A Appendix

A.1 Proofs

Proof of Lemma (B* is a y-contraction in oo-norm). First observe that for any functions f and
g,
|max f(z) — max g(z)| < max|f(z) - g(x)| (14)

To see this, suppose max, f(z) > max, g(x) (the other case is symmetric) and let & =
arg max,, f(z). Then

| max f(2) — max g(v)| = f(Z) —maxg(z) < f(F) — g(F) < max|f(x) —g(x)] (15
We also note that implies
[min () — min g(x)| < max|f(x) — g(a) (16
since min, f(x) = — max,(—f(x)). Thus forany Q,Q’ : S x A = R,
IB*Q = B* Q|| = sup |B"Q(s,a) — B*Q'(s, a)|

s,a
=vsup| min maxQ(s’,a’) — min maxQ'(s',a’)
s,a |s’€T(s,a) @ s'€T(s,a) @

<~ysup max

max Q(s',a') — max Q/(s', ')

s,a s'€T(s,a)! @
<vsup|Q(s',a') — Q'(s, d)|
s’ a’
=7Q - Q'll=
Hence B* is indeed a ~y-contraction. O

A.2 Extension to stochastic dynamics

Here we outline a possible extension to stochastic dynamics, although we leave experiments with
stochastic systems for future work.

First, let us modify the definitions to accommodate stochastic dynamics:

* We introduce safety functions 1™ (s,a) = E™[>", Unsafe(s;) |so = s,a0 = al, i.e. Q7
where the cost is the Unsafe indicator and v = 1. Note that if an unsafe state is reached, the
episode terminates, so the sum is always 0 or 1. In words, u™ (s, a) is the probability of ever
encountering an unsafe state if the agent starts from state s, takes action a, and then follows
7 thereafter. Similarly, let 1™ (s) = Eqr(s)[1" (5, a)], analogous to V.

* We also define the optimal safety functions p*(s,a) = min, p™(s,a) and v*(s) =
min, v7(s).

* A state-action pair (s, a) is p-irrecoverable if ©* (s, a) > p. Otherwise we say that (s, a) is
p-safe.

* A state s is p-irrecoverable if v*(s) > p, and p-safe otherwise.

Our rapid failure assumption must also be extended: There exists a horizon H and threshold g such
that if (s, a) is p-irrecoverable, then for any sequence of actions {a¢ }$2, with ag = a, the probability
of encountering an unsafe state within H steps is at least ¢q. (Note that necessarily ¢ < p.)

A.2.1 Analysis

Let s be a p-safe state, and let a and a’ be actions where a is p-safe but a'is p—irrecoverablelﬂ We
want to have Q*(s,a) > Q*(s, a’) so that the greedy policy w.r.t. Q*, which is an optimal policy for

“Note that, as a consequence of the definitions, any action which is p’-safe with p’ < p is also p-safe, and
similarly any action which is p’-irrecoverable with p’ > p is also p-irrecoverable.

12

M, will only take p-safe actions. Our strategy is to bound Q* (s,a’) from above and Q* (s, a) from
below, then choose C' to make the desired inequality hold.

We consider o first, breaking it down into two cases:
* An unsafe state is reached within H steps. Since (s, a’) is p-irrecoverable, our assumption

implies that an unsafe state is reached within H steps with probability at least q. As
calculated in the original submission, the maximum return of a trajectory which is unsafe

H H
W. Let us call this constant R¢. If Ro < 0, then

within H steps is at most
P(unsafe within H steps) - (max return | unsafe within H steps) < gRc¢ (17
Otherwise, we can use the fact that any probability is bounded by 1 to obtain
P(unsafe within H steps) - (max return | unsafe within H steps) < R¢ (18)

To satisfy both simultaneously, we can use the bound max{gR¢, Rc}.
* The next H states encountered are all safe. This happens with probability less than 1 — ¢,

and the maximal return is Tl_—i’y‘ as usual.

From the reasoning above, we obtain

Q*(s,a’) < P(unsafe within H steps) - (max return | unsafe within H steps) + (19)
P(safe for H steps) - (max return | safe for H steps) (20)
< max{gRo, Re} + (1= q) ;™% e
Now consider a. Since (s, a) is p-safe,
Q*(s,a) > P(unsafe) - (min reward | unsafe) + P(safe) - (min reward | safe) (22)
> (1_07) - 23)

_ _pC + (1 - p)Tmin
= T
Note that the second step assumes C' > 0. (We will enforce this constraint when choosing C'.)

(24)

To ensure Q*(s,a) > Q*(s,d’), it suffices to choose C' so that the following inequalities hold
simultaneously:
_pc + (1 - p)rmin
L=~

lrm‘ X
> qRe +(1-q)7 j7 (25)

—pC +(1- Tmin Tmax
PO A =Pmin o,y (1 —) T 26)
1—7v 1—7v
Multiplying both sides of by 1 — v gives the equivalent
_pC + (1 - p)rmin > qrmax(l - 'YH) - qC'yH + (1 - q)rmax (27)

Rearranging, we need
7ﬂmax(]- - (I’YH) - (]— 7p)rmin

c > i = (28)
qy" —Pp
Similarly, multiplying both sides of by 1 — gives the equivalent
_pC + (1 - p)rmin > Trﬂax(l - ’YH) - C,YH + (1 - q)rmax (29)

Rearranging, we need

C > 7qmax(2 —q—- ’YH) - (1 - p)rmin

— (30)

Y —p ’

All things considered, the inequality Q* (s, a) > Q* (s, a’) holds if we set
C > max{ay, as,0} 3D

13

A.3 Implementation details and hyperparameters

In this appendix we provide additional details regarding the algorithmic implementation, including
hyperparameter selection.

Here are some additional details regarding the (S)MBPO implementation:

All neural networks are implemented in PyTorch [Paszke et al.,|2019]] and optimized using
the Adam optimizer [Kingma and Ba,[2014] and batch size 256.

The dynamics models use a branched architecture, where a shared trunk computes an
intermediate value z = hg, ([s, a]) which is then passed to branches 19, (z) and oy, (z). All
three networks are implemented as multi-layer perceptrons (MLPs) with ReLLU activation
and 200 hidden width. The hy network has 3 layers (with ReLLU on the final layer too),
while 19, and oy, each have one hidden layer (no ReLU on final layer).

Every 250 environment steps, we update the dynamics models, taking 2000 updates of the
Adam optimizer.

The networks for the Q functions and policies all have two hidden layers of width 256.
We use a learning rate of 3e-4 for the Q function, 1e-4 for the policy, and le-3 for the model.

Following [Fujimoto et al.|[2018]], we store two copies of the weights for () (and Q), trained
the same way but with different initializations. When computing the target () in equation
(10) and when computing @ in equation (I3), we take the minimum of the two copies’
predictions. When computing the () in equation (10}, we compute the loss for both copies
of the weights and add the two losses.

When sampling batches of data from D U D, we take 10% of the samples from D and the
remainder from D.

The model-free algorithms have their own hyperparameters, but all share yge and €gre. Following
Thananjeyan et al. [2020], we tune g, and egape for recovery RL first, then hold those fixed for all
algorithms and tune any remaining algorithm-specific hyperparameters. All these hyperparameters
are given in the tables below:

Name | Which algorithm(s)? Choices hopper | cheetah | ant | humanoid
Vsafe all 0.5,0.6,0.7 0.6 0.5 0.6 0.6
Esafe all 0.2,0.3,04 0.3 0.2 0.2 0.4

v LR 1, 10, 100, 1000 | 1000 1000 1 1
v SQRL 1, 10, 100, 1000 1 1000 10 1
A RCPO 1, 10, 100, 1000 10 10 1 10

‘We run our experiments using a combination of NVIDIA GeForce GTX 1080 Ti, TITAN Xp, and
TITAN RTX GPUs from our internal cluster. A single run of (S)MBPO takes as long as 72 hours on

a single GPU.

14

	Introduction
	Background
	Method
	Reward penalty framework
	Extension to model-based rollouts
	Practical algorithm

	Experiments
	Tasks
	Algorithms
	Results

	Related Work
	Conclusion
	Appendix
	Proofs
	Extension to stochastic dynamics
	Analysis

	Implementation details and hyperparameters

