [f(x+ τei, ξi)]ei]

=
d

Bτ

B∑
i=1

Eei [f(x+ τei)ei]. (22)

Using ∇f̂τ (x) =
d
τ Ee[f(x+ τe)e] from Lemma 2 we obtain necessary result.

2. By definition (4) of estimated gradient g we bound α-th moment as

Eξ,e[∥g(x, ξ, e)∥α] = Eξ,e

[∣∣∣∣ d2τ (f(x+ τe, ξ)− f(x− τe, ξ))e

∥∥∥∥α
2

]

=

(
d

2τ

)α

Eξ,e [∥e∥α2 |f(x+ τe, ξ)− f(x− τe, ξ)|α] . (23)

Considering ∥e∥2 = 1 we can omit it. Next we add ±δ(ξ) in (23) for all δ(ξ) and get

Eξ,e [|f(x+ τe, ξ)− f(x− τe, ξ)|α]
= Eξ,e [|(f(x+ τe, ξ)− δ)− (f(x− τe, ξ)− δ)|α] .

Using Jensen’s inequality for | · |α we bound

Eξ,e [|(f(x+ τe, ξ)− δ)− (f(x− τe, ξ)− δ)|α]
≤ 2α−1Eξ,e [|f(x+ τe, ξ)− δ|α] + 2α−1Eξ,e [|f(x− τe, ξ)− δ|α] .

We note that distribution of e is symmetric and add two terms together

2α−1Eξ,e [|f(x+ τe, ξ)− δ|α] + 2α−1Eξ,e [|f(x− τe, ξ)− δ|α]
≤ 2αEξ,e [|f(x+ τe, ξ)− δ|α] .

Let δ(ξ) = Ee[f(x+ τe, ξ)], then because of Cauchy-Schwartz inequality and conditional
expectation properties we obtain

2αEξ,e [|f(x+ τe, ξ)− δ|α] = 2αEξ [Ee [|f(x+ τe, ξ)− δ|α]]

≤ 2αEξ

[√
Ee [|f(x+ τe, ξ)− Ee[f(x+ τe, ξ)]|2α]

]
.
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Next, we use Lemma 9 for f(x+ τe, ξ) with fixed ξ and Lipschitz constant M2(ξ)τ

2αEξ

[√
Ee [|f(x+ τe, ξ)− Ee[f(x+ τe, ξ)]|2α]

]
≤ 2αEξ

√(2−1/2τ2M2
2 (ξ)

d

)α


= 2α
(
τ22−1/2

d

)α/2

Eξ [M
α
2 (ξ)] ≤ 2α

(√
2−1/2

d
M2τ

)α

.

Finally, we get desired bound of estimated gradient

Eξ,e[∥g(x, ξ, e)∥α2 ] =

( √
d

21/4
M2

)α

. (24)

Now we apply Jensen inequality to

Eξ,e[∥g(x, ξ, e)− Eξ,e[g(x, ξ, e)]∥α2 ] ≤ 2α−1 (Eξ,e[∥g(x, ξ, e)∥2] + Eξ,e[∥g(x, ξ, e)∥2])
(25)

And get necessary result.

For batched gradient gB we use Batching Lemma 7 and estimation (25).

C Missing Proofs for ZO-clipped-SSTM and R-ZO-clipped-SSTM

In this section, we provide the complete formulation of the main results for clipped-SSTM and
R-clipped-SSTM and the missing proofs.

Minimization on the subset Q In order to work with subsets of Q ⊆ Rd we must assume one
more condition on f̂τ (x).

Assumption 5 We assume that there exist some convex set Q ⊆ Rd, constants τ, L > 0 such that for
all x, y ∈ Q

∥∇f̂τ (x)∥22 ≤ 2L
(
f̂τ (x)− f̂∗

τ

)
, (26)

where f̂∗
τ = infx∈Q f̂τ (x) > −∞.

When Q = Rd (26) follows from Lemma 2 as well. But in general case this is not true. In work [35]
in Section “Useful facts” authors show that, in the worst case, to have (26) on a set Q one needs to
assume smoothness on a slightly larger set.

Thus, in the full version of the theorems in which we can require much smaller Q, we will also
require satisfying all three Assumptions 1, 2, 5.

C.1 Convex Functions

We start with the following lemma, which is a special case of Lemma 6 from [19]. This result can be
seen the “optimization” part of the analysis of clipped-SSTM: the proof follows the same steps as
the analysis of deterministic Similar Triangles Method [16], [12] and separates stochasticity from the
deterministic part of the method.

Pay attention that in full version of Theorem 1 we require Assumptions 1, 2 to hold only on
Q = B3R(x

∗), however we need to require one more smoothness Assumption 5 as well.
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Theorem 3 (Full version of Theorem 1) Let Assumptions 1,2, 5 with µ = 0 hold on Q = B3R(x
∗),

where R ≥ ∥x0 − x∗∥, and

a ≥ max

48600 ln2
4K

β
,
1800σ(K + 1)K

1
α ln

α−1
α 4K

β

B
α−1
α LR

 , (27)

λk =
R

30αk+1 ln
4K
β

, (28)

L =
M2

√
d

τ
, (29)

for some K > 0 and β ∈ (0, 1] such that ln 4K
β ≥ 1. Then, after K iterations of ZO-clipped-SSTM

the iterates with probability at least 1− β satisfy

f(yK)− f(x∗) ≤ 2M2τ +
6aLR2

K(K + 3)
and {xk}K+1

k=0 , {zk}Kk=0, {yk}Kk=0 ⊆ B2R(x
∗). (30)

In particular, when parameter a equals the maximum from (27), then the iterates produced by
ZO-clipped-SSTM after K iterations with probability at least 1− β satisfy

f(yK)− f(x∗) ≤ 2M2τ +O

max

LR2 ln2 K
β

K2
,
σR ln

α−1
α K

β

(BK)
α−1
α


 , (31)

meaning that to achieve f(yK) − f(x∗) ≤ ε with probability at least 1 − β with τ = ε
4M2

ZO-
clipped-SSTM requires

K = O

√M2
2

√
dR2

ε2
ln

M2
2

√
dR2

ε2β
,
1

B

(
σR

ε

) α
α−1

ln

(
1

Bβ

(
σR

ε

) α
α−1

) iterations. (32)

In case when second term in max in (31) is greater total number of oracle calls is

K ·B = O

((
σR

ε

) α
α−1

ln

(
1

β

(
σR

ε

) α
α−1

))
.

Proof. The proof is based on the proof of Theorem F.2 from [35]. We apply first-order algorithm
clipped-SSTM for M2

√
d

τ -smooth function f̂τ with unbiased gradient estimation gB , that has α-th
moment bounded with 2σα

Bα−1 . Additional randomization caused by smoothing doesn’t affect the proof
of the original Theorem.

According to it after K iterations we have that with probability at least 1− β

f̂τ (y
K)− f̂τ (x

∗) ≤ 6aLR2

K(K + 3)

and {xk}K+1
k=0 , {zk}Kk=0, {yk}Kk=0 ⊆ B2R(x

∗).

Considering approximation properties of f̂τ from Lemma 2

f(yK)− f(x∗) ≤ 2M2τ +
6aLR2

K(K + 3)
.

Finally, if

a = max

48600 ln2
4K

β
,
1800σ(K + 1)K

1
α ln

α−1
α 4K

β

B
α−1
α LR

 ,
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then with probability at least 1− β

f(yK)− f(x∗) ≤ 2M2τ +
6aLR2

K(K + 3)

= 2M2τ +max

291600LR2 ln2 4K
β

K(K + 3)
,
10800σR(K + 1)K

1
α ln

α−1
α 4K

β

K(K + 3)B
α−1
α


= 2M2τ +O

max

LR2 ln2 K
β

K2
,
σR ln

α−1
α K

β

(BK)
α−1
α


 ,

where L = M2

√
d

τ by Lemma 2.

To get f(yK)− f(x∗) ≤ ε with probability at least 1− β it is sufficient to choose τ = ε
4M2

and K

such that both terms in the maximum above are O(ε). This leads to

K = O

√M2
2

√
dR2

ε2
ln

M2
2

√
dR2

ε2β
,
1

B

(
σR

ε

) α
α−1

ln

(
1

Bβ

(
σR

ε

) α
α−1

)
that concludes the proof.

C.2 Strongly Convex Functions

In the strongly convex case, we consider the restarted version of ZO-clipped-SSTM (R-ZO-clipped-
SSTM). The main result is summarized below.

Pay attention that in full version of Theorem 2 we require Assumptions 1, 2 to hold only on
Q = B3R(x

∗), however we need to require one more smoothness Assumption 5 as well.

Theorem 4 (Full version of Theorem 2) Let Assumptions 1, 2, 5 with µ > 0 hold for Q =
B3R(x

∗), where R ≥ ∥x0 − x∗∥2 and R-ZO-clipped-SSTM runs ZO-clipped-SSTM N times. Let

Lt =

√
dM2

τk
, τk =

εk
M2

, (33)

Kt =

max

1080

√
LtR2

t−1

εt
ln

2160
√
LtR2

t−1N
√
εtβ

,
2

Bt

(
10800σRt−1

εt

) α
α−1

ln

(
4N

Btβ

(
5400σRt−1

εt

) α
α−1

)
 ,

(34)

εt =
µR2

t−1

4
, Rt−1 =

R

2(t−1)/2
, N =

⌈
log2

µR2

2ε

⌉
, ln

4KtN

β
≥ 1, (35)

at = max

48600 ln2
4KtN

β
,
1800σ(Kt + 1)K

1
α
t ln

α−1
α 4KtN

β

B
α−1
α

t LtRt

 , (36)

λt
k =

Rt

30αt
k+1 ln

4KtN
β

(37)

for t = 1, . . . , τ . Then to guarantee f(x̂τ )− f(x∗) ≤ ε with probability ≥ 1− β R-clipped-SSTM
requires

O

max


√

M2
2

√
d

εµ
ln

(
µR2

ε

)
ln

(
M2d

1
4

√
µεβ

ln

(
µR2

ε

))
,

(
σ2

µε

) α
2(α−1)

ln

(
1

β

(
σ2

µε

) α
2(α−1)

ln

(
µR2

ε

))


(38)
oracle calls. Moreover, with probability ≥ 1− β the iterates of R-clipped-SSTM at stage t stay in
the ball B2Rt−1

(x∗).
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Proof. The proof itself repeats of the proof Theorem F.3 from [35]. In this theorem authors prove
convergence of restarted clipped-SSTM. In our case it is sufficient to change clipped-SSTM to ZO-

clipped-SSTM and put results of Theorem 3 in order to guarantee ε-solution after
N∑
t=1

Kt successive

iterations.

It remains to calculate the overall number of oracle calls during all runs of clipped-SSTM. We have

N∑
t=1

BtKt =

= O

 N∑
t=1

max


√

M2
2

√
dR2

t−1

ε2t
ln


√
M2

2

√
dR2

t−1N

εtβ

 ,
1

B

(
σRt−1

εt

) α
α−1

ln

(
N

Bβ

(
σRt−1

εt

) α
α−1

)


= O

 N∑
t=1

max


√

M2
2

√
d

R2
t−1µ

2
ln


√
M2

2

√
dN

µRt−1β

 ,

(
σ

µRt−1

) α
α−1

ln

(
N

β

(
σ

µRt−1

) α
α−1

)


= O

max


N∑
t=1

2t/2

√
M2

2

√
d

R2µ2
ln

2t/2

√
M2

2

√
dN

µRβ

 ,

N∑
t=1

(
σ · 2t/2

µR

) α
α−1

ln

(
N

β

(
σ · 2t/2

µR

) α
α−1

)


= O

max


√

M2
2

√
d

R2µ2
2N/2 ln

2N/2

√
M2

2

√
d

µRβ
ln

(
µR2

ε

) ,

(
σ

µR

) α
α−1

ln

(
N

β

(
σ · 2N/2

µR

) α
α−1

)
N∑
t=1

2
αt

2(α−1)




= O

max


√

M2
2

√
d

εµ
ln


√
M2

2

√
d

√
εµβ

ln

(
µR2

ε

) ,

(
σ

µR

) α
α−1

ln

(
N

β

(
σ

µR

) α
α−1

· 2
α

2(α−1)

)
2

αN
2(α−1)




= O

max


√

M2
2

√
d

εµ
ln


√
M2

2

√
d

√
εµβ

ln

(
µR2

ε

) ,

(
σ2

µε

) α
2(α−1)

ln

(
1

β

(
σ2

µε

) α
2(α−1)

ln

(
µR2

ε

))
 ,

which concludes the proof.
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