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A RELATED WORK

Our work builds upon the literature on the partial identification of causal effects, sensitivity analysis,
and robust reinforcement learning from offline data.

Partial Identification and Sensitivity Analysis Seminal work of Manski (1990) developed the
first bounds on causal effects in non-identifiable settings using observational data in the single-stage
treatment model with contextual information (i.e., a contextual bandit model). These bounds were then
expanded to the instrumental variable setting (Balke & Pearl, 1997; Imbens & Angrist, 1994) partially
identify counterfactual probabilities of causation (Tian & Pearl, 2000). More recently, (Zhang &
Bareinboim, 2021) improved the bounds for applicability to continuous outcomes. (Zhang et al., 2022)
established a general framework for estimating bounds on interventional and counterfactual effects.
While Zhang et al. (2022) develop informative bounds using both observational and experimental data,
they focus on general counterfactual queries by discretizing the exogenous latent space, formulating
bounds as polynomial programs over this discretization and a Bayesian framework to approximately
estimate bounds using MCMC.

Sensitivity analysis attempts to provide intervals on causal effects by assuming the level of confound-
ing, for example, via models such as Marginal Sensitivity analysis, which considers deviations in the
propensity score in relation to the estimated propensity (Rosenbaum, 2005; Richardson et al., 2014;
Todem et al., 2010; Vansteelandt et al., 2006; Kallus & Zhou, 2018; Kallus et al., 2019; Namkoong
et al., 2020; Jesson et al., 2022; Bruns-Smith & Zhou, 2023; Kausik et al., 2024). Other approaches
explore additional parametric assumptions about the structural functions, including linearity (Cinelli
et al., 2019) and Lipschitz continuity (Khan et al., 2023). Our work does not rely on additional func-
tional constraints on the underlying system dynamics. Instead, we focus on the settings of standard
discrete Markov Decision Processes (MDPs) with an infinite horizon. We develop robust off-policy
evaluation algorithms to estimate closed-form bounds over the discounted cumulative rewards of
candidate policies from offline observational data contaminated with unobserved confounding bias.

Robust Reinforcement Learning Unlike planning in a standard MDP, robust reinforcement
learning does not assume the parametrization of the transition probability function in the underlying
model to be precisely determined. Instead, it is contained in a set of model parameters which is
called the uncertainty set (Iyengar, 2005; Nilim & El Ghaoui, 2005; Xu & Mannor, 2010; Wiesemann
et al., 2013; Yu & Xu, 2015; Mannor et al., 2016; Petrik & Russel, 2019). The goal of the agent is
to learn a robust policy that performs the best under the worst possible case in the uncertainty set.
Similar problems have been studied under the rubrics of safe policy learning (Thomas et al., 2015;
Ghavamzadeh et al., 2016) or pessimistic reinforcement learning (Shi et al., 2022).1

Robust RL algorithms with provable guarantees have been proposed in tabular settings or under the
assumptions of linear functions (Lim et al., 2013; Tamar et al., 2014; Roy et al., 2017; Badrinath &
Kalathil, 2021; Wang & Zou, 2021). Combined with the computational framework of deep learning,
robust RL algorithms have been extended to complex, high-dimensional domains (Pinto et al., 2017;
Zhang et al., 2020). More recently, (Panaganti et al., 2022) proposed Robust Fitted Q-Iteration
(RFQI) to learn the best possible robust policy from offline data with theoretical guarantees on the
performance of the learned policy. Our work differs from robust RL methods since it does not
require a pre-specified uncertainty set of model parameters. Instead, we construct the ignorance
region over the underlying system dynamics from the confounded observational data using partial
causal identification. Based on the learned uncertainty set, we then derived closed-form bounds
over the value functions of the target policy. To the best of our knowledge, this is the first work that

develops off-policy algorithms using eligibility traces to obtain evaluations of candidate policies

from biased offline data, possibly contaminated with unmeasured confounding or no-overlap, with

provable guarantees on the convergence of learned evaluations.

1Indeed, the idea of planning over a convex set of model parameters have been explored in online reinforce-
ment learning. (Strehl & Littman, 2008) utilized an extended dynamic programming to learn an optimistic policy
over a confidence set of models to balance the trade-off between exploration and exploitation.
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B PROOFS

This section provides proof of the main theoretical results provided in the paper.
Theorem 1 (Causal Bellman Equation). For an MDP environment M with reward Yt → [a, b] ↑ R,

for any policy ω(x | s), its state value function Vω(s) →
[
Vω(s), Vω(s)

]
for every state s → S , where

bounds Vω, Vω are solutions given by the following dynamic programs,

〈
Vω(s), Vω(s)

〉
=

∑

x

P (x | s)
(
ω(x | s)

(
R̃ (s, x) + ε

∑

s→,x→

T̃ (s, x, s→)
〈
Vω(s

→), Vω(s
→)
〉)

(10)

+ω(¬x | s)
(
↓a, b↔+ ε

〈
min
s→

Vω(s
→),max

s→
Vω(s

→)
〉))

(11)

Proof. Following the Bellman equation (Bellman, 1966), the state value function at state s → S is
given by

Vω(s) =
∑

x

ω(x | s)
(
R(s, x) + ε

∑

s→

T (s, x, s→)Vω(s
→)

)
(20)

Among the above quantities, the reward function R is bounded from the observational distribution
(Manski, 1990) as follows,

R̃ (s, x)P (x | s) + aP (¬x | s) ↗ R (s, x) ↗ R̃ (s, x)P (x | s) + bP (¬x | s) (21)

where R̃ is the nominal reward function computed from the observational distribution and is defined
in Eq. (9). Replacing the reward function R in Eq. (20) with the above lower bound gives

Vω(s) ↘
∑

x

ω(x | s)
(
R̃ (s, x)P (x | s) + aP (¬x | s) + ε

∑

s→

T (s, x, s→)Vω(s
→)

)

+
∑

x

bω(x | s)P (¬x | s)
(22)

Similarly, the transition distribution T can be bounded from the observational distribution (Manski,
1990),

T̃ (s, x, s→)P (x | s) ↗ T (s, x, s→) ↗ T̃ (s, x, s→)P (x | s) + P (¬x | s) (23)

and T̃ is the nominal transition distribution computed from the observational distribution defined in
Eq. (9). Minimizing the lower bound in Eq. (22) subject to the above observational constraints in
Eq. (23) and

∑
s→ T (s, x, s→) = 1 gives the following lower bound:

Vω(s) ↘
∑

x

ω(x | s)P (x | s)
(
R̃ (s, x) + aP (¬x | s) + ε

∑

s→

T̃ (s, x, s→)Vω(s
→)

)

+
∑

x

ω(x | s)P (¬x | s)
(
b+min

s→
Vω(s

→)
) (24)

The above lower bound is achieved by setting the worst-case transition probability T (s, x, s↑) =
P (¬x | s) for state s↑ = argmins→ Vω(s→) and T (s, x, s→) = T̃ (s, x, s→)P (x | s) for all the other
state s→ ≃= s↑. Note that the second term of the above inequality could be further written as:

∑

x

ω(x | s)P (¬x | s)
(
a+min

s→
Vω(s

→)
)

(25)

=
∑

x

ω(x | s) (1⇐ P (x | s))
(
a+min

s→
Vω(s

→)
)

(26)

=
∑

x

ω(x | s)
(
a+min

s→
Vω(s

→)
)
⇐
∑

x

ω(x | s)P (x | s)
(
a+min

s→
Vω(s

→)
)

(27)

=
∑

x

P (x | s)
(
a+min

s→
Vω(s

→)
)
⇐
∑

x

ω(x | s)P (x | s)
(
a+min

s→
Vω(s

→)
)

(28)
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The last step holds since for any constant real value C,
∑

x ω(x | s)C =
∑

x P (x | s)C. The above
equation can be further written as

∑

x

ω(x | s)P (¬x | s)
(
a+min

s→
Vω(s

→)
)
=

∑

x

ω(¬x | s)P (x | s)
(
a+min

s→
Vω(s

→)
)

(29)

Replacing the second term in Eq. (24) gives

Vω(s) ↘
∑

x

ω(x | s)P (x | s)
(
R̃ (s, x) + bP (¬x | s) + ε

∑

s→

T̃ (s, x, s→)Vω(s
→)

)

+
∑

x

ω(¬x | s)P (x | s)
(
a+min

s→
Vω(s

→)
) (30)

After a few simplifications, we obtain

Vω(s) ↘ P (x | s)
(
ω(x | s)

(
R̃ (s, x) + ε

∑

s→,x→

T̃ (s, x, s→)Vω(s
→)

)

+ω(¬x | s)
(
a+ εmin

s→
Vω(s

→)

)) (31)

Finally, minimizing the value function Vω subject to the above inequality gives the lower bound Vω.
The upper bound Vω over the state value function could be similarly derived.

Theorem 2 (Causal Bellman Equation). For an MDP environment M with reward signals Yt →
[a, b] ↑ R, for any policy ω(x | s), its state-action value function Qω →

[
Qω(s, x), Qω(s, x)

]
for

any state-action pair (s, x) → S ⇒ X , where bounds Qω, Qω are given by as follows,

〈
Qω(s, x), Qω(s, x)

〉
= P (x | s)

(
R̃ (s, x) + ε

∑

s→,x→

T̃ (s, x, s→)
〈
Vω(s

→), Vω(s
→)
〉)

(12)

+P (¬x | s)
(
↓a, b↔+ ε

〈
min
s→

Vω(s
→),max

s→
Vω(s

→)
〉)

(13)

Proof. Applying Bellman equation (Bellman, 1966) allows us to iteratively write the state-action
value function for any state-action pair (s, x) → S ⇒ X as

Qω(s, x) = R(s, x) + ε
∑

s→

T (s, x, s→)Vω(s
→) (32)

where the reward function R is bounded from the observational distribution (Manski, 1990) following
Eq. (21). Replacing the reward function R in the above equation with the corresponding lower bound
gives

Qω(s, x) ↘ P (x | s)
(
R̃(s, x) + ε

∑

s→

T (s, x, s→)Vω(s
→)

)
+ aP (¬x | s) (33)

Similarly, the transition distribution T can be bounded from the observational distribution (Manski,
1990) following Eq. (23). Minimizing the lower bound in Eq. (33) subject to the above observational
constraints in Eq. (23) and

∑
s→ T (s, x, s→) = 1 gives the following solution:

Qω(s, x) ↘ P (x | s)
(
R̃(s, x) + ε

∑

s→

T̃ (s, x, s→)Vω(s
→)

)
+ P (¬x | s)

(
a+min

s→
Vω(s

→)
)

(34)

This lower bound is achieved by setting the worst-case transition probability T (s, x, s↑) = P (¬x | s)
for state s↑ = argmins→ Vω(s→) and T (s, x, s→) = T̃ (s, x, s→)P (x | s) for all the other state s→ ≃= s↑.
Finally, notice that Vω(s) is a function of Qω(s, x) and is given by Vω(s) =

∑
x ω(x | s)Qω(s, x).

Minimizing the state-action value function Qω subject to the above inequality leads to the lower
bound Qω . The upper bound Qω could be similarly derived.
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Theorem 3. For any behavior policy, for any choice of ϑ → [0, 1] that does not depend on the actions

chosen at each state, let parameters w and s↑ be defined as follows: (1) Lower Bound Vω: w = a

and s↑ = argmins Vt(s); (2) Upper Bound Vω: w = b and s↑ = argmaxs Vt(s). Then, Alg. 1 with

offline updating converges with probability 1 to lower bound Vω and upper bound Vω, respectively,

under the usual step-size conditions on ϖ.

Proof. We will focus on the convergence of lower bound Vω(s); the proof for the upper bound Vω(s)
follows analogously. The proof is structured in two stages. First, we consider the truncated lower
bound estimates corresponding to Eq. (14), which sums the adjusted rewards obtained from the
environment for only n steps, then uses the current estimate of the value function lower bound to
approximate the remaining value:

Rt
(n) =

n↓1∑

k=0

εk
(
ωt+kyt+k + ¬ωt+k

(
b+ εmin

s→
V (s→)

)) t+k↓1

i=t

ωi + εnV (st+n)
t+k↓1

i=t

ωi (35)

We need to show that Rt
(n) ⇐ Vω is a contraction mapping in the max norm. If this is true for any

n, then by applying the general convergence theorem, the n-step return converges to Vω. Then any
convex combination will also converge to Vω . For example, any combination using a ϑ parameter in
the style of eligibility traces will converge to Vω .

The expected value of the adjusted return with regard to the observational distribution for state s can
be expressed as follows 2:

E

Rt

(n) | St = s


(36)

=
n∑

k=1

∑

s̄1:k,x̄1:k,ȳ1:k

P (s̄1:k, x̄1:k, ȳ1:k) ε
k↓1

(
ωkyk + ¬ωk

(
b+min

s→
V (s→)

)) k↓1

i=1

ωi (37)

+
∑

s̄1:n,x̄1:n

P (s̄1:n, x̄1:n) ε
nV (sn)

n↓1

i=1

ωi (38)

=
n∑

k=1

εk↓1
∑

s̄1:k,x̄1:k

k↓1

i=1

T̃ (si, xi, si+1)P (xi | si)ω(xi | si) (39)

·
(
ω(xk | sk)R̃(sk, xk) + ¬ω(xk | sk)

(
b+ εmin

s→
V (s→)

))
(40)

+ εn
∑

s̄1:n,x̄1:n

n↓1

i=1

T̃ (si, xi, si+1)P (xi | si)ω(xi | si)V (sn) (41)

By applying the extended Bellman equation for the lower bound Vω iteratively n times, we obtain:

Vω(s) =
n∑

k=1

∑

s̄1:k,x̄1:k

εk↓1
k↓1

i=1

T̃ (si, xi, si+1)P (xi | si)ω(xi | si) (42)

·
(
ω(xk | sk)R̃(sk, xk) + ¬ω(xk | sk)

(
b+ εmin

s→
Vω(s

→)
))

(43)

+ εn
∑

s̄1:n,x̄1:n

n↓1

i=1

T̃ (si, xi, si+1)P (xi | si)ω(xi | si)Vω(sn) (44)

Therefore,

max
s

E

Rt

(n) | St = s

⇐ Vω(s)

 ↗ εmax
s

V (s)⇐ Vω(s)
 (45)

This means that any n-step return is a contraction in the max norm, and therefore, by applying
(Jaakkola et al., 1994, Theorem 1), it converges to Vω(s).

2We abuse notation a bit and ignore the expected value operator E [·] outside.
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In the second stage, we show that by applying the updates of Alg. 1 for n successive steps, we
perform the same update by using the n-step adjusted return Rt

(n). The eligibility trace for state s
can be written as, for tn → t(s),

et(s) = εt↓tn

t

i=tn+1

ωi. (46)

We have
n∑

k=1

et+k↓1(s)ϱt+k↓1(s) (47)

=
n∑

k=1

εk↓1
t+k↓1

i=t+1

ωi

(
ωt+k (yt+k + εV (st+k)) + ωt+k

(
b+ εmin

s→
V (s→)

)
(48)

⇐ V (st+k↓1)
)

(49)

=
n↓1∑

k=0

εk
(
ωt+kyt+k + ¬ωt+k

(
b+ εmin

s→
V (s→)

)) t+k↓1

i=t

ωi + εnV (st+n)
t+k↓1

i=t

ωi (50)

⇐ V (st) (51)

= Rt
(n) ⇐ V (st) (52)

Since C-TD(ϑ) is equivalent to applying a convex mixture of n-step updates, and each update
converges to correct lower bounds Vω for the state value functions, Alg. 1 converges to correct lower
bounds as well.

Theorem 4. For any behavior policy, for any choice of ϑ → [0, 1] that does not depend on the

actions chosen at each state, let parameters w and s↑ be defined as follows: (1) Lower Bound

Qω: w = a and s↑ = argmins
∑

x→ ω(x→ | s)Qt(s, x→); (2) Upper Bound Qω: w = b and

s↑ = argmaxs
∑

x→ ω(x→ | s)Qt(s, x→). Then, Alg. 2 with offline updating converges with probability

1 to lower bound Qω and upper bound Qω , respectively, under the usual step-size conditions on ϖ.

Proof. We will focus on the convergence of lower bound Qω(s, x); the proof for the upper bound
Qω(s, x) follows analogously. This proof is structured in two stages. Let Qn denote the n-step tree
backup estimator defined in Eq. (19). First we show that E [Qn(s, x)] ⇐Qω(s, x) is a contraction
using a proof by induction.

Let Q be the current estimate of the lower bound for the value function. For n = 1,

max
s,x

E [Q1(s, x)]⇐Qω(s, x)
 (53)

= max
s,x

P (x | s)
(
R̃ (s, x) + ε

∑

s→,x→

T̃ (s, x, s→)
∑

x→

ω(x→ | s→)Q(s→, x→)

)
(54)

+ P (¬x | s)
(
b+ εmin

s→

∑

x→

ω(x→ | s→)Q(s→, x→)

)
(55)

⇐ P (x | s)
(
R̃ (s, x) + ε

∑

s→,x→

T̃ (s, x, s→)
∑

x→

ω(x→ | s→)Qω(s
→, x→)

)
(56)

⇐ P (¬x | s)
(
b+ εmin

s→

∑

x→

ω(x→ | s→)Qω(s
→, x→)

) (57)

↗ εmax
s,x

Q(s, x)⇐Qω(s, x)
 (58)

For the induction step, we assume that

max
s,x

E [Qn(s, x)]⇐Qω(s, x)
 ↗ εmax

s,x

Q(s, x)⇐Qω(s, x)
 (59)
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Next we want to show that the same holds for Qn+1(s, x). We can rewrite Qn+1(s, x) as follows,

Qn+1(s, x) = 1xt=x

(
yt +

∑

x→

(
1x→ ↔=xω(x

→ | st+1)Q(st+1, x
→) + 1x→=xQn(st+1, x)

))
(60)

+ 1xt ↔=x

(
w +

∑

x→

ω(x→ | s↑)Q(s↑, x→)

)
(61)

We must have

max
s,x

E [Qn+1(s, x)]⇐Qω(s, x)
 (62)

= max
s,x

P (x | s)
(
R̃ (s, x) + ε

∑

s→,x→

T̃ (s, x, s→)
∑

x→

ω(x→ | s→) (63)

1x→ ↔=xQ(s→, x→) + 1x→=xE [Qn(s
→, x)]

)
(64)

+ P (¬x | s)
(
b+ εmin

s→

∑

x→

ω(x→ | s→)Q(s→, x→)

)
(65)

⇐ P (x | s)
(
R̃ (s, x) + ε

∑

s→,x→

T̃ (s, x, s→)
∑

x→

ω(x→ | s→)Qω(s
→, x→)

)
(66)

⇐ P (¬x | s)
(
b+ εmin

s→

∑

x→

ω(x→ | s→)Qω(s
→, x→)

) (67)

↗ εmax
s,x

P (x | s)ε
∑

s→,x→

T̃ (s, x, s→)
∑

x→

ω(x→ | s→)1x→ ↔=x

(
Q(s→, x→)⇐Qω(s

→, x→)
)

(68)

+ 1x→=xE
[(
Qn(s

→, x)⇐Qω(s
→, x→)

)]
(69)

+ P (¬x | s)min
s→

∑

x→

ω(x→ | s→)
(
Q(s→, x→)⇐Qω(s

→, x→)
)  (70)

↗ εmax
s,x

Q(s, x)⇐Qω(s, x)
 (71)

By applying (Jaakkola et al., 1994, Theorem 1), we can conclude that any n-step adjusted return
converges to the correct lower bound for the state-action value function. Since all the n-step returns
converge to Qω , any convex linear combination of n-step returns also converges to Qω .

For the second part of the proof, we show that C-TB(ϑ) with ϑ = 1 for n steps is equivalent to
using Qn. The eligibility trace for a state-action pair (s, x) can be rewritten as:

et(s, x) = εk
t+k↓1

i=t+1

ωi+11xi=x. (72)

By adding and subtracting the weighted action value ωt+k1xt+k=x for the action taken on each step
from the return, and regrouping, we have

Q(st, x) +
n∑

k=1

εk↓1
t+k↓1

i=t+1

ωi+11xi=x

(
1xt+k=x

(
yt+k +

∑

x→ ↔=x

ω(x→ | st+k+1)Q(st+k+1, x
→)

)

(73)

+ 1xt+k ↔=x

(
w +min

s→

∑

x→

ω(x→ | s→)Q(s→, x→)

)
⇐Q(st+k, x)

)
(74)

= Q(st, x) +
n∑

k=1

et+k(st, x)ϱt+k(x) (75)

This concludes the proof.
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s=(0, 0)

x=down

u = no-wind

s=(0, 1)

u = east

s=(1, 1)

u = south

s=(0, 2)

u = west

s=(0, 1)

u = north

s=(0, 0)

0.6 0.1 0.1 0.1 0.1

Figure 6: Trajectories sampled from the interventional transition distribution T .

C EXPERIMENTAL SETUPS

In this section, we provide details on the experimental setups and additional discussion on the simula-
tion environment. All experiments were performed on a 2021 MacBook Pro with 16GB memory,
implemented in Python. The simulation environment is built upon the Gymnasium framework
(Brockman et al., 2016). We plan to release the source code with the camera-ready version of the
manuscript.

Figure 7: Agent’s
state in Windy Grid-
world environment.

Windy Gridworld Our simulation builds on the Windy Gridworld environ-
ment described in Fig. 1b, where the red dot represents the agent and the green
square represents the goal state. The agent’s location is represented using a
vector (i, j) where i → {0, 1, 2} is the column index, and j → {0, 1, 2} is the
row index. So the agent’s starting state is (0, 0) and the goal state is (1, 2).
Fig. 7 shows the detailed state representation for each location in the gridworld.

The agent can take five actions x → X - up, down, right, left, and
stay-put, corresponding to vector (0,⇐1), (0, 1), (1, 0), (⇐1, 0), and (0, 0)
respectively. Meanwhile, the agent’s movement is also affected by a wind; the
wind direction u → U include - north, south, east, west, and no-wind,
corresponding to vector (0,⇐1), (0, 1), (1, 0), (⇐1, 0), and (0, 0) respectively.
Table 1 summarizes the detailed parametrization for the agent’s action and the wind direction. For

Action x up down right left stay-put

Wind u north south east west no-wind

Vector v (0,⇐1) (0, 1) (1, 0) (⇐1, 0) (0, 0)

Table 1: Vector representations for the agent’s action X and the wind direction U .
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s=(0, 0)

u = no-wind

x=down

s=(0, 1)

u = east

x=down

s=(1, 1)

u = south

x=right

s=(1, 1)

u = west

x=down

s=(0, 1)

u = north

x=right

s=(1, 0)

0.6
0.1 0.1 0.1

0.1

Figure 8: Trajectories sampled from the observational transition distribution T̃ induced by a con-
founded behavior policy fX .

every time step t = 1, 2, . . . , the wind Ut can blow in directions north, south, east, west with
equal probabilities of 10%; otherwise, the weather is nice and there is no-wind. That is,

⇑i → {⇐1, 1}, P (Ut = (i, 0)) = P (Ut = (0, i)) = 0.1, and P (Ut = (0, 0)) = 0.6 (76)

At every time step t, the agent receives a constant reward Yt ⇓ ⇐1. The next state of the agent is
shifted by both its action and the wind direction through the mechanism

St+1 ⇓ max {min {St +Xt + Ut, (2, 2)} , (0, 0)} . (77)

In other words, the agent’s next state St+1 is a vector sum of the agent’s current location St, its action
Xt, and the wind direction Ut, truncated by the board’s boundary i = 0, 2 and j = 0, 2. For instance,
we show in Fig. 6 the system dynamics for the agent’s interactions with the gridworld environment
at from the location s = (0, 0), taking the action down (x = (0, 1)). In this case, when the wind is
blowing towards south (u = (0, 1)), the agent’s location will be shifted by both the action x and the
windy direction u, and moves to the bottom left corner s→ = (0, 2) at the next time step. Since among
all wind directions, u = east is the only latent state moving the agent to the center s→ = (0, 2), we
must have the following evaluation for the interventional distribution PXt (St+1 | St),

PXt↗(0,1) (St+1 = (0, 2) | St = (0, 0)) = P (Ut = (1, 0)) (78)
= 0.1 (79)

That is, the agent’s transition distribution T (s, x, s→) = 0.1 when starting from s = (0, 1), taking
action x = (0, 1), and moving to the next state s→ = (0, 2).

Confounded Behavior Policy Consider now an off-policy learning task in the windy gridworld,
where the agent’s goal is to evaluate the expected return of a target policy ω↑ described in Fig. 2a.
Following such a policy ω↑, the agent will consistently move towards the goal state s = (1, 2) from
its current location, regardless of the wind direction.

The detailed parametrization of the agent’s system dynamics in the windy gridworld remains unknown.
Instead, its has access to observed trajectories generated by a behavior policy x ⇓ fX(s, u) which
could sense the wind and select an action accordingly; Fig. 9 provides a detailed description for this
behavior policy. For example, when the agent is located in the top-left corner (s = (0, 0)) and the
wind is blowing south (s = (0, 1)), the behavior policy x ⇓ fX(s, u) will decide to move right
(x = (1, 0)) so that the agent could get to the center (s→ = (1, 1)).
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(a) no wind (b) east (c) south (d) west (e) north

Figure 9: A confounded behavior policy fX selecting values based on the agent’s location S and the
latent wind direction U .

Consequently, the wind direction Ut becomes an unobserved confounder in the generative process for
the offline observational data, affecting the allocated action Xt and the next state St+1 simultaneously.
The presence of unobserved confounders lead to violations of causal consistency (Def. 2). To witness,
Fig. 8 shows observed trajectories in the offline data when the agent starts from state s = (0, 0).
When the weather is nice (no-wind) or the wind u is blowing towards east or west, the behavior
policy selects action x = down, similar to the interventional trajectories of Fig. 6. On the other
hand, when the wind is blowing towards north or south, the behavior policy selects action
x = right, moving the agent towards the center of the board. Among all the possible next state in
the observational data, we find that the agent will never reach the bottom left corner s = (0, 2). This
means that when evaluating the observational distribution P (St+1 | St, Xt), we must have

P (St+1 = (0, 2) | St = (0, 0), Xt = (0, 1)) = 0 (80)

In other words, the nominal transition distribution T̃ (s, x, s→) = 0 when one observes the agent
starting from s = (0, 1), taking action x = (0, 1), and moving to the next state s→ = (0, 2). Comparing
the evaluations in Eqs. (79) and (80), we find that Pxt (st+1 | st) ≃= P (st+1 | st, xt), that is, causal
consistency (Def. 2) does not hold between the agent’s system dynamics in windy gridworld and the
observational distribution generated by the confounded behavior policy in Fig. 9.
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