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ABSTRACT

Hyperparameter optimization (HO) is essential in machine learning and can be
structured as a bilevel optimization. However, many existing algorithms designed
for addressing nonsmooth lower-level problems involve solving sequential sub-
problems with high complexity. To tackle this challenge, we introduce penalty
methods for solving HO based on strong duality between the lower level prob-
lem and its dual. We illustrate that the penalized problem closely approximates
the optimal solutions of the original HO under certain conditions. In many real
applications, the penalized problem is a weakly-convex objective with proximal-
friendly constraints. Furthermore, we develop two fully first-order algorithms to
solve the penalized problems. Theoretically, we prove the convergence of the pro-
posed algorithms. We demonstrate the efficiency and superiority of our method
across numerical experiments.

1 INTRODUCTION

In machine learning, the introduction of regularization terms is a common practice aimed at enhanc-
ing model generalization and controlling model complexity. This overarching framework can be
articulated as an objective function that strikes a balance between data fitting and model simplicity:

min
x

l(x) +

r∑
i=1

λiRi(x). (1)

In this formulation, l(x) represents the loss function and λ = (λ1, λ2, ..., λr) encompasses hyper-
parameters, which are not derived from the learning algorithm but rather specified as inputs. Mean-
while, Ri(x), i = 1, 2, ..., r denotes the regularizers, which are considered in the form of norms in
this paper, i.e. Ri(·) = ∥ · ∥. The pursuit of optimal hyperparameters that enhance predictive per-
formance is a vital task in machine learning, commonly referred to as hyperparameter optimization
(Feurer & Hutter, 2019; Gao et al., 2022; Ye et al., 2021; 2023; Chen et al., 2024). In supervised
learning, this process involves partitioning the dataset into training, validation, and test sets, solv-
ing (1) for various λ values, and selecting the best (λ,xλ) based on validation and training error.
The quality of the selected hyperparameters is ultimately evaluated through the test error function.
This structured approach can be encapsulated within a bilevel optimization framework (Dempe &
Zemkoho, 2020):

min
xλ,λ

L(xλ)

s.t. xλ ∈ argmin
x

{
l(x) +

r∑
i=1

λiRi(x)

}
.

(2)

In this formulation, L serves as the loss function on the validation set, defining the upper-level (UL)
problem, while l represents the training set loss function, constituting the lower-level (LL) problem
alongside the regularization terms. The hyperparameters λ help delineate the trade-off between
fitting the data and maintaining simplicity.

1.1 MAIN CONTRIBUTIONS

We summarize our main contributions as follows. We propose a penalty method based on lower-level
duality for hyperparameter optimization (2), which is in the form of bilevel optimization with non-
smooth lower-level problem. Our method avoids any implicit value functions and high-complexity
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subproblems. Additionally, we introduce first-order algorithms to solve the penalization problem
and provide theoretical proof of its convergence. Through experimental results, we demonstrate the
superiority of our algorithm, highlighting its independence from any convex optimization solvers
while showcasing its exceptional efficiency.

1.2 RELATED WORK

Hyperparameters Optimization. The existing literature presents various strategies for hyperpa-
rameter selection. Among the simplest model-free techniques are grid search (Injadat et al., 2020)
and random search (Bergstra & Bengio, 2012). Additionally, Bayesian optimization (Bergstra et al.,
2011; Snoek et al., 2012) serves as a sequential algorithm that selects future evaluation points by
leveraging insights from prior outcomes. However, these gradient-free methods face significant chal-
lenges when dealing with a high number of parameters. To address this limitation, Feng & Simon
(2018) introduces gradient-based techniques for hyperparameter tuning.

Bilevel Optimization. In general, the problem presented in (2) aligns with the format known as
bilevel optimization (BLO), which is pertinent to a diverse array of data-driven challenges, including
hyperparameter optimization (Maclaurin et al., 2015; Franceschi et al., 2018), meta-learning (Finn
et al., 2017), and reinforcement learning (Shen et al., 2024; Stadie et al., 2020).

The initial strategies for addressing bilevel optimization problems primarily centered on gradient-
based algorithms, which can be broadly classified into two categories based on their methods for
computing hypergradients. Iterative Differentiation (ITD) involves unrolling the lower-level prob-
lem into gradient steps and subsequently utilizing backpropagation to calculate the hypergradient
(Franceschi et al., 2017; 2018; Grazzi et al., 2020; Liu et al., 2021b; Antoniou et al., 2018; Shaban
et al., 2019). In contrast, Implicit Differentiation (AID) leverages the first-order optimality condi-
tions of the lower-level problem along with the implicit function theorem to derive the hypergradient
(Pedregosa, 2016; Rajeswaran et al., 2019; Lorraine et al., 2020; Yang et al., 2021; 2023). However,
these methods necessitate the strong convexity of the lower-level problem, thereby constraining their
applicability.

Recently, Chen et al. (2023a); Li et al. (2022); Chen et al. (2023b) have introduced a series of
fully first-order methods that operate without requiring Hessian computations or implicit gradients.
Additionally, many machine learning problems may exhibit multiple minima for the lower-level
function. To address this challenge, Liu et al. (2021a) propose a value function based on the optimal
value of the lower-level function, which leads to the development of novel algorithms employing a
penalization technique (Liu et al., 2023). As a result, penalty-based methods have also emerged as
effective solutions for bilevel optimization problems. Shen & Chen (2023); Lu & Mei (2024); Kwon
et al. (2023b;a); Liu et al. (2022) construct single-level reformulation for original BLO by penalty
method with various penalty terms.

Nonsmoooth Lower-level Problem. When the regularazer is l1 norm, Bertrand et al. (2020) pro-
poses an implicit differentiation method with block coordinate descent for Lasso-type hyperparam-
eter optimization, later extended to general nonsmooth problems Bertrand et al. (2022). Ye et al.
(2021; 2023) utilize diffenrence-of-convex (DC) method for hyperparameter selection, while Gao
et al. (2022) combine penalization with DC method for bilevel problems with nonsmooth regular-
izer. Both methods require computing the lower-level optimal value for subgradients. Recently,
Chen et al. (2023a) propose an inexact gradient-free method, though the subproblem remains diffi-
cult to solve. Chen et al. (2024) presents a novel reformulation based on LL duality with no value
function involved and proposes an iterative algorithm grounded in cone programming for many prat-
ical applications alongside its corresponding off-the-shelf solver. Recent studies have also employed
the Moreau envelope to effectively address nonsmooth functions. Works by Gao et al. (2023); Yao
et al. (2024b); Liu et al. (2024) have restructured the original bilevel optimization framework us-
ing this strategy and propose a series of Moreau envelope-based algorithms, which demonstrate the
capability to identify well-defined KKT points.

2 PENALIZATION FRAMEWORK

In this section, we introduce our lower-level duality based penalty method (LDPM) for hyperpa-
rameter optimization (2). We begin by separating and simplifying the hierarchical structure of the
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lower-level problem using Fenchel duality. Unlike traditional primal-dual methods, we employ con-
jugate functions to transform the subproblems into constrained optimization problems, eliminating
the need for any value function. Subsequently, we implement the penalization strategy and discuss
the relationship between the penalized formulation and the original problem (2).

2.1 PENALTY-BASED METHODS BASED ON LOWER-LEVEL DUALITY

In this subsection, we reconstruct the lower-level problem with Lagrangian function and duality.
Based on this, we study the lower-level duality reformulation and propose the penalty-based method.
First we introduce augmented variables zi, i = 1, 2, ..., r and deduce the equivalent form of LL
problem of (2),

min
x,zi

l(x) +

r∑
i=1

λiRi(zi) s.t. x = zi. (3)

Since l, Ri are convex and the constraints are affine, strong duality holds under Slater’s condition.
If ri(dom l ∩ (∩r

i=1dom Ri)) ̸= ∅, then (3) is equivalent to its Lagrangian dual problem:

−min
ρ

max
x,zi

−l(x)−
r∑

i=1

λiRi(zi)−
r∑

i=1

ρT
i (x− zi),

where ρi is are Lagrangian multipliers associated with constraint x = zi. The above problem can
be further simplified with definition of conjugate functions as,

max
ρ

−l∗(−
r∑

i=1

ρi)−
r∑

i=1

λiR
∗
i (−

ρi

λi
). (4)

Meanwhile, the constraint of (2) is equivalent to

l(x) +
r∑

i=1

λiRi(x)
(a)

≤ min
x

{l(x) +
r∑

i=1

λiRi(x)}
(b)
= max

ρ
−l∗(−

r∑
i=1

ρi)−
r∑

i=1

λiR
∗
i (−

ρi

λi
),

(5)

where, (a) utilizes the value function of the lower-level problem, which is widely used in relevant
literature of BLO Liu et al. (2021a; 2023), (b) is from the equivalence of (3)-(4). Dropping the max
operator, we obtain that the lower-level problem of (2) can be replaced by the inequality constraint,

l(x) +

r∑
i=1

λiRi(x) + l∗(−
r∑

i=1

ρi) +

r∑
i=1

λiR
∗
i (
ρi

λi
) ≤ 0,

and obtain the reformulation for (2):

min
x,λ,ρ

L(x)

s.t. l(x) +
r∑

i=1

λiRi(x) + l∗(−
r∑

i=1

ρi) +
r∑

i=1

λiR
∗
i (

ρi

λi
) ≤ 0.

(6)

Note that it is independent of any implicit value function, but rather utilizes the conjugate of the
atom functions in the lower-level problem. Naturally, the validity of (6) depends on the following
assumption.
Assumption 2.1. l andRi, i = 1, 2, ..., r in the lower-level problem of (2) possess explicit conjugate
functions.

The fulfillment of Assumption 2.1 is straightforward to ensure. Indeed, the loss functions in most
real-world problems have closed-form conjugate functions, including least squares, hinge loss and
logarithmic functions. Similarly, the norm terms Ri(·) also share this property, where we denote
R∗

i (·) = ∥ · ∥∗ as the conjugate norm of Ri. In this case, we observe that R∗
i (

ρi

λi
) = 0 provided

the condition ∥ρi∥∗ ≤ λi holds (Boyd & Vandenberghe, 2004). Meanwhile, with introducing an
auxiliary variables ri satisfying Ri(x) ≤ ri, the constraint of (6) is equivalent to

l(x) + l∗(−
r∑

i=1

ρi) +
r∑

i=1

λiri ≤ 0.

Ri(x) ≤ ri, ∥ρi∥∗ ≤ λi, i = 1, 2, ..., r.
(7)

3
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Consequently, (6) is equivalent to the following problem,

min
x,λ,ρ,r

L(x)

s.t. l(x) + l∗(−
r∑

i=1

ρi) +
r∑

i=1

λiri ≤ 0.

Ri(x) ≤ ri, ∥ρi∥∗ ≤ λi, i = 1, 2, ..., r.

(8)

We summarize the first inequality constraint of (8) as a penalty term

p(x,λ,ρ, r) = l(x) + l∗(−
r∑

i=1

ρi) +

r∑
i=1

λiri, (9)

and employ penalization strategy to handle (8). Then we can rewrite (8) with a penalty constant β
as follows,

min
x,λ,ρ,r

L(x) + βp(x,λ,ρ, r).

s.t. Ri(x) ≤ ri, ∥ρi∥∗ ≤ λi, i = 1, 2, ..., r.
(10)

Thus, we have fully converted the hyperparameter optimization (2) into a single-level formulation
(10). Although the introduced variable ρi has the same dimension as x, it does not affect the whole
scale and complexity.

2.2 EQUIVALENCE BETWEEN PENALIZED AND PRIMAL PROBLEM

In this subsection, we discuss the relationship between (2) and (10) from the perspective of duality.
We first introduce corresponding assumptions for 2 as follows.
Assumption 2.2. L(x) is L0-Lipschitz continuous.
Assumption 2.3. l(x) is (1/αl)-strongly convex and l1-smooth.
Assumption 2.4. For any given x, the optimal solution set of lower-level problem in (2) denoted as
Lopt(λ) is closed and non-empty.

Besides Assumption 2.2, we note that the norm terms Ri(x) are convex but potentially nonsmooth,
which implies that the lower-level problem is convex and nonsmooth in x. Regarding Assumptions
2.2 and 2.3, the conjugate function l∗ is αl-smooth (Theorem 5.26 in Beck (2017)). Subsequently,
the penalty term p(x,λ,ρ, r) is differentiable and (l1+αl+1)-smooth. The above assumptions are
prevalent and commonly satisfied in practical applications. From (3)-(8), we know that (2) can be
reformulated into (8). From the KKT conditions of (3), we first analyze ρi, i = 1, 2, ..., r in (6) and
obtain the following lemma.
Lemma 2.5. If xλ is an optimal solution of the lower-level problem of (2), then there exists the
unique multiplier ρ∗

i and z∗i = xλ such that (xλ, z
∗
i ,ρ

∗
i ) is a KKT point of (3).

According to KKT condition of we recover that ρ∗
i in Lemma 2.5 satisfies that

r∑
i=1

ρ∗
i = −∇l(xλ), ρ

∗
i ∈ λi∂Ri(xλ), i = 1, 2, ..., r, (11)

which implies that the KKT point of (3) is also the stationary point of the lower-level problem of
(2). Note that the penalty term p(x,λ,ρ, r) is derived from duality of lower-level problem, so we
summarize the property of p(x,λ,ρ, r) regulating ∥x− xλ∥2 as follows.
Lemma 2.6. Suppose Assumption 2.3 and 2.4 hold, then it holds that p(x,λ,ρ, r) ≥ αl

2 ∥x−xλ∥2 ≥
0 for any given x,λ,ρ, r. In addition, p(x,λ,ρ, r) = 0 if and only if x ∈ Lopt(λ).

Based on Lemma 2.5, we further derive the equivalence between bilevel form (2) and the constrained
problem (6) as follows.
Proposition 2.7. If (x∗,λ∗) is a global optimal solution for (2), and ρ∗

i is defined as in (11), then
(x∗,λ∗,ρ∗

i ) is global optimal solution for (6).

From Proposition 2.7, we can further recognize the equivalence between the primal problem (2)
and (8). As a result, we now redirect our focus to investigating relationship between (8) and (10).
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Due to the non-negativity of the penalty term p(x,λ,ρ, r), we find that there is no interior points
in the feasible region of (6)(8), in the sense that the constraint contradicts any standard regularity
condition. Therefore, we consider the following ϵ-approximate problem for (6)(8) and discuss the
equivalence between it and the penalty problem (10),

min
x,λ,ρ,r

L(x)

s.t. p(x,λ,ρ, r) ≤ ϵ.
Ri(x) ≤ ri, ∥ρi∥∗ ≤ λi, i = 1, 2, ..., r.

(12)

Leveraging Lemma 2.6, we establish the relationship between global optimal solutions of (10) and
12 in Proposition 2.8, which is inspired by Shen & Chen (2023).
Proposition 2.8. Suppose Assumption 2.3 and 2.4 hold. For any ϵp > 0, the global optimal solution
of (2) is also an ϵp-approximation optimal solution of the penalized problem (10) with β > β∗ =
l20αl

8ϵp
. Conversely, the ϵ1-global solution of (10) with β > β∗ is a global optimal solution for ϵ-

approximate problem (12) with 0 ≤ ϵ ≤ (ϵp + ϵ1)/(β − β∗).

In summary, we confirm the relationship between the penalized problem (10) and primal problem
(2). Subsequently, we illustrate the proximity between the optimal value of (10) and (2).
Theorem 2.9. Suppose that Assumptions 2.2,2.3 and 2.4 hold. If (x∗

ϵ ,λ
∗
ϵ ,ρ

∗
ϵ , r

∗
ϵ ) is ϵ-optimal solu-

tion of the penalized problem (10), then we obtain that |L(x∗
ϵ )− L(x∗)| ≤ O(ϵ), where x∗ with an

optimal λ∗ attains the minimum of (2).

We provide the related proofs in Appendix A. The primary challenges in solving (10) arise from its
nonsmooth and nonconvex properties. To address these, we explore first-order algorithms to solve
the penalized problem (10), cleverly leveraging the structure of (2) and (10).

3 SOLVING THE PENALTY FORMULATIONS

In this section, we propose our main algorithm grounded in penalty-based problem (10). For conve-
nience, we denote z = (x,λ,ρ, r). We then introduce the constraint sets for each i as follows,

Ri
△
= {z|Ri(x) ≤ ri}, R∗

i
△
= {z|∥ρi∥∗ ≤ λi}. (13)

A natural approach to manage the constraints of (10) is through projection onto Ri and R∗
i . To

proceed, we introduce the following assumption regarding Ri and R∗
i .

Assumption 3.1. For the constraint sets Ri, i = 1, 2, ..., r, each individual set among these r sets
can be easy to project, implying that the corresponding indicator functions IRi

(z) are proximal-
friendly for each i, respectively.

From Moreau decomposition theorem (Theorem 6.44 in Beck (2017)), we know that each individ-
ual set R∗

i and corresponding indicator functions IR∗
i
(z) satisfy the same property described in

Assumption 3.1 for Ri. Assumption 3.1 holds for common norm terms. Even if the constraints of
(10) are in conic form, the corresponding projections still have close-form solutions for each i. We
explain the specific analytic solutions of projection in Appendix C.

However, significant differences exist between the two groups of constraints related to norms and
their conjugate, as the constraints Ri(x) ≤ ri are all related to the same variable x while the con-
straints ∥ρi∥∗ ≤ λi pertain to entirely different variables ρi. Consequently, the projection process
for ∩r

i=1Ri will involve complicated interactions among the feasible domain of each constraint
Ri(x) ≤ ri. In other words, the constraint sets R∗

i are mutually separated, which means that
∩r
i=1R∗

i is easy to project. Accordingly, the projection onto ∩r
i=1Ri is hard to directly computed

and its indicator function is generally proximal-unfriendly.

Although relevant full projection algorithms for composite constraints are explored by Li et al.
(2020); Liu & Liu (2017), these algorithms necessitate additional iterative loop and produce inex-
act results. Thus, the integration of these full projections with first-order algorithms can lead to
divergence and a notable decrease in efficiency. Therefore, we need to consider splitting the mixed
constraint sets ∩r

i=1Ri. In the specific scenario of problem (2) with a single regularizer, the obstacles
are rendered unnecessary.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Therefore, we introduce the first-order algorithm for a single regularizer (r = 1) as a special case
in subsection 3.1, while the algorithm for problems requiring multiple norm regularization terms
(r > 1) is presented in subsection 3.2.

3.1 SINGLE REGULARIZATION TERM

In this subsection, we explore the algorithm for (2) with a single regularization term R1(x). Conse-
quently, (10) simplifies to the following formulation:

min
x,λ,ρ,r

L(x) + βp(x,λ,ρ, r).

s.t. R1(x) ≤ r1, ∥ρ∥∗ ≤ λ1,
(14)

where p(x,λ,ρ, r) = l(x) + l∗(−ρ) + λ1r1. We adopt the notations z = (x,λ,ρ, r) and define
R1,R∗

1 as in (13).
Definition 3.2. A function f is called w-weakly convex for some w ≥ 0 if f(·)+ w

2 ∥ · ∥
2 is convex.

It is noteworthy that the bilinear term λ1r1 is 1-weakly convex and 1-smooth with respect to z.

Lemma 3.3. L(x) + βp(z) is lp-smooth in z with lp
△
= l1 + β(l1 + αl + 1).

The above results can be directly computed under Assumptions 2.2 and 2.3. Meanwhile, the sets
R1 satisfies Assumption 3.1 and it is separated from R∗

1. Therefore, R1 ∩ R∗
1 is projected-friendly

and (14) can be minimized with projected gradient descent. We summarize our first-order algorithm
for (14) in Algorithm 1. In line 1, x0 is initialized by solving lower-level problem minx{l(x) +
λ1R1(x)} with given λ01 and we set r0 = R1(x

0),ρ0 = −∇l(x0). In this setting, we ensure the
feasibility of problem (14). In line 3, the iterative first-order method is performed for problem (14)
accompanied by the projection onto R1 ∩ R∗

1. With the fixed penalty parameter β, we set the step
size η ≤ 2/lp and lp is computed in Lemma 3.3, which ensures consistent progression throughout
the iterations. In line 4, we choose the stopping criterion with the results of two iterative points are
sufficiently close, i.e., ∥zk+1 − zk∥ ≤ tol.

Algorithm 1 First-order Methods for Penalized Problem (14)
1: Initialize λ0 and x0,ρ0, r0, constants β, η.
2: for k = 0, 1, 2, ...,K do
3: Update zk+1 = projR1∩R∗

1
{zk − η[∇z(L(x

k) + βp(zk))]}.
4: if Termination criteria is met. then
5: Stop.
6: end if
7: end for

Remark 3.4. We define an indicator function as g1(z) = IR1∩R∗
1
(z). The iteration 3 in Algorithm

1) can be described as the process of finding an approximate optimal solution of (14).

Since the reformulation (6) involves no implicit value functions related to the lower-level problem of
(2), Algorithm 1 does not require an iterative loop for finding the optimal solution xλ of lower-level
problem of (2) or the dual multiplier ρ∗. Therefore, Algorithm 1 is equipped with a single loop for
z, which fully centers on the variables (x,λ,ρ, r) in problem (14).

In this case, we obtain the sufficient decrease and convergence results of Algorithm 1 as follows.
Lemma 3.5. Assume L(x) and p(z) are bounded below. For k ∈ N and {zk} generated from
Algorithm 1 with penalty parameter β̄, we have L(xk+1) + β̄p(zk+1) ≤ L(xk) + β̄p(zk). In
addition, the sequence {zk} satisfies that limk→∞ ∥zk+1 − zk∥ = 0.
Theorem 3.6. Assume L(x) and p(z) are bounded below. Based on Lemma 3.5, any limit point of
{zk} is a stationary point of (14).

The proofs of Lemma 3.5 and Theorem 3.6 are provided in Appendix B. The convergence results in
this case follow from Beck & Teboulle (2009; 2010), which introduce the analysis of proximal gra-
dient method. In summary, Algorithm 1 addresses the primal problem (2) with single regularization
term by applying the penalized problem in the form of (14). It also inspires the resolution of the
cases involving multiple regularization terms.

6
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3.2 DOUBLE REGULARIZATION TERMS

In this subsection, we focus on the algorithm design for (2) involving multiple regularization terms.
For convenience, we present the case with double regularization terms in the main text, while the
algorithm for addressing (2) with more regularization terms and correspondingly results are provided
in Appendix B.5. For this scenario, (10) simplifies to the following formulation:

min
x,λ,ρ,r

L(x) + βp(x,λ,ρ, r).

s.t. Ri(x) ≤ ri, ∥ρi∥∗ ≤ λi, i = 1, 2,
(15)

where p(x,λ,ρ, r) = l(x)+l∗(−ρ1−ρ2)+λ1r1+λ2r2. We adopt the notations z = (x,λ,ρ, r) and

Ri,R∗
i , i = 1, 2 defined in (13). From Assumption 3.1, we know that R∗ △

= R∗
1 ∩R∗

2 is projected-

friendly, so we merely need to perform variable decomposition for R1 ∩ R2. We define gi(z)
△
=

IRi∩R∗(z), i = 1, 2. Under this conditions, (15) can be rewritten as the following equivalent form,

min
z

L(x) + βp(z) + g1(z) + g2(z). (16)

Motivated by (3), we introduce an auxiliary variable u as follows,

min
z

L(x) + βp(z) + g1(z) + g2(u)

s.t. z = u.
(17)

The augmented Lagrangian function of problem (17) is

Lγ(z,u,µ) = L(x) + βp(z) + g1(z) + g2(u) + ⟨µ,u− z⟩+ γ

2
∥u− z∥2

= L(x) + βp(z) + g1(z) + g2(u) +
γ

2
∥u− z+

µ

γ
∥2 − ∥µ∥2

2γ
.

Now, we naturally employ Alternating Direction Method of Multipliers (ADMM) to solve (17),
which cyclically update u, z,µ by solving the u- and z-subproblems and adopt a dual ascent step
for µ. We summarize the iterations in Algorithm 2. In line 1, x0 is initialized by solving lower-level
problem minx{l(x) + λ1R1(x) + λ2R2(x)} with given λ0 and we set r0i = Ri(x

0). In line 3,
we add a proximal term due to the weakly-convex term λiri, i = 1, 2 with a constant t. In line 4,
u-subproblem takes the form of direct projection onto R2. Under Assumption 3.1, we assume that
u-subproblem can be solved exactly in each iteration.

Algorithm 2 ADMM Framework for Problem (15)
1: Initialize λ0 and x0,ρ0, r0,u0 = (x0,λ0,ρ0, r0) , constants β, γ and t.
2: for k = 0, 1, 2, ... do
3: zk+1 = argminz

{
L(x) + βp(z) + g1(z) +

γ
2 ∥u

k − z+ µk

γ ∥2 + t
2∥z− zk∥2

}
.

4: uk+1 = argminu

{
g2(u) +

γ
2 ∥u− zk+1 + µk

γ ∥2
}

.

5: µk+1 = µk + γ(uk+1 − zk+1).
6: end for

According to Definition 3.2, we control the proximal coefficient with t > αd − γ where αd
△
=

β
2 − (1 + β)αl − γ, then we describe the property of z-subpoblem in the following lemma.
Lemma 3.7. Suppose Assumptions 2.2 and 2.3 hold. The z-subproblem in line 3 of Algorithm

2 enjoys (t − αd)-strongly convex property, while the objective function is ld-smooth with ld
△
=

γ + t+ l1 + β(l1 + αl + 1).

The above results is obtained from direct computation under Assumptions 2.2 and 2.3. For z-
subproblem in line 3, g1(z) is indicator function and the problem can be expressed in the following
form

zk+1 = argminz∈R1∩R∗

{
L(x) + βp(z) +

γ

2
∥uk − z+

µk

γ
∥2 + t

2
∥z− zk∥2

}
, (18)
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which can be solved with projected gradient descent in the form of Algorithm 1 with a constant step
size η ≤ 1

ld
. The projected gradient descent for the z-subproblem includes an additional proximal

term compared to Algorithm 1. Note that (18) is strongly convex and smooth from Lemma 3.7, then
we can derive the complexity results for finding an ϵk-optimal solution for z-subproblem in k-th
iteration of Algorithm 2.

Lemma 3.8. In k-th iteration of Algorithm 2, an ϵk-optimal solution zk+1 is generated in
O( ld

t−αd
log( 1

ϵk
)) projected gradient descent oracles.

The results of complexity of inner iterations utilize the conclusive findings in Bubeck et al. (2015).
Then we make the assumptions concerning z-subproblem and µ.

Assumption 3.9. The sequence {ϵk} satisfies
∞∑
k=1

ϵk <∞.

Assumption 3.10. The sequence {µk} is bounded and satisfies
∞∑
k=1

∥µk − µk+1∥2 <∞.

Assumption 3.9 is introduced by Wang et al. (2019) and Assumption 3.10 is popularly employed in
ADMM approaches Xu et al. (2012); Bai et al. (2021); Shen et al. (2014); Cui et al. (2024). Based
on Assumptions 3.9 and 3.10, we propose the convergence result for Algorithm 2 in Theorem 3.11.

Theorem 3.11. Algorithm 2 can find an ϵ-KKT point (zk+1,uk+1,µk+1) of (17) within O(1/ϵ2)
iterations.

From Theorem 3.11, we further conclude that Algorithm 2 finds an ϵ-KKT point of (17) within
O(1/ϵ2) iterations. we provide the detailed proofs and extension to problem (2) with multiple
regularizers in Appendix B.

4 NUMERICAL EXPERIMENTS

In this section, we conduct experiments to compare LDPM with existing algorithms for hyperparam-
eter optimization on synthetic data and real datasets, respectively. In specific, we mainly compare
our LDPM with grid search, random search, TPE (Bergstra et al., 2013), IJGO (Feng & Simon,
2018), VF-iDCA (Gao et al., 2022), LDMMA (Chen et al., 2024), GAFFA (Yao et al., 2024a). All
experiments are performed on a computer with Intel(R) Core(TM) i7-10710U CPU @ 1.10GHz
1.61 GHz and 16.00 GB memory. The code is implemented using Python 3.9. We consider hyper-
parameter optimization for elastic net and (sparse) group lasso. In this section, we present part of
the experimental results on synthetic data, with additional results and detailed descriptions of the
data generation and parameters for several methods included in Appendix D.

4.1 SPARSE GROUP LASSO

We conduct experiments with different data scales and report results in Figure 1. The results of the
search methods and Bayesian method (TPE) are not presented in Figure 1 due to its lower efficiency
and instability. We have included the specific numerical results in tabular form in Appendix D.1. We
observe that LDPM consistently outperforms other algorithms in terms of computational efficiency.
As the data scale increases, the superiority of our approach becomes increasingly evident, demon-
strating the advantages of LDPM in large-scale hyperparameter optimization. In contrast, gradient-
free methods exhibit significant instability when handling numerous hyperparameters, while IGJO
converges slowly and demands substantial computational resources. Our iteration process is inde-
pendent of any solvers, allowing it to outperform LDMMA and VF-iDCA, both of which rely on
specific solvers for their iterative subproblems.

4.2 ELASTIC NET

The numerical results on elastic net are reported in Figure 2. Overall, LDPM achieves the highest
solution quality in the shortest running time on this problem model. Similar to Section 4.1, the results
of the search method and Bayesian method are not presented in the figure. Instead, we have included
other results in tabular form in the Appendix D.1. Overall, LDPM achieves the lowest test error with
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Figure 1: Comparison of the algorithms on Group Lasso problem for synthetic datasets in different
scales

significantly lower time costs, particularly in large-scale data scenarios. While the gradient-based
method IGJO demonstrates slightly better accuracy and efficiency and its convergence is notably
slow as illustrated in the figure. Meanwhile, VF-iDCA and LDMMA maintain consistently low
validation errors across all experiments. However, both algorithms suffer from overfitting, resulting
in increased test errors as the iterations progress.
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Figure 2: Comparison of the algorithms on Elastic Net problem for synthetic datasets in different
scales

We present other experimental results in the form of figures and tables in Appendix D.1 and D.2.
demonstrating the robustness and applicability of our algorithm. Notably, our algorithm does not
utilize any open-source libraries like CVXPY or commercial optimization solvers, such as MOSEK,
which are typically employed in many hyperparameter optimization algorithms.

5 CONLUSIONS

This paper addresses hyperparameter optimization in the context of nonsmooth regularizers by
proposing a novel penalty method based on lower-level duality (LDPM). Our approach applies pe-
nalization to a single-level reformulation, eschewing any implicit value function and instead uti-
lizing the conjugates of atomic functions. We effectively solve the subproblems within this pe-
nalization framework using fully first-order methods, including proximal techniques and the alter-
nating direction method of multipliers, while maintaining simplicity by avoiding complex off-the-
shelf solvers or high-complexity iterations. Theoretical analyses substantiate the convergence of our
method. Our numerical experiments, conducted on both synthetic and real-world datasets, demon-
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strate that LDPM consistently outperforms existing methodologies, with its advantages particularly
pronounced in large-scale scenarios. Looking ahead, we aim to explore nonsmooth loss functions
and develop more general algorithms from a stochastic perspective, thereby broadening the applica-
bility and impact of our approach.
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optimization. Advances in neural information processing systems, 24, 2011.

James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In International conference on
machine learning, pp. 115–123. PMLR, 2013.

Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, and
Joseph Salmon. Implicit differentiation of lasso-type models for hyperparameter optimization. In
International Conference on Machine Learning, pp. 810–821. PMLR, 2020.

Quentin Bertrand, Quentin Klopfenstein, Mathurin Massias, Mathieu Blondel, Samuel Vaiter,
Alexandre Gramfort, and Joseph Salmon. Implicit differentiation for fast hyperparameter se-
lection in non-smooth convex learning. Journal of Machine Learning Research, 23(149):1–43,
2022.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
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A PROOF IN SECTION 2

In this subsection, we provide the proof for the results concerning the penalty framework in Section
2. First, Lemma 2.5 and Proposition 2.7 hold under the strong duality of (3) (Boyd & Vanden-
berghe, 2004). We present detailed proofs for Lemma 2.6, Proposition 2.8 and Theorem 2.9 in the
subsequent discussion.

A.1 PROOF OF LEMMA 2.6

Proof. We restate the lower-level problem of (2) as follows,

min
x

{l(x) +
r∑

i=1

λiRi(x)}. (19)

We first analyze the maximum and minimum in (5). From Lemma 2.5 and Proposition 2.7, we
know that the max operator with respect to ρ is achieved at ρ∗

i defined in (11). Meanwhile, the min
operator of x occurs at x = xλ. According to the definition of p(x,ρ,λ, r), we deduce that

p(x,ρ,λ, r) = l(x) + l∗(−
r∑

i=1

ρi) +

r∑
i=1

λiri

(a)

≥ l(x) +

r∑
i=1

λiRi(x) + l∗(−
r∑

i=1

ρi)

(b)

≥ l(x) +

r∑
i=1

λiRi(x)−min
ρ

{l∗(−
r∑

i=1

ρi) +

r∑
i=1

λiR
∗
i (
ρi

λi
)}

(c)
= l(x) +

r∑
i=1

λiRi(x)− l(xλ) +

r∑
i=1

λiRi(xλ)

(d)

≥ αl

2
∥x− xλ∥2.

In the above inequalities, (a) results from the constraint Ri(x) ≤ ri, (b) is from the min operator
where the min and max operators have been exchanged by adding the negative sign, (c) follows from
the results in (5) and (d) leverages the strong convexity of l(x) and the quadratic-growth condition
established in Theorem 2 of Karimi et al. (2016). Moreover, when x = xλ attains the minimum of
the lower-level problem of (2), (a) and (c) hold as “=”. Then we complete the proof.

A.2 PROOF OF PROPOSITION 2.8

Proof. For any (x,λ,ρ, r) feasible to (8), we have L(x∗) ≤ L(x). From Lemma 2.6, if holds that
p(x∗,λ∗,ρ∗, r∗) = 0. Let x̄ be the projection into Lopt(λ) of x, i.e., ∥x − x̄∥ = dist(y, Lopt(λ)).
Then we have

L(x) + β∗p(x,λ,ρ, r)− L(x̄)

≥ L(x)− L(x̄) + αlβ
∗

2 ∥x− x̄∥2
(a)

≥ L0∥x− x̄∥+ αlβ
∗

2 ∥x− x̄∥2
≥ min

t
L0t+

αlβ
∗

2 t2

(b)

≥ −ϵp.

(20)

Here, (a) is from the Lipschitz continuity assumption of L(x), (b) is from the fact that L0t+
αlβ

∗

2 t2

attains its minimum at t = L0

αlβ∗ . Since x̄ ∈ Lopt(λ) is feasible to (2), we know that

L(x) + βp(x,λ,ρ, r)− L(x̄) ≥ L(x) + β∗p(x∗,λ∗,ρ∗, r∗)− L(x∗) ≥ −ϵp,∀β ≥ β∗.

Along with the fact that p(x∗,λ∗,ρ∗, r∗) = 0, we know that

L(x∗) + p(x∗,λ∗,ρ∗, r∗) < L(x) + βp(x,λ,ρ, r) + ϵp,∀β ≥ β∗. (21)
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Therefore, we conclude that (x∗,λ∗,ρ∗, r∗) is a ϵp-global optimal solution of (10) with β ≥ β∗.

On the converse, for any (x,λ,ρ, r) feasible for (10), we have L(x∗
β) + βp(x∗

β ,λ
∗
β ,ρ

∗
β , r

∗
β) ≤

L(x) + β(x,λ,ρ, r) + ϵ1. Substituting (x,λ,ρ, r) = (x∗,λ∗,ρ∗, r∗), we deduce that

L(x∗
β) + βp(x∗

β ,λ
∗
β ,ρ

∗
β , r

∗
β) ≤ L(x∗) + ϵ1

(c)

≤ L(x∗
β) + βp(x∗

β ,λ
∗
β ,ρ

∗
β , r

∗
β) + ϵ+ ϵ1.

(22)

where (c) follows from the inequality relation in (20). Therefore, we have p(x∗
β ,λ

∗
β ,ρ

∗
β , r

∗
β) ≤

(ϵ + ϵ1)/(β − β∗). Define ϵβ = p(x∗
β ,λ

∗
β ,ρ

∗
β , r

∗
β), then we have ϵβ ≤ (ϵ + ϵ1)/(β − β∗). Then

for any (x,λ,ρ, r) feasible for (12) with ϵ = ϵβ , it holds that L(x∗
β) + βp(x∗

β ,λ
∗
β ,ρ

∗
β , r

∗
β) ≤

L(x) + β(x,λ,ρ, r), which implies that

L(x∗
β)− L(x) ≤ β(p(x,λ,ρ, r)− ϵβ) ≤ 0.

Here, we prove that (x∗
β ,λ

∗
β ,ρ

∗
β , r

∗
β) is a global solution for 12 with ϵ = ϵβ .

A.3 PROOF OF THEOREM 2.9

Proof. Since (x∗
ϵ ,λ

∗
ϵ ,ρ

∗
ϵ , r

∗
ϵ ) is an ϵ-optimal solution of (10), we have

L(x∗
ϵ ) + βp(x∗

ϵ ,λ
∗
ϵ ,ρ

∗
ϵ , r

∗
ϵ ) ≤ L(x) + p(x,λ,ρ, r) + ϵ. (23)

Note that the conclusion in Proposition 2.8 still holds. Substituting (x,λ,ρ, r) = (x∗,λ∗,ρ∗, r∗)
with the fact p(x∗,λ∗,ρ∗, r∗) = 0, we have

L(x∗
ϵ ) + βp(x∗

ϵ ,λ
∗
ϵ ,ρ

∗
ϵ , r

∗
ϵ ) ≤ L(x∗,λ∗,ρ∗, r∗) + ϵ ≤ L(x∗

ϵ ) + β∗p(x∗
ϵ ,λ

∗
ϵ ,ρ

∗
ϵ , r

∗
ϵ ) + 2ϵ,

where the last inequality follows from (21). Then we have

p(x∗
ϵ ,λ

∗
ϵ ,ρ

∗
ϵ , r

∗
ϵ ) ≤

2ϵ

β − β∗ .

Meawhile, (x∗
ϵ ,λ

∗
ϵ ,ρ

∗
ϵ , r

∗
ϵ ) is feasible for the following problem

min
x,λ,ρ,r

L(x)

s.t. p(x,λ,ρ, r) ≤ p(x∗
ϵ ,λ

∗
ϵ ,ρ

∗
ϵ , r

∗
ϵ ).

(24)

From (23), we have L(x∗
ϵ ) − L(x∗) ≤ β(p(x∗,λ∗,ρ∗, r∗) − p(x∗

ϵ ,λ
∗
ϵ ,ρ

∗
ϵ , r

∗
ϵ )) + ϵ. While

p(x∗,λ∗,ρ∗, r∗) = 0 ≤ p(x∗
ϵ ,λ

∗
ϵ ,ρ

∗
ϵ , r

∗
ϵ ), we have L(x∗

ϵ )− L(x∗) ≤ ϵ.

B PROOF IN SECTION 3

In this section, we provide the proofs for the convergence results of our proposed algorithms in
Section 3.

B.1 PROOF OF LEMMA 3.5

Proof. From the definition g1(z) = IR1∩R∗
1
(z), it holds that proxtg1 = projR1∩R∗

1
for t > 0. We

define PL(z) = L(x) + β̄p(z), then the update of z can be written as

zk+1 = proxη̄g1(z
k − η̄∇PL(z

k)).

From the lp-smooth of PL(z), we have

PL(z
k+1) ≤ PL(z

k) + ⟨∇PL(z
k), zk+1 − zk⟩+ lp

2
∥zk+1 − zk∥2. (25)

In addition, we denote z̄k+1 = zk − η̄∇zPL(z
k), then we have

⟨z̄k+1 − zk, zk+1 − zk⟩
(a)

≤ η̄g1(z
k)− η̄g1(z

k+1)
(b)
= 0.
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where (a) is from Theorem 6.39 in Beck (2017) and (b) follows from the fact that zk+1, zk ∈
R1 ∩R∗

1. Substituting the z̄k+1 = zk − η̄∇zPL(z
k), we have

⟨∇PL(z
k), zk+1 − zk⟩ ≤ −1

η̄
∥zk+1 − zk∥2. (26)

Combining (25) and (26), we obtain that

PL(z
k+1) ≤ PL(z

k) + (−1

η̄
+
lp
2
)∥zk+1 − zk∥2,

which implies that PL(z
k+1) − PL(z

k) ≤ 0 from η̄ ≤ lp
2 . Utilizing the definition of P (z), we

have L(xk+1) + β̄p(zk+1) − L(xk) − β̄p(zk) ≤ 0. In addition, we observe that {PL(z
k)} is

nonincreasing and bounded below, it converges. Therefore, PL(z
k) − PL(z

k+1) → 0 as k → ∞,
along with ∥zk+1 − zk∥2 → 0 because ∥zk+1 − zk∥2 ≤ 1/( 1η̄ − lp

2 )(PL(z
k) − PL(z

k+1)). Then
we complete the proof.

B.2 PROOF OF THEOREM 3.6

Proof. According to the definition of PL(z) and g1(z), we know that (14) can be equivalently pre-
sented as the following form:

min
z

PL(z) + g1(z). (27)

Then we define M(z) = 1
η̄ [z − proxη̄g1(z − η̄∇PL(z))] =

1
η̄ [z − projR1∩R∗

1
(z − η̄∇PL(z))],

representing the gradient mapping used for updating z in Algorithm 1 with respesct to (27). Then it
holds that M(z) is ( 2η̄ + lp)-Lipschitz continuous (Lemma 10.10 in Beck (2017)). Let z̄ is a limit
point of {zk}. Then there exists a subsequence {zkj} converging to z̄. For any j ≥ 0, we have

∥M(z̄)∥ ≤ ∥M(zkj )−M(z̄)∥+ ∥M(zkj )∥ ≤ (
2

η̄
+ lp)∥zkj − z̄∥+ ∥M(zkj )∥.

Based on proof for Lemma 3.5, we know that ∥M(zkj )∥ → 0 as j → ∞. Therefore, we conclude
that ∥M(z̄)∥ = 0 with taking the limit of the above inequality. According to the definition of M(z),
we observe that

z̄− η̄∇PL(z̄) ∈ η̄∂g1(z̄),

which implies ∇PL(z̄) ∈ ∂g1(z̄). From the first-order optimality condition, we conclude that z̄
serves as a stationary point of (14).

B.3 PROOF OF LEMMA 3.8

Theorem B.1. (Theorem 3.10 in Bubeck et al. (2015)) Let f be α-strongly convex and β-smooth on
X . Then projected gradient descent with η = 1

β satisfies for t ≥ 0,

∥xt+1 − x∗∥2 ≤ exp(− tβ
α
)∥x1 − x∗∥2

According to Lemma 3.7, we know that the z-subproblem in Algorithm 2 is (t−αd)-strongly convex
and ld-smooth, where we denote αd = β

2 − (1 + β)αl − γ and ld = γ + t + l1 + β(l1 + αl + 1).
Therefore, the complexity for finding an ϵk-optimal solution of z-subproblem with projected grdient
descent is O( ld

t−αd
log( 1

ϵk
)).

B.4 PROOF OF THEOREM 3.11

Proof. From the update of u-subproblem, we have

Lγ(z
k,uk+1,µk) ≤ Lγ(z

k,uk,µk).

Similarly, we derive from the iteration form and strong convexity of z-subproblem that

Lγ(z
k+1,uk+1,µk)− Lγ(z

k,uk+1,µk) ≥ 2t− αd

2
∥zk+1 − zk∥2.
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Furthermore, we obtain from the update of µ that

Lγ(z
k+1,uk+1,µk)− Lγ(z

k+1,uk+1,µk+1)

= ⟨µk+1 − µk,uk+1 − zk+1⟩

= − 1

γ
∥µk+1 − µk∥2.

In summary, we obtain that

Lγ(z
k,uk,µk)− Lγ(z

k+1,uk+1,µk+1) ≥ 2t− αd

2
∥zk+1 − zk∥2 − 1

γ
∥µk+1 − µk∥2 (28)

We use the extended formula for Clark generalized gradient of a sum of two functions. ∂(f1 +
f2)(x) ⊂ ∂f1(x) + ∂f2(x) if f1 and f2 are finite at x and f2 is differentiable at x. The equality
holds if f1 is regular at x (Theorem 2.9.8 in Clarke (1990)). Then we have

Bk
△
= ∂z

{
L(xk+1) + βp(zk+1) + ⟨µk, zk+1⟩+ γ

2 ∥u
k+1 − zk+1∥2 + t

2∥z
k+1 − zk∥2

}
= ∂z{L(xk+1) + βp(zk+1)}+ (µk + γ(uk+1 − zk+1)) + t(zk+1 − zk)
= ∂z{L(xk+1) + βp(zk+1)}+ µk+1 + t(zk+1 − zk).

(29)
From the ϵk-optimality condition, we obtain that ∥Bk∥ ≤ ϵk. From the assumption the L and p is
bounded below, we know that

Lγ(z
k,uk,µk) = L(xk)+βp(zk)+g1(z

k)+g2(u
k)+

γ

2
∥uk+zk+µk/γ∥2−∥µk∥2/2γ > −∞

Therefore, Lγ(z
k,uk,µk) is lower bounded by some Lb. Moreover, with Assumption 3.10 holding,

we find that Lγ(z
0,u0,µ0)−Lγ(z

K+1,uK+1,µK+1)+ 2
γ

K+1∑
k=1

∥µk+1−µk∥2 <∞ for allK ∈ N.

We compress (28) from k = 1 to K + 1 and obtain that

Lγ(z
0,u0,µ0)− Lγ(z

K+1,uK+1,µK+1) + 2
γ

K+1∑
k=1

∥µk+1 − µk∥2

≥ 2t−αd

2

K+1∑
k=1

∥zk+1 − zk∥2 + 1
γ

K+1∑
k=1

∥µk+1 − µk∥2.
(30)

We take the minimum operation from K iterations in (30) and obtain

min
k≤K

{
2t− αd

2
∥zk+1 − zk∥2 + 1

γ
∥µk+1 − µk∥2

}
≤ Lγ(z

0,u0,µ0)− Lb

K + 1

Therefore, we observe that algorithm 2 execute O(1/ϵ2) iterations to find (zk+1,uk+1,µk+1) such
that

∥zk+1 − zk∥ ≤ ϵ, ∥µk+1 − µk∥ ≤ ϵ.

From the update of µ, we further derive that

∥uk+1 − zk+1∥ ≤ O(ϵ)

From Assumption 3.9, it holds that

dist(−µk+1, ∂z{L(xk+1) + βp(zk+1)}) ≤ O(ϵ).

(29) and Now we consider the optimity condition of u, then we have

0 ∈ ∂g2(u
k+1) + µk + γ(zk+1 − uk).

Thus, we have
dist(−µk+1, ∂g2(u

k+1)) ≤ γ∥µk+1 − µk∥ = O(ϵ).

Then we conclude that (zk+1,uk+1,µk+1) attains an ϵ-KKT point of (17). The proof is adapted
from Theorem 4.1 in Lin et al. (2022).
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B.5 EXTENSION TO THE CASES WITH MULTIPLE REGULARIZATION TERMS

We focus on the case (2) involving multiple regularization terms. For this scenario, (10) simplifies
to the following formulation:

min
x,λ,ρ,r

L(x) + βp(x,λ,ρ, r).

s.t. Ri(x) ≤ ri, ∥ρi∥∗ ≤ λi, i = 1, 2, ..., r,
(31)

where p(x,λ,ρ, r) = l(x) + l∗(−
r∑

i=1

ρi) +
r∑

i=1

λiri. We adopt the notations z = (x,λ,ρ, r)

and Ri,R∗
i , i = 1, 2, ..., r defined in (13). Similar to Section 3.2, we denote R∗ △

= ∩r
i=1R∗

i and

consider variable decomposition for ∩r
i=1Ri. We define gi(z)

△
= IRi∩R∗(z), i = 1, 2, ..., r. Under

this conditions, (31) can be rewritten as the following equivalent form,

min
z

L(x) + βp(z) +

r∑
i=1

gi(z). (32)

Then we introduce an auxiliary variable ui as follows,

min
z

L(x) + βp(z) + g1(z) +
r−1∑
i=1

g2(ui)

s.t. z = ui, i = 1, 2, ..., r − 1.
(33)

We denote the constraints of (33) as
r−1∑
i=1

Iiui + z = 0, where Ii is row full-rank matrix. (33) is a

multi-block linearly constrained problem and its augmented Lagrangian function can be expressed
as

Lγ(z,u,µ) = L(x) + βp(x) +

r∑
i=1

gi(ui) + ⟨µ,
r−1∑
i=1

Iiui + z⟩+ γ

2
∥
r−1∑
i=1

Iiui + z∥2

Now, we employ multi-block ADMM to minimize equation 33, which cyclically update ui, z,µ by
solving the ui- and z- subproblems and adopt a dual ascent step for µ. We summarize the iterations
in Algorithm 3.

Algorithm 3 ADMM Framework for Problem (33)
1: Initialize z0,u0,σ0, γ and t.
2: for k = 0, 1, 2, ... do

3: zk+1 = argminz

{
L(x) + βp(x) + ⟨µk, z⟩+ γ

2 ∥
r∑

i=1

Iiu
k+1
i + z∥2 + t

2∥z− zk∥2
}

.

4: for i = 1, 2, ..., r − 1 do

5: uk+1
i = argminui

{
gi(ui) + ⟨µk, Iiui⟩+ γ

2 ∥
∑
j<i

Iju
k+1
j + Iiui +

∑
j>i

Iju
k
j + zk∥2

}
.

6: end for
7: µk+1 = µk + γ(

r−1∑
i=1

Iiu
k+1
i + zk+1).

8: end for

Theorem B.2. Suppose that the sequence {(zk,uk
i ,µ

k)} is bounded and L(x) + βp(x) is
bounded below with bounded (z,u). Then Algorithm 3 can find an ϵ-approximation KKT point
(zk+1,uk+1

i ,µk+1) of (equation 33).

From the update of u-subproblem, we have

Lγ(z
k,uk+1

j≤i ,u
k
j>i,µ

k) ≤ Lγ(z
k,uk+1

j<i ,u
k
j≥i,µ

k).

Summing over i = 1, 2, ..., r, we have

Lγ(z
k,uk+1,µk) ≤ Lγ(z

k,uk,µk).

Consequently, the proof of Theorem B.2 follows from the proof of Theorem 3.11 in Appendix B.4.
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C CLOSE-FORM PROJECTIONS

We observe that the set Ri and R∗
i takes the form of a norm cone, which are epigraphs of the

norm and conjugate norm. The corresponding projections are orthogonal projections onto epigraphs,
which are explored in Beck (2017); Wang et al. (2016).
Theorem C.1. (Theorem 6.36 in Beck (2017)) Let

C = epi(g) = {(x, t)|g(x) ≤ t},
where g is convex. Then

projC((x, s)) =

{
(x, s), g(x) ≤ s,

(proxλ∗g, s+ λ∗), g(x) > s,

where λ∗ is any positive root of the function

ψ(λ) = g(proxλg(x)− λ− s.)

In addition, ψ is nonincreasing.

Based on Theorem C.1, the projections onto the epigraphs of the l1 and l2 norm can be calculated
as follows. Let C1 = {(x, t)|∥x∥1 ≤ t} and C2 = {(x, t)|∥x∥2 ≤ t}. Then it holds that (Example
6.37 and 6.38 in Beck (2017)),

projC1
((x, s)) =

{
(x, s), ∥x∥1 ≤ s,

(Tλ∗(x), s+ λ∗), ∥x∥1 > s,

We denote the proximal of l1-norm as Tλ = proxλ∥·∥1
, which is formed as

Tλ(y) = [|y| − λ]+ sgn(y) =


y − λ, y ≥ λ

0, |y| < λ,

y + λ, y ≤ −λ.
λ∗ is any positive root of the nonincreasing function φ(λ) = ∥Tλ(x)∥1 − λ− s.

projC2
((x, s)) =


(∥x∥2+s

2∥x∥2
x, ∥x∥2+s

2 ), ∥x∥2 ≥ |s|,
(0, 0), s < ∥x∥2 < −s,
(x, s), ∥x∥2 ≤ s.

D EXPERIMENTS

We consider hyperparameter optimization for elastic net, group lasso, and sparse group lasso. These
three models only use a combination of regularization terms || · ||1, || · ||2, 1

2 || · ||
2
2, as the form

equation 2 . The elastic net (Zou & Hastie (2003)) is a linear combination of the lasso and ridge
penalties, the group lasso (Yuan & Lin (2006)) is an extension of the Lasso with penalty to prede-
fined groups of coefficients, and the sparse group lasso (Simon et al. (2013)) combines the group
lasso and lasso penalties, which are designed to encourage sparsity and grouping of predictors
(Feng & Simon (2018)). We consider hyperparameter optimization for elastic net, group lasso,
and sparse group lasso. To compare the performance of each method, we calculate validation and
test error with obtained LL minimizers in each experiment. Our competitors are implemented
using code from https://github.com/SUSTech-Optimization/VF-iDCA, https://github.com/libra-
licoho/LDMMA, and https://github.com/SUSTech-Optimization/BiC-GAFFA. Note that in the ex-
periments, besides our method, solvers are all needed to solve the subproblems. and we uniformly
apply the CVXPY package to them with the open source solvers ECOS and SCS only. All exper-
iments are run on a computer with Intel(R) Core(TM) i7-10710U CPU @ 1.10GHz 1.61 GHz and
16.00 GB memory.

In our experiments, the parameter settings for LDPM are relatively loose. Since we use an exact
penalty function, good results can be obtained with small penalty coeficient β 1 or 10. Additionally,
for smooth problems, we use the APG algorithm for the sub-problems, so the choice of step size
α is not very sensitive due to the accelerated convergence rate. It is worth emphasizing that our
algorithm is completely first-order and does not rely on any solver.
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D.1 EXPERIMENTS ON SYNTHETIC DATA

D.1.1 ELASTIC NET

The synthetic data is simulated in a similar manner as Gao et al. (2022) We sample the feature
vectors ai ∈ Rp from a normal distribution with mean 0 and covariance cor(aij , aik) = 0.5|j−k|.
We obtain the response vector b according to bi = β⊤ai + σϵi, where βi is randomly 0 or 1 and∑p

i=1 βi = 15; the noise ϵ is sampled from the standard normal distribution, and σ is chosen such

that the signal-to-noise ratio SNR ∆
= ∥Aβ∥/∥b−Aβ∥ equals 2.

We implement the algorithms we compared with the same parameters according to Chen et al.
(2024). In our experiment, we set β = 1, γ = 10, and t = 1. Besides, we set the same initial guess
λ = (0.01, 0.01) and r = (0.1, 0.1) as LDMMA and VF-iDCA, as well as the stopping criteria

max

{
∥zk+1 − zk∥√

1 + ∥zk∥2
, tk+1

}
< 0.1, (34)

We conduct repeated experiments with 30 randomly generated synthetic data, and calculate the
mean and variance. The numerical results on elastic net are reported in Table 4 and we also plot
the performance curve of the algorithms under each experiment setting in Figure 2. Overall, our
algorithm achieves the lowest test error and validation error is also among lowest , along with its
significantly lowest time cost, especially in large-scale data cases. Traditional gradient-free methods
(grid search, random search, and TPE) have expensive search time cost and poor performance on
test dataset. Gradient-based method IGJO perform slightly better on accuracy and efficiency, but it
converges very slowly as shown in the figure. Considering the two solver-based algorithm, i.e. VF-
iDCA and LDMMA, their validation error keeps very low in all experiments but they both suffer
overfitting, where the test error goes higher as the iteration increases.

D.1.2 SPARSE GROUP LASSO

The synthetic data is simulated according to Gao et al. (2022). Each dataset contains 100 train-
ing data, 100 validation data and 100 test data. The feature vector ai ∈ Rp is sampled from the
standard normal distribution. The response vector b is calculated by bi = β⊤ai + σϵi, where
β =

[
β(1),β(2),β(3)

]
, β(i) = (1, 2, 3, 4, 5, 0, . . . , 0), for i = 1, 2, 3. ϵ are generated from the

standard normal distribution, and σ is chosen such that the SNR is 2.

We implement the algorithms we compared with the same parameters according to Chen et al.
(2024). In our experiment, we set β = 1, γ = 10, and t = 1. Besides, we set the same initial guess
λ = 0.051 and r = 0.51 as LDMMA and VF-iDCA, and tol=0.1.

We conduct experiments with different data scales and report numerical results over 30 repetitions
in Table 5 with Figure 1. For each experiment, the generated datasets consist of n training, n/3
validation, and 100 test samples. LDPM achieves both lowest test error and validation error and
outperforms other algorithms in terms of time cost. As the scale of data increases, our method
consistently finds the best hyperparameters and model solutions, which indicates the superiority of
LDPM in large-scale hyperparameter optimization. In comparison, gradient-free methods become
extremely unstable when facing dozens of hyperparameters, while IGJO converges slowly and re-
quires huge amount of computation. Due to the size of the problem, solving each subproblem
(constrained optimization) is extremely time-consuming for LDMMA and VF-iDCA, even though
they only needs several iterations to find good solutions. BiC-GAFFA runs as fast as LDPM in the
gradient step iterations, but still requires some time to obtain an initial feasible point by solver in the
first iteration.

D.1.3 GROUP LASSO

The synthetic data is generated in the same way as sparse group lasso. We set β = 1, and η = 0.001,
with initial guess λ = 0.11 and r = 0.51 and tol = 0.05 in LDPM. We implement the rest
algorithms with a slight modification for the problem with the same parameter setting in sparse
group lasso experiments.
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Table 1: Group lasso problems on synthetic data, where p and M represent the number of covariates
and covariate groups, respectively, and n represent the data scale described above.

Settings Methods Time(s) Val. Err. Test Err. Settings Time(s) Val. Err. Test Err.

n = 300
p = 600
M = 30

Grid 85.18± 4.61 45.33± 6.79 48.84± 6.76
n = 450
p = 900
M = 60

100.91± 7.80 45.38± 5.74 48.19± 6.69
Random 79.11± 5.10 37.92± 5.13 45.66± 6.34 93.06± 6.72 45.18± 7.41 43.86± 4.89
IGJO 99.01± 9.41 34.86± 5.80 45.87± 4.67 94.22± 7.79 38.75± 7.72 43.99± 5.30
VF-iDCA 9.70± 2.30 27.21± 5.37 32.95± 7.16 21.14± 6.22 24.07± 2.20 36.15± 6.01
LDMMA 27.02± 2.52 25.76± 3.60 34.74± 4.34 38.80± 4.59 26.95± 4.33 33.69± 6.17
GAFFA 3.56± 0.11 29.73± 6.48 31.22± 5.88 10.88± 0.63 25.84± 7.19 29.74± 6.43
LDPM 0.55± 0.04 17.42± 3.74 25.10± 3.68 0.91± 0.03 19.20± 5.11 22.28± 4.28

n = 300
p = 900
M = 60

Grid 107.95± 10.36 46.13± 5.54 46.21± 7.94
n = 600
p = 1200
M = 150

128.77± 9.68 45.33± 6.43 47.32± 7.24
Random 95.02± 7.27 43.66± 6.31 42.18± 6.77 131.50± 11.36 48.79± 7.66 48.91± 9.13
IGJO 122.64± 9.96 30.56± 6.46 47.36± 5.76 152.10± 15.19 37.21± 6.89 42.30± 7.59
VF-iDCA 9.12± 0.07 24.40± 5.62 30.25± 4.03 67.71± 9.53 27.53± 5.16 35.61± 6.98
LDMMA 38.13± 3.41 24.94± 6.68 30.12± 4.85 47.11± 5.86 18.51± 4.09 27.58± 4.19
GAFFA 5.17± 0.17 28.39± 6.22 29.95± 5.23 34.88± 9.98 25.39± 5.41 26.81± 5.39
LDPM 0.86± 0.02 20.69± 3.88 27.04± 4.58 1.83± 0.02 19.18± 5.03 25.35± 6.27

We conduct experiments with different data scales and report numerical results over 30 repetitions
in Table 6 with Figure 3. For each experiment, the generated datasets consist of n training, n/3
validation, and 100 test samples. As a comparison to the Sparse Group Lasso experiment, we simply
use APG to solve our problem thanks to the single regularization term (see 1), making our algortithm
faster. LDPM achieves both lowest test error and validation error and outperforms other algorithms
in terms of time cost. Performance of the rest algorithms is similar to that in the previous Sparse
Group Lasso experiments. Note that in the experiments, We observe that the solver-based algorithms
like LDMMA and VF-iDCA sometimes unable to run because of the solvers failure facing large
scale data.
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Figure 3: Comparison of the algorithms on Group Lasso problem for synthetic datasets in different
scales

D.2 EXPERIMENTS ON REAL DATA

We conduct experiments on the algorithm using real datasets from libsvm (Chang & Lin (2011)).
The datasets we selected are gisette (Guyon et al. (2004)) and sensit (Duarte & Hu (2004)). Fol-
lowing the data participation rule as Gao et al. (2022), we randomly extracted 50, 25 examples as
training set; 50, 25 examples as validation set, respectively; and the remaining for testing. We test
different algorithms on the same partition for 30 repeated experiments. We perform hyperparameter
tuning for elastic net and sparse group lasso on the two high-dimensional real datasets. The param-
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eters are set the same as in the synthetic data experiments. We set The results are reported in Table
2, 3, and Figure 4, 5, showing the consistent effectiveness of our method.

Table 2: Elastic net problem on datasets gisette and sensit, where |Itr|, |Ival|, |Ite| and p represent
the number of training samples, validation samples, test samples and features, respectively.

Settings Methods Time(s) Val. Err. Test Err. Settings Time(s) Val. Err. Test Err.

gisette
p = 5000
|Itr| = 50
|Ival| = 50
|Ite| = 5900

Grid 58.77 ± 3.37 0.25 ± 0.04 0.23 ± 0.02 sensit
p = 78823
|Itr| = 25
|Ival| = 25
|Ite| = 50

1.08 ± 0.15 1.24 ± 0.49 1.22 ± 0.47
Random 65.42 ± 8.56 0.25 ± 0.04 0.23 ± 0.02 1.12 ± 0.19 1.21 ± 0.58 1.33 ± 0.32
TPE 62.14 ± 6.92 0.24 ± 0.03 0.24 ± 0.02 1.64 ± 0.08 1.19 ± 0.55 1.26 ± 0.09
IGJO 18.10 ± 2.77 0.24 ± 0.05 0.22 ± 0.03 0.47 ± 0.12 0.52 ± 0.15 0.71 ± 0.19
VF-iDCA 12.85 ± 2.25 0.00 ± 0.00 0.19 ± 0.01 0.76 ± 0.17 0.25 ± 0.11 0.55 ± 0.06
LDMMA 10.99 ± 0.87 0.00 ± 0.00 0.20 ± 0.01 0.20 ± 0.05 0.25 ± 0.12 0.51 ± 0.09

LDPM 5.69 ± 0.95 0.14 ± 0.03 0.18 ± 0.01 0.20 ± 0.03 0.31 ± 0.05 0.49 ± 0.05

Table 3: Sparse Group Lasso problem on datasets gisette and sensit, where |Itr|, |Ival|, |Ite| and p
represent the number of training samples, validation samples, test samples and features, respectively.

Settings Methods Time(s) Val. Err. Test Err. Settings Time(s) Val. Err. Test Err.

gisette
p = 5000
|Itr| = 50
|Ival| = 50
|Ite| = 5900
M = 10

Grid 62.87 ± 5.65 0.34 ± 0.05 0.35 ± 0.04 sensit
p = 78823
|Itr| = 25
|Ival| = 25
|Ite| = 50
M = 10

26.13 ± 4.72 1.39 ± 0.32 1.42 ± 0.38
Random 63.25 ± 6.10 0.32 ± 0.04 0.33 ± 0.03 29.38 ± 4.92 1.47 ± 0.59 1.37 ± 0.49
TPE 60.28 ± 9.43 0.32 ± 0.03 0.31 ± 0.04 38.60 ± 6.59 0.93 ± 0.37 1.03 ± 0.45
IGJO 31.16 ± 5.81 0.28 ± 0.03 0.27 ± 0.04 29.88 ± 3.75 0.97 ± 0.38 0.83 ± 0.31
VF-iDCA 16.30 ± 3.87 0.10 ± 0.02 0.25 ± 0.01 16.46 ± 6.72 0.43 ± 0.19 0.52 ± 0.11
LDMMA 25.86 ± 4.46 0.30 ± 0.03 0.32 ± 0.03 7.28 ± 1.62 0.47 ± 0.10 0.64 ± 0.17

GAFFA 10.17 ± 3.62 0.26 ± 0.03 0.29 ± 0.04 6.93 ± 1.68 0.60 ± 0.21 0.66 ± 0.14

LDPM 7.35 ± 0.84 0.20 ± 0.03 0.25 ± 0.02 3.72 ± 1.61 0.45 ± 0.11 0.52 ± 0.05
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Figure 4: Comparison of the algorithms on Elastic Net problem for 2 datasets: gisette, sensit
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Figure 5: Comparison of the algorithms on Sparse Group Lasso problem for 2 datasets: gisette,
sensit

Table 4: Elastic net problems on synthetic data, where |Itr|, |Ival|, |Ite| and p represent the number
of training observations, validation observations, predictors and features, respectively.

Settings Methods Time(s) Val. Err. Test Err. Settings Time(s) Val. Err. Test Err.

|Itr| = 100
|Ival| = 20
|Ite| = 250
p = 250

Grid 5.76± 0.33 7.05± 2.02 6.98± 1.14
|Itr| = 100
|Ival| = 100
|Ite| = 250
p = 450

11.72± 1.32 6.05± 1.47 6.49± 0.82
Random 5.74± 0.26 7.01± 2.01 7.01± 1.11 12.85± 2.11 6.04± 1.45 6.49± 0.83
TPE 6.55± 0.26 7.01± 2.00 7.01± 1.09 13.92± 1.72 6.03± 1.44 6.50± 0.83
IGJO 1.54± 0.84 4.99± 1.69 5.42± 1.21 3.37± 1.85 5.22± 1.50 5.72± 0.91
VF-iDCA 3.16± 0.63 2.72± 1.57 5.18± 1.40 6.08± 2.24 3.13± 0.78 5.39± 0.92
LDMMA 1.64± 0.07 0.00± 0.00 6.97± 0.79 3.95± 0.22 0.00± 0.00 6.56± 0.70

LDPM 0.60± 0.02 2.56± 0.80 4.92± 0.51 1.02± 0.03 3.42± 0.39 4.23± 0.37

|Itr| = 100
|Ival| = 100
|Ite| = 250
p = 250

Grid 6.09± 0.60 6.39± 1.09 6.27± 1.02
|Itr| = 100
|Ival| = 100
|Ite| = 100
p = 2500

32.99± 3.81 7.81± 1.53 8.82± 0.92
Random 6.44± 1.28 4.39± 1.10 6.27± 1.05 33.82± 2.66 6.44± 1.53 8.67± 0.94
TPE 7.28± 1.23 6.37± 1.09 6.29± 1.09 42.70± 3.89 7.71± 1.32 8.43± 0.80
IGJO 3.86± 2.09 4.41± 0.98 4.31± 0.95 31.30± 6.41 7.78± 1.12 8.61± 0.82
VF-iDCA 4.74± 1.77 2.35± 1.56 4.47± 1.11 23.21± 4.96 0.00± 0.00 4.61± 0.77
LDMMA 0.98± 0.09 0.00± 0.00 5.61± 0.77 16.26± 1.44 0.00± 0.00 5.67± 1.21
LDPM 0.73± 0.08 3.41± 0.48 3.51± 0.40 4.83± 0.08 1.65± 0.14 4.37± 0.65

Table 5: Sparse group lasso problems on synthetic data, where p and M represent the number of
covariates and covariate groups, respectively, and n represent the data scale described above.

Settings Methods Time(s) Val. Err. Test Err. Settings Time(s) Val. Err. Test Err.

n = 300
p = 600
M = 30

Grid 96.36± 2.88 44.73± 5.29 47.34± 5.91
n = 450
p = 900
M = 60

103.68± 5.49 44.68± 4.31 46.00± 4.43
Random 83.02± 3.01 35.17± 5.95 47.43± 5.54 108.64± 8.84 37.87± 4.21 46.25± 5.52
IGJO 117.58± 7.28 31.93± 4.07 46.36± 3.72 120.35± 6.46 30.56± 4.02 46.70± 4.01
VF-iDCA 19.00± 0.55 26.96± 2.58 36.84± 5.33 29.63± 2.91 26.38± 3.40 37.58± 5.90
LDMMA 24.62± 0.13 22.70± 2.03 31.44± 4.72 22.72± 2.15 23.93± 2.32 31.03± 4.08
GAFFA 2.59± 0.02 27.42± 3.28 28.45± 4.74 11.52± 0.79 22.21± 3.03 29.81± 4.66
LDPM 1.26± 0.03 15.11± 1.62 23.48± 2.40 1.95± 0.04 19.39± 1.51 25.11± 2.35

n = 300
p = 900
M = 60

Grid 104.23± 4.05 45.63± 4.13 44.86± 5.09
n = 600
p = 1200
M = 150

117.09± 6.34 48.94± 4.11 49.41± 7.62
Random 98.17± 6.85 40.04± 5.36 46.77± 6.70 126.3± 5.57 49.41± 6.55 52.49± 9.46
IGJO 117.14± 7.44 31.59± 4.97 45.98± 4.94 169.76± 9.44 39.75± 5.14 46.49± 7.48
VF-iDCA 44.31± 1.45 23.21± 3.36 31.92± 3.54 45.12± 3.10 23.66± 4.53 35.09± 3.14
LDMMA 37.50± 0.21 26.23± 3.47 32.09± 3.75 36.14± 3.65 18.61± 2.32 27.81± 3.43
GAFFA 5.11± 0.10 26.83± 3.53 30.38± 3.60 33.03± 4.63 24.34± 4.19 26.05± 5.13
LDPM 1.87± 0.05 19.32± 2.62 27.14± 2.79 3.08± 0.07 17.35± 2.04 24.21± 2.74
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Table 6: Group lasso problems on synthetic data, where p and M represent the number of covariates
and covariate groups, respectively, and n represent the data scale described above.

Settings Methods Time(s) Val. Err. Test Err. Settings Time(s) Val. Err. Test Err.

n = 300
p = 600
M = 30

Grid 85.18± 4.61 45.33± 6.79 48.84± 6.76
n = 450
p = 900
M = 60

100.91± 7.80 45.38± 5.74 48.19± 6.69
Random 79.11± 5.10 37.92± 5.13 45.66± 6.34 93.06± 6.72 45.18± 7.41 43.86± 4.89
IGJO 99.01± 9.41 34.86± 5.80 45.87± 4.67 94.22± 7.79 38.75± 7.72 43.99± 5.30
VF-iDCA 9.70± 2.30 27.21± 5.37 32.95± 7.16 21.14± 6.22 24.07± 2.20 36.15± 6.01
LDMMA 27.02± 2.52 25.76± 3.60 34.74± 4.34 38.80± 4.59 26.95± 4.33 33.69± 6.17
GAFFA 3.56± 0.11 29.73± 6.48 31.22± 5.88 10.88± 0.63 25.84± 7.19 29.74± 6.43
LDPM 0.55± 0.04 17.42± 3.74 25.10± 3.68 0.91± 0.03 19.20± 5.11 22.28± 4.28

n = 300
p = 900
M = 60

Grid 107.95± 10.36 46.13± 5.54 46.21± 7.94
n = 600
p = 1200
M = 150

128.77± 9.68 45.33± 6.43 47.32± 7.24
Random 95.02± 7.27 43.66± 6.31 42.18± 6.77 131.50± 11.36 48.79± 7.66 48.91± 9.13
IGJO 122.64± 9.96 30.56± 6.46 47.36± 5.76 152.10± 15.19 37.21± 6.89 42.30± 7.59
VF-iDCA 9.12± 0.07 24.40± 5.62 30.25± 4.03 67.71± 9.53 27.53± 5.16 35.61± 6.98
LDMMA 38.13± 3.41 24.94± 6.68 30.12± 4.85 47.11± 5.86 18.51± 4.09 27.58± 4.19
GAFFA 5.17± 0.17 28.39± 6.22 29.95± 5.23 34.88± 9.98 25.39± 5.41 26.81± 5.39
LDPM 0.86± 0.02 20.69± 3.88 27.04± 4.58 1.83± 0.02 19.18± 5.03 25.35± 6.27
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