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Abstract

When deploying Reinforcement Learning (RL) agents into a physical system, we1

must ensure that these agents are well aware of the underlying constraints. In2

many real-world problems, however, the constraints followed by expert agents3

(e.g., humans) are often hard to specify mathematically and unknown to the RL4

agents. To tackle these issues, Constraint Inverse Reinforcement Learning (CIRL)5

considers the formalism of Constrained Markov Decision Processes (CMDPs) and6

estimates constraints from expert demonstrations by learning a constraint function.7

As an emerging research topic, CIRL does not have common benchmarks, and8

previous works tested their algorithms with hand-crafted environments (e.g., grid9

worlds). In this paper, we construct a CIRL benchmark in the context of two10

major application domains: robot control and autonomous driving. We design11

relevant constraints for each environment and empirically study the ability of12

different algorithms to recover those constraints based on expert trajectories that13

respect those constraints. To handle stochastic dynamics, we propose a variational14

approach that infers constraint distributions, and we demonstrate its performance15

by comparing it with other CIRL baselines on our benchmark. The benchmark,16

including the information for reproducing the performance of CIRL algorithms, is17

publicly available at temporarily hidden due to the anonymous policy.18

1 Introduction19

Constrained Reinforcement Learning (CRL) algorithms [1] typically learn a policy under a Con-20

strained Markov Decision Process (CMDP) by assuming known constraints. This assumption, how-21

ever, is not realistic in many real-world problems where it is difficult to specify the exact constraints22

that an agent should follow, especially when these constraints are time-varying, context-dependent and23

inherent to experts’ own experience, and further, such information may not be completely revealed24

to the agent. For example, human drivers tend to determine an implicit speed limit and a minimum25

gap to other cars based on the traffic conditions, rules of the road, weather and social norms. To26

derive a driving policy that matches human performance, an autonomous agent needs to infer these27

constraints from expert demonstrations.28

Figure 1: The flowchart of CIRL.

An important approach to recovering the underlying con-29

straints is Constraint Inverse Reinforcement Learning30

(CIRL) [2, 3, 4, 5]. CIRL infers a set of legal state-action31

pairs or a constraint function (in the continuous case) to ap-32

proximate constraints respected by expert demonstrations.33

This is often done by alternating between updating an im-34

itating policy and a constraint function (or set). Figure 135

summarizes the main procedure of CIRL. As an emerging36
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research topic, CIRL does not have common datasets and benchmarks for evaluation. Existing37

validation methods heavily depend on the safe-Gym [6] and hand-crafted grid-world environments.38

Utilizing these environments has some important drawbacks: 1) These environments are designed for39

control instead of constraint inference. To fill this gap, previous works often pick some environments40

and add hand-crafted constraints to them. Striving for simplicity, many of the selected environments41

have discretized state and action spaces of limited size (e.g., grid worlds [2, 4, 5, 7, 8]). Generalizing42

model performance in these simple environments to practical applications will be difficult. 2) These43

environments do not include expert demonstrations, and thus previous works manually generate44

their own trajectories. Since the quality of expert trajectories can significantly influence model45

performance, it is difficult to compare different CIRL algorithms without a consistent expert dataset.46

In this paper, we propose a benchmark for evaluating Constraint Inverse Reinforcement Learning47

(CIRL) algorithms. This benchmark includes both virtual environments and realistic environments.48

The virtual environments are based on MuJoCo [9], but we update some of these robot control tasks49

by modifying reward functions and including specific constraints. The realistic environments are50

constructed based on a highway vehicle tracking dataset [10], so the environments can suitably51

reflect what happens in realistic driving scenario. We consider constraints about car velocities52

and distances in these realistic environments. Each of these environments is accompanied with53

a demonstration dataset generated by an expert agent trained by the Reward Constrained Policy54

Optimization (RCPO) [11]. To demonstrate that the added constraints are important for control, we55

empirically compare the performance of agents trained with and without the constraints.56

In the context of stochastic environments, we propose a Variational Constraint Inverse Reinforcement57

Learning (VCIRL) algorithm. VCIRL infers distributions of constraints induced by the stochasticity58

in-game dynamics and imitating policies. We demonstrate the performance of VCIRL by comparing59

its rewards and constraint violation rate with other CIRL baselines in our virtual and realistic60

environments. Empirical results show that the policies learned with the VCIRL constraints can61

outperform others in terms of safety and reward accumulation.62

2 Background63

We introduce some notations about Constrained Reinforcement Learning (CRL) and its inverse64

problem, CIRL as well as their connections to other related methods.65

2.1 Constrained Reinforcement Learning66

Constrained Reinforcement Learning (CRL) is based on Constrained Markov Decision Processes67

(CMDPs) Mc, which can be defined by a tuple (S,A, pR, pT , {(pCi
, ϵi)}∀i, γ, h) where: 1) S and A68

denote the space of states and actions. 2) pT (s′|s, a) and pR(r|s, a) define the transition and reward69

distributions. 3) pCi(c|s, a) denotes a stochastic constraint function with an associated bound ϵi,70

where i indicates the index of a constraint. 4) γ ∈ [0, 1) is the discount factor and h is the planning71

horizon (usually infinite). The goal of CRL is to find a (deterministic or stochastic) policy π that72

maximizes expected discounted rewards under a set of cumulative soft constraints:73

argmax
π

EpR,pT ,π

[
h∑

t=0

γtrt

]
s.t. EpCi

,pT ,π

[
h∑

t=0

γtci,t

]
≤ ϵi ∀i ∈ [0, I] (1)

In the above formulation, constraints consist of bounds on the expectation of cumulative constraint74

values. In practice, it is often more desirable to express bounds on the cumulative constraint value of75

a single trajectory instead of the expectation of all trajectories. Hence, we consider a more restrictive76

objective that requires all the sampled trajectories to satisfy the constraints:77

argmax
π

EpR,pT ,π

[
h∑

t=0

γtrt

]
s.t.

h∑
t=0

γtci,t ≤ ϵi ∀i ∈ [0, I] (2)

where ci,t ∼ pCi(c|st, at) and (st, at) ∼ pT (st|st−1, at−1)π(at|st). This formulation effectively78

describes hard constraints for each trajectory that may be difficult to satisfy in stochastic environments.79

Nevertheless, hard constraints are natural and often desired by practitioners. Hence, we will report80
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the constraint violation rate (i.e., the probability with which a policy violates a constraint in a81

trajectory) in the experiments (see Section 3 and Section 5). Ultimately, we can think of this setup as82

a multi-objective problem where agents seek to maximize expected rewards while minimizing the83

constraint violation rate. We note that if the transition dynamics, policy and constraint functions are84

deterministic, the objectives in Equations 1 and 2 are equivalent to each other.85

2.2 Constraint Inverse Reinforcement Learning86

CRL assumes the constraint signals are observable from the environment, but in real-world problems,87

such constraint signals ci,t are not readily available. Instead, we have access to expert demonstrations88

De that follow the underlying constraints. To solve these problems, the agent must recover the89

constraint models from De. This is a challenging task since there might be various equivalent combi-90

nations of reward distributions and constraints that can explain the same expert demonstrations [3, 12].91

To simplify the problem, CIRL algorithms generally assume that rewards are observable and the goal92

is to recover only the constraints.93

Connections to Inverse RL (IRL). CIRL and IRL are both problems of learning from demonstrations,94

and thus they have many connections. For example, some previous CIRL works [2, 3] followed the95

Maximum Entropy IRL framework for constraint inference, and the learned constraints can be turned96

into penalties added to rewards to solve the control problem (e.g., our baseline GACL in Section 4.2).97

Besides, IRL algorithms often assume that the expert agents are optimal or near-optimal in terms of98

maximizing the rewards. CIRL further assumes that the agents must satisfy underlying constraints.99

How to relax these assumptions will be an important direction of future work (see Section 6).100

3 Benchmark101

The goal of CIRL is to discover constraints from human demonstrations. However, the underlying102

constraints in real dataset are often unknown, which makes it difficult to quantify the algorithm’s103

performance. To solve these issues, we develop a CIRL benchmark that enables the incorporation of104

external constraints to the environments. This benchmark facilitates the development of mature CIRL105

algorithms by examining whether they can accurately recover the added constraints and measuring106

their performance with some common RL metrics. For ease of application, our benchmark is based107

on OpenAI [13]. In this section, we introduce the virtual and realistic environments as well as the108

datasets in our benchmark.109

3.1 Virtual Environment110

An important application of RL is robotic control, and our virtual benchmark mainly studies the robot111

control task with a location constraint. In practice, this type of constraint captures the locations of112

obstacles in the environment. For example, the agent observes that none of the expert demonstrations113

visited some places in the environment. Then it is reasonable to infer that these locations must be114

unsafe. These unsafe locations can be represented by constraints. Although the real-world task might115

require more complicated constraints, our benchmark, as the first benchmark for constraint inverse116

reinforcement learning, could serve as a stepping stone for these tasks.117

Environment Settings. We implement our virtual environments by utilizing MuJoCo [9], a virtual118

simulator suited to robotic control tasks. To extend MuJoCo for constraint inference, we modify119

the MuJoCo environments by incorporating some predefined constraints into each environment and120

adjusting some reward terms. Table 1 summarizes the environment settings (see Appendix A.1 for121

more details). The virtual environments have 5 different robotic control environments simulated by122

MuJoCo. We add constraints on the X-coordinate of these robots: 1) For the environments where123

it is relatively easier for the robot to move backward rather than forward (e.g., Half-Cheetah, Ant124

and Walker), our constraints bound the robot in the forward direction (with a large X-coordinate),125

2) For the environments were moving forward is easier (e.g., Swimmer), the constraint bounds the126

robot in the backward direction (with a small X-coordinate). In these environments, the rewards are127

determined by the distance that a robot moves between the current and the previous time step, so the128

robot is likely to violate the constraints in order to maximize the magnitude of total rewards (for which129
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we show below). To increase difficulty, we include an additional Biased Pendulum environment that130

has a larger reward on the left side. We nevertheless enforce a constraint to prevent the agent to go131

too far on the left side. The agent must resist the influence of high rewards and stay in the safe region.132

Table 1: The virtual and realistic environments in our benchmark.
Type Name Dynamics Obs. Dim. Act. Dim. Constraints

Virtual

Blocked Half-cheetah Deterministic 18 6 X-Coordinate ≥ -3
Blocked Ant Deterministic 113 8 X-Coordinate ≥ -3

Biased Pendulumn Deterministic 4 1 X-Coordinate ≥ -0.015
Blocked Walker Deterministic 18 6 X-Coordinate ≥ -3

Blocked Swimmer Deterministic 10 2 X-Coordinate ≤ 0.5

Realistic HighD Velocity Constraint Stochastic 76 2 Car Velocity ≤ 40 m/s
HighD Distance Constraint Stochastic 76 2 Car Distance ≥ 20 m

3.2 Realistic Environment133

Our realistic environment defines a highway driving task. This HighD environment examines if the134

agent can drive safely the ego car to the destination by following the constraints learned from human135

drivers’ trajectories (see Figure 2). In practice, many of these constraints are based on driving context136

and human experience. For example, human drivers tend to keep larger distances from trucks and137

drive slower on crowded roads. Adding these constraints to an auto-driving system can facilitate a138

more natural policy that resembles human preferences.139

Figure 2: The Highway Driving (HighD) environment. The ego car is in blue, other cars are in red.
The ego car can only observe the things within the region around (marked by blue). The goal is to
drive the ego car to the destination (in yellow) without going off-road, colliding with other cars, or
violating time limits and other constraints (e.g., velocity and distance to other vehicles).

Environment Settings. This environment is constructed by utilizing the HighD dataset [10]. Within140

each recording, HighD contains information about the static background (e.g., the shape and the length141

of highways), the vehicles, and their trajectories. We break these recordings into 3,041 scenarios so142

that each scenario contains less than 1,000 time steps. To create the RL environment, we randomly143

select a scenario and an ego car for control in this scenario. The game context, which is constructed144

by following the background and the trajectories of other vehicles, reflects the driving environment145

in real life. To further imitate what autonomous vehicles can observe on the open road, we ensure146

the observed features in our environment are commonly used for autonomous driving (e.g., velocity,147

distances to nearby vehicles). These features reflect only partial information about the game context148

(Appendix A.4 shows the complete list of input features). To collect these features, we utilize the149

feature collector from Commonroad RL [14]. Note that the HighD environment is stochastic since 1)150

we randomly select a scenario for the environment initialization, and 2) the trajectories generated by151

human drivers are stochastic since depending on the road conditions, people’s preferences, and driving152

skills, these drivers might behave differently under the same context. In this HighD environment, we153

mainly study a car velocity constraint and a car distance constraint (see Table 1) to ensure the ego car154

can drive at a safe speed and keep a proper distance from other vehicles.155

3.3 Demonstration Dataset156

In this work, we generate the expert demonstrations dataset for constraint inference since 1) the virtual157

environments do not include demonstrations and 2) utilizing the trajectories in the HighD dataset under158

the realistic environments is problematic (because the underlying constraints in human demonstrations159

are unknown, which makes it difficult to determine whether the ground-truth constraints are broken).160

To generate the dataset, we train a PPO-Lagrange (PPO-Lag) under the CMDP with the known161

constraints and rewards (Table 1 and Appendix A.1) by performing the following steps:162
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Training Expert Agent with PPO-Lag. We train expert agents based on the ground-truth constraints163

in both the virtual environments and the realistic environments. The expert agent is trained by164

maximizing the following PPO-Lag objective based on the Reward Constrained Policy Optimization165

(RCPO) method [11]:166

min
λ

max
π

E(s,a)∼π

(
h∑

t=0

γtr(st, at)

)
+H(π)− λ

[
E(s,a)∼π

(
h∑

t=0

γtc∗(s, a)

)
− ϵ

]
(3)

where H denotes the entropy term and c∗ is the ground-truth constraint function from the environment.167

Note that PPO-Lag assumes the reward and the constraint functions are deterministic and the agent168

can learn to avoid most of the constrained state-action pairs with the Lagrangian penalty term. The169

empirical studies (Sections 3.1 and 3.2) show that PPO-Lag can achieve a satisfactory performance170

(although not optimal) given the ground-truth constraint function.171

Generating a Dataset with Expert Agents. We initialize De = {∅} and run the trained expert agents172

in both the virtual and the realistic environments. While running, we monitor whether the ground-173

truth constraints are violated until the game ends. If not, we record the corresponding trajectory:174

De = De∪{τe}, otherwise, we abandon this trajectory. We repeat this process until the demonstration175

dataset has enough trajectories. Note that PPO-Lag is **not** optimal in terms of maximizing the176

rewards or satisfying constraints. After filtering the generated trajectories with state-action pairs that177

violate constraints, the recorded data De must satisfy the added constraints. However, there is no178

guarantee that the maximum number of rewards is collected in De. Section 6 discuss this issue. We179

observe some algorithms can outperform PPO-Lag in the experiment (Section 5)180

3.4 Empirical Study about Constraints.181

In this section, we demonstration the validity of the constraints defined in table 1.182

Constraints in the Virtual Environments. The thresholds of the constraints are determined183

experimentally to ensure that these constraints "matter" for solving the control problems. This is184

shown in Figure 3: 1) without knowing the constraints, a PPO agent tends to violate these constraints185

in order to collect more rewards within a limited number of time steps. 2) When we inform the186

agent of the ground-truth constraints (with the Lagrange method in Section 3.3), the PPO-Lagrange187

(PPO-Lag) agent learns how to stay in the safe region, but the scale of cumulative rewards is likely188

to be compromised. Based on these observations, we can evaluate whether the CIRL algorithms189

have learned a satisfying constraint function by checking whether the RL agent trained with this190

constraint function (or set) can gather more rewards and perform feasible actions in the safe states of191

the environment (i.e., by checking the cumulative rewards and the constraint violation rate).

Figure 3: The constraint violation rate (top) and rewards (bottom). Environments from left to right:
Blocked Half-cheetah, Blocked Ant, Biased Pendulum, Blocked Walker, and Blocked Swimmer.

192
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Figure 4: Model performance in the HighD envi-
ronment with the velocity constraint (left) and the
distance constraint (right) during training.

Constraints in the Realistic Environments.193

We determine the thresholds of the velocity194

and distance constraints by showing the differ-195

ence of performance between a PPO-Lag agent196

(Section 3.3) that knows the ground-truth con-197

straints and a PPO agent without knowing the198

constraints. Figure 4 reports the violation rate199

of the speed constraint (top left) and the dis-200

tance constraint (top right). The bottom graphs201

report the cumulative rewards in both settings.202

We find 1) the PPO agent tends to violate the203

constraints in order to get more rewards and 2)204

the PPO-Lag agent abandons some of these re-205

wards in order to satisfy the constraints. Their206

gap demonstrates the significance of these con-207

straints. Appendix A.6 shows the performance208

of other constraint thresholds.209

4 Baselines for Constraint Inverse Reinforcement Learning210

In this section, we introduce our VCIRL algorithm and other important baselines for CIRL.211

4.1 Variational Constraint Inverse Reinforcement Learning212

To learn an accurate constraint function from the stochastic policies1 and environment dynamics,213

we propose VCIRL that models the induced stochasticity in the generated trajectories. The goal of214

VCIRL is to infer the distribution of a feasibility variable Φ so that p(ϕ|s, a) measures to what extent215

an action a should be allowed in a particular state s2. The instance ϕ can define a soft constraint given216

by: ĉϕ(s, a) = 1− ϕ where ϕ ∼ p(·|s, a). Given a CMDP Mĉϕ based on the estimated constraint217

function ĉϕ, we use p(De|ϕ) to define the likelihood of generating the demonstration dataset De.218

Under this setting, the true posterior p(ϕ|De) is intractable due to high-dimensional input space, so219

VCIRL learns an approximate posterior q(ϕ|De) by minimizing Dkl

[
q(ϕ|De)∥p(ϕ|De)

]
. This is220

equivalent to maximizing an Evidence Lower Bound (ELBo) objective:221

Eq

[
log p(De|ϕ)

]
−Dkl

[
q(ϕ|De)∥p(ϕ)

]
(4)

We introduce our method by defining the key components in this objective.222

The Log-Likelihood Term. We define the log-likelihood log [p(De|ϕ)] by utilizing the Maximum223

Entropy IRL method on a constrained MDP Mĉϕ [3, 12]:224

log [p(De|ϕ)] = log

[
1

(ZMĉϕ )N

N∏
i=1

exp
[
r(τ (i))

]
1Mĉϕ

(τ (i))

]
(5)

where 1) N denotes the number of trajectories in the demonstration dataset De, 2) the normalizing225

term ZMĉϕ =
∫
exp [r(τ)]1Mĉϕ

(τ)dτ , and 3) the trajectory identifier 1Mĉϕ
(τ (i)) can be defined by226

ϕ(τ (i)) =
∏T

t=1 ϕt and ϕt ∼ p(ϕ|sit, ait), which defines to what extent the trajectory τ (i) is feasible.227

Since Φ is a continuous variable with range [0, 1], we parameterize p(ϕ|s, a) by a Beta distribution:228

ϕ(s, a) ∼ p(ϕ|s, a) = Beta(α, β) where [α, β] = log[1 + exp(f(s, a))] (6)

where f is implemented by a multi-layer network with 2-dimensional outputs (for α and β).229

For simplicity, we slightly overload the symbols by using
∏T

t=1 ϕ(s
i
t, a

i
t) to denote the trajectory230

identifier 1Mc

(τ (i)) and substitute it in Equation (5). In this way, we can define:231

1PPO may models the policy distribution with a Gaussian, for which we follow a stable implementation in
temporarily hidden due to the anonymous policy [15]

2We use a uppercase letter and a lowercase letter to define a random variable and an instance of this variable.
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log [p(De|ϕ)] =
N∑
i=1

[
r(τ (i)) + log

T∏
t=0

ϕ(s
(i)
t , a

(i)
t )
]
−N log

∫
exp[r(τ̂)]

T∏
t=0

ϕ(ŝt, ât)dτ̂ (7)

The gradient of this likelihood function is given by:232

∇ϕ log [p(De|ϕ)] =
N∑
i=1

[
∇ϕ

T∑
t=0

log[ϕ(s
(i)
t , a

(i)
t )]

]
−NEτ̂∼πMϕ

[
∇ϕ

T∑
t=0

log[ϕ(ŝt, ât)]
]

(8)

So maximizing log [p(De|ϕ)] is equivalent to maximizing the objective:233

L(D) =

N∑
i=1

T∑
t=0

log[ϕ(s
(i)
t , a

(i)
t )]−NEτ̂∼πMϕ

[ T∑
t=0

log[ϕ(ŝt, ât)]
]

(9)

where τ̂ is sampled based on executing policy πMϕ̂(τ̂) =
exp[r(τ)]ϕ(τ̂)∫
exp[r(τ)]ϕ(τ)dτ

. This is a maximum en-234

tropy policy that can maximize cumulative rewards subject to πMϕ(τ) = 0,∀
∑

(s,a)∈τ ĉϕ(s, a) > ϵ235

(note that ĉϕ(s, a) = 1− ϕt as defined above). We follow [11] and learn this policy with a RCPO236

objective. This is equivalent to substituting c∗ with the estimated ĉϕ in Equation (3).237

The KL Divergence. Striving for simplicity and the ease of computing mini-batch gradients, we238

approximate Dkl

[
q(ϕ|D)∥p(ϕ)

]
with

∑
(s,a)∈D Dkl

[
q(ϕ|s, a)∥p(ϕ)

]
. Since both the posterior and239

the prior are Beta distributed, we define the KL divergence by following the Dirichlet VAE [16]:240

Dkl

[
q(ϕ|s, a)∥p(ϕ)

]
= log

( Γ(α+ β)

Γ(α0 + β0)

)
+ log

(Γ(α0)Γ(β0)

Γ(α)Γ(β)

)
(10)

+ (α− α0)
[
ψ(α)− ψ(α+ β)

]
+ (β − β0)

[
ψ(β)− ψ(α+ β)

]
where 1) [α0, β0] and [α, β] are parameters from the prior and the posterior functions. 2) Γ and ψ241

denote the gamma and the digamma functions.242

4.2 Other Baselines for CIRL243

244

Maximum Entropy Constraint Learning (MECL) is based on the Maximum Entropy IRL [12]245

framework, which proposes to maximize the entropy H(πE) during learning to solve the unidentifia-246

bility issues in classic apprenticeship learning. As one of the most generalizable frameworks, the247

maximum entropy framework acts as the foundation of many recent IRL methods. MECL extends248

the classic maximum entropy framework to constraint inference: instead of learning reward functions,249

MECL infers constraint functions or sets. [2] proposed an algorithm to search for constraints that250

can be added to the MDP in order to most increase the likelihood of observing expert demonstrations.251

This algorithm focused on only discrete state spaces. A following work [3] expanded MECL to252

continuous states and actions, which is consistent with the setting of our benchmark, and thus we use253

their implementation.254

Generative Adversarial Constraint Learning (GACL) extends MECL by following the design of255

Generative Adversarial Imitation Learning (GAIL) [17]. Since the goal of CIRL is to infer constraints256

given the underlying rewards, we train the discriminator ζ(s, a) to assign 0s to violating state-action257

pairs and 1s to satisfying ones. In order to include the learned constraints into the policy update,258

we follow [3] and construct a new reward r′(s, a) = r(·) + log [ζ(·)]. This reward will punish the259

violating states or actions by assigning them −∞ rewards, so the learned policy tends to satisfy the260

constraints. By comparing MECL and GACL, we show whether adversarial networks can accelerate261

training and improve imitation performance.262

Binary Classifier Constraint Learning (BC2L) shares a similar policy update method with MECL,263

but instead of learning a stochastic constraint, it utilizes a deterministic binary classifier to differentiate264

expert trajectories from the generated ones, which often induces a loss of identifiability. BC2L allows265

us to study whether a binary classifier is sufficient for capturing the ground-truth constraints.266
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5 Empirical Evaluation267

Experiment Setting. We study the performance of the aforementioned baselines in our benchmark.268

For a fair comparison, we use the same hyper-parameters to train baseline models. We repeat each269

experiment with different random seeds, according to which we report the mean ± standard deviation270

(std) results for each studied baselines and environment. For the details of model parameters and271

random seeds, please see Appendix A.2. Note that we explored the option of simplifying the realistic272

environments by inputting only the relevant features (i.e., the velocity of ego car and its distance to273

other vehicles in the HighD environments) into the constraint functions.274

Figures 5 and 6 show the training curves in the virtual and realistic environments. Tables 2 and 3275

show the testing performance. The highest success rate among all baselines in our HighD environ-276

ments is around 68%, whereas the upper bound of success rate is 100%, which shows the room for277

improvement is sufficient. Appendix B.2 illustrates the causes of failures by showing the collision278

rate, time-out rate, and off-road rate. Compared to other baseline models, we find VCIRL generally279

outperforms other baselines in terms of getting lower constraint violation rates and collecting more280

rewards. This is because VCIRL can learn a more accurate and robust constraint model by considering281

the stochasticity inherent in the environment dynamics and the policy of PPO agents. More impor-282

tantly, since VCIRL tries to find an imitation policy that satisfies the constraints in all its trajectories283

(instead of their expectation), VCIRL develops a more conservative imitation policy, especially when284

handling the constraints with large (epistemic and aleatoric) uncertainty. Although MECL, GACL,285

and BC2L achieve better performance in the Blocked Walker, Blocked Swimmer environments, and286

the simplified HighD environment with distance constraints respectively, none of these algorithms287

can perform consistently better than the others, and we find that GACL achieves only very limited288

performance in the HighD environment, which demonstrates that directly augmenting rewards with289

penalties induced by constraints can yield a sub-optimal control policy. Another important finding is290

that the performance of imitation policies in CIRL algorithms cannot match that of PPO-Lag (when291

the ground-truth constraints are known) in the Biased Pendulum and Blocked Walker environments.292

How to fill in this performance gap will be an important direction for improving CIRL algorithms.293

Figure 5: The constraint violation rate (top) and feasible rewards (i.e., the rewards from the trajectories
without constraint violation, bottom) during training. From left to right, the environments are Blocked
Half-cheetah, Blocked Ant, Bias Pendulum, Blocked Walker, and Blocked Swimmer.

Table 2: Testing performance in the virtual environments. We report the feasible rewards (i.e., the
rewards from the trajectories without constraint violation) computed with 50 runs.

Half-cheetah Blocked Ant Biased Pendulumn Blocked Walker Blocked Swimmer
GACL 3477.53 ± 416.54 7213.62 ± 993.12 0.85 ± 0.02 28.35 ± 0.77 578.27 ± 148.16
BC2L 870.09 ± 499.03 11956.26 ± 1980.88 5.73 ± 5.60 48.73 ± 4.18 141.82 ± 152.14
MECL 3024.88 ± 1364.59 8546.19 ± 1262.03 1.02 ± 1.63 126.76 ± 52.21 63.66 ± 107.95
VCIRL 3805.72 ± 511.66 13670.32 ± 2511.89 6.64 ± 4.45 93.40 ± 93.97 191.11 ± 154.57
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Figure 6: The constraint violation rate (top), feasible rewards (i.e., the rewards from the trajectories
without constraint violation, middle) and success rate (bottom) during training. From left to right,
the environments are HighD with the velocity, simplified velocity, distance and simplified distance
constraints.
Table 3: Testing performance in the realistic environments. We report the feasible rewards (i.e., the
rewards from the trajectories without constraint violation) computed with 30 runs.

HighD Velo. Simplified HighD Velo. HighD Dis. Simplified HighD Dis. dim.6
GACL -17.33 ± 3.40 -18.06 ± 3.40 -5.33 ± 13.27 -18.0 ± 5.83
BC2L -0.33 ± 15.73 2.67 ± 19.70 21.75 ± 7.02 14.0 ± 19.48
MECL 7.0 ± 18.31 6.5 ± 19.38 8.0 ± 16.55 0.67± 17.56
VCIRL 10.0 ± 18.03 21.75 ± 15.89 26.33 ± 15.13 8.33 ± 16.72

6 Limitations, Challenges and Open Questions294

We introduce limitations and challenges in CIRL, as well as open questions for future work.295

Constraint Violation. The imitation policies of CIRL agents are updated with RCPO [11], but296

Lagrange relaxation methods are sensitive to the initialization of the Lagrange multipliers and the297

learning rate. There is no guarantee that the imitation policies can consistently satisfy the given298

constraints [1]. As a result, even when a learned constraint function matches the ground-truth299

constraint, the learned policy may not match the expert policy, causing significant variation in training300

and sub-optimal model convergence. If we replace the Lagrange relaxation with Constrained Policy301

Optimization (CPO) [18, 19, 20, 21], CIRL may not finish training within a reasonable amount302

of time since CPO is computationally more expensive. How to design an efficient policy learning303

method that matches CIRL’s iterative updating paradigm will be an important future direction.304

Unrealistic Assumptions about Expert Demonstrations. CIRL algorithms typically assume that305

the expert demonstrations are optimal in terms of satisfying the constraints and maximizing rewards.306

There is no guarantee that these assumptions hold in practice since many expert agents (e.g., humans)307

do not always strive for optimality and constraint satisfaction. Previous works [22, 23, 24, 25, 26, 27],308

introduced IRL approaches to learn rewards from sub-optimal demonstrations, but how to extend these309

methods to constraint inference is unclear. A promising direction is to model stochastic constraints310

that assume that expert agents only follow the constraints with a certain probability.311

Insufficient Constraint Diversity. CIRL can potentially recover complex constraints, but our bench-312

mark mainly considers linear constraints as the ground-truth constraints (although this information is313
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hidden from the agent). Despite this simplification, our benchmark is still very challenging: a CIRL314

agent must identify relevant features (e.g., velocity in x and y coordinates) among all input features315

(78 in total) and recover the exact constraint threshold (e.g., 40 m/s). For future work, we will explore316

nonlinear constraints and constraints on high-dimensional input spaces (e.g., pixels).317

Online versus Offline CIRL. CIRL algorithms commonly learn an imitation policy by interacting318

with the environment. The online training nevertheless contradicts with the setting of many realistic319

applications where only the demonstration data instead of the environment is available. Given the320

recent progress in offline IRL [28, 29, 30, 31], extending CIRL to the offline training setting will be321

an important future direction.322

7 Related Work323

Inferring Constraints from Demonstrations. Previous works infer constraints to identify whether a324

state-action input is allowed. Among these works, [32, 2, 4, 33] assumed discrete state and action325

constraint sets of a limited size. They constructed discrete constraint sets to distinguish feasible326

state-action pairs from infeasible ones. Regarding continuous domains, the problem becomes one327

of inferring the boundaries between feasible and infeasible state-action pairs: [34, 35, 36] estimated328

a constraint matrix for observations and its null-space projection matrix. [37] learned geometric329

constraints by constructing a constraint knowledge base from demonstration. [38] proposed to330

construct constraint sets that correspond to the convex hull of all observed data. [3, 8] learned331

parametric non-convex constraint functions from demonstrations. Some previous works [39, 40,332

41, 42, 43] focused on learning local trajectory-based constraints from a single trajectory. These333

works focus on inferring deterministic constraints while some recent works have learned stochastic334

constraints: [5] learned probabilistic constraints by assuming the environment constraint follows a335

logistic distribution. [44, 7] utilized a Bayesian approach to update a belief over constraints.336

Testing Environments for CIRL. To the best of our knowledge, there is no common benchmark for337

CIRL, and thus previous works often define their own environment for evaluating their methods:338

• Grid-World. Among the studied environments, the most common ones are grid-worlds, where339

previous works [2, 4, 7, 5, 8] added some obstacles in the grid map and examined whether the340

algorithms can find the locations and ranges of these obstacles. As simple and interpretable341

environments, grid-worlds enable a quick check about model performance, but generalizing342

performance to real applications with high-dimensional and continuous state spaces will be difficult.343

• Robotic Control. Some previous works have tested their models on real robots, including robot344

arms [33, 45, 44, 38, 35, 36, 37], quadrotors [45, 44], and a humanoid robot hand [35]. However,345

there is no consistent type of robots for testing their algorithms, and the corresponding equipment is346

not commonly available. A recent work [3] used a simulator by adding some pre-defined constraints347

into the simulated environments. Our virtual environments use a similar setting, but we cover more348

control tasks and include a detailed study about the environments and the added constraints.349

• Safety-Gym. Probably the most similar benchmark to our work is Safety-Gym [6]. However, Safety350

Gym is used to validate CRL algorithms that solve a forward policy-updating problem given the351

constraints [1], whereas our benchmark is designed for the inverse constraint-learning problem.352

8 Conclusion353

In this work, we introduced a benchmark, including robot control environments and highway driving354

environments, for evaluating CIRL algorithms. Each environment is aligned with a demonstration355

dataset generated by expert agents. To take into account the effect of stochastic environment dynamics356

on hard constraints, we proposed VCIRL to learn a distribution of constraints. We also performed an357

empirical evaluation of the performance of CIRL baselines on our benchmark. Finally, we discussed358

our limitations and important future directions.359
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A More Implementation and Environment Details360

A.1 More Information about the Virtual Environments361

362

Figure A.1: Mujoco environments. From left to right, the environments are Half-cheetah, Ant,
Inverted Pendulum, Walker and Swimmer.

Our virtual environments are based on Mujoco (see Figure A.1). We provide more details about the363

virtual environments as follows:364

• Blocked Half-Cheetah. The agent controls a robot with two legs. The reward is determined by the365

distance it walks between the current and the previous time step and a penalty over the magnitude366

of the input action. The game ends when a maximum time step (1000) is reached. We define a367

constraint that blocks the region with X-coordinate ≤ −3, so the robot is only allowed to move in368

the region with X-coordinate between -3 and ∞.369

• Blocked Ant. The agent controls a robot with four legs. The rewards are determined by the distance370

to the origin and a healthy bonus that encourages the robot to stay balanced. The game ends when a371

maximum time step (500) is reached. Similar to the Blocked Half-Cheetah environment, we define372

a constraint that blocks the region with X-coordinate ≤ −3, so the robot is only allowed to move in373

the region with X-coordinate between -3 and ∞.374

• Biased Pendulum. Similar to the Gym CartPole [46], the agent’s goal is to balance a pole on a cart.375

The game ends when the pole falls or a maximum time step (100) is reached. At each step, the376

environment provides a reward of 0.1 if the X-coordinate ≥ 0 and a reward of 1 if the X-coordinate377

≤ −0.01. The reward monotonically increases from 0.1 to 1 when −0.01 < X-coordinate < 0. We378

define a constraint that blocks the region with X-coordinate ≤ −0.015, so the reward incentivizes379

the cart to move left, but the constraint prevents it from moving too far. If the agent can detect the380

ground-truth constraint threshold, it will drive the cart to move into the region with X-coordinate381

between −0.015 and −0.01 and stay balanced there.382

• Blocked Walker. The agent controls a robot with two legs and learns how to make the robot walk.383

The reward is determined by the distance it walks between the current and the previous time384

step and a penalty over the magnitude of the input action (this is following the original Walker2d385

environment). The game ends when the robot loses its balance or reaches a maximum time step386

(500). Similar to the Blocked Half-Cheetah and Blocked Ant environment, we constrain the region387

with X-coordinate ≤ −3, so the robot is only allowed to move in the region with X-coordinate388

between -3 and ∞.389

• Blocked Swimmer. The agent controls a robot with two rotors (connecting three segments) and390

learns how to move. The reward is determined by the distance it walks between the current and391

the previous time step and a penalty over the magnitude of the input action. The game ends when392

the robot reaches a maximum time step (500). Unlike the Blocked Half-Cheetah and Blocked393

Ant environment, it is easier for the Swimmer robot to move ahead than move back, and thus we394

constrain the region with X-coordinate ≥ 0.5, so the robot is only allowed to move in the region395

with X-coordinate between −∞ and 0.5.396
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A.2 Hyper-Parameters397

We published our benchmarks, including the configurations of the environments and the models, in398

temporarily hidden due to the anonymous policy. Please see the README.MD file for more details.399

We provide a brief summary of the hyper-parameters.400

In order to develop a fair comparison among CIRL algorithms, we use the same setting for all401

algorithms.402

In the virtual environments, we set 1) the batch size of PPO-Lag to 64, 2) the size of the hidden403

layer to 64, and 3) the number of hidden layers for the policy function, the value function, and the404

cost function to 3. We decide the other parameters, including the learning rate of both PPO-Lag and405

constraint model, by following some previous work [3] and their implementation 3. The random406

seeds of virtual environments are 123, 321, 456, 654, and 666.407

In the realistic environments, we set 1) the batch size of the constraint model to 1000, 2) the size of408

the hidden layer to 64 and 3) the number of hidden layers for the policy function, the value function409

and the cost function to 3. We decide the other parameters, including the learning rate of both410

PPO-Lag and constraint model, by following CommonRoad RL [14] and their implementation 4.411

During our experiment, we received plenty of help from their forum 5. We will acknowledge their412

help in the formal version of this paper. The random seeds of realistic environments are 123, 321,413

and 666.414

A.3 Experimental Equipment and Infrastructures415

We run the experiment on a cluster operated by the Slurm workload manager. The cluster has multiple416

kinds of GPUs, including Tesla T4 with 16 GB memory, Tesla P100 with 12 GB memory, and RTX417

6000 with 24 GB memory. We used machines with 12 GB of memory for training the CIRL models.418

The number of running nodes is 1, and the number of CPUs requested per task is 16. Given the419

aforementioned resources, running one seed in the virtual environments and the realistic environments420

takes 2-4 hours and 10-12 hours respectively.421

A.4 Dataset422

We provide a brief summary of the dataset. For more details, please see the dataset supplementary423

material.424

A.4.1 Size425

We generate the dataset by running the expert agent in the environments (see Section 3.3). The dataset426

for each virtual environment contains 50 trajectories while the dataset for each realistic environment427

contains 100 trajectories. We have a total of 5 virtual environments and 4 realistic environments,428

for which we have collected a total of 650 trajectories. The dataset does not contain any personally429

identifiable information or other related content.430

A.5 Computational Complexity431

We provide a brief analysis of the computational complexity. The CIRL algorithms, including432

GACL, MECL, BC2L, and VCIRL, use an iterative updating paradigm and thus their computational433

complexities are similar. Let K denote the number of iterations. Within each iteration, the algorithms434

update both the imitation policy and the constraint model. Let M denote the number of episodes435

that the PPO-Lag algorithm runs in the environments. Let N denote the number of sampling and436

expert trajectories. Let L denote the maximum length of each trajectory. During training, we use437

3temporarily hidden due to the anonymous policy
4temporarily hidden due to the anonymous policy
5temporarily hidden due to the anonymous policy
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mini-batch gradient descent. Let B denote the batch size, and then the computational complexity is438

O(KL(M +N)/B).439

A.6 Exploring Other Constraints in the Realistic Environments440

The constraint thresholds in our environments are determined empirically according to the perfor-441

mance (constraint violation rate and rewards) of the PPO agent and the PPO-Lag agent. To support442

this claim, we show the performance of other thresholds and analyze why they are sub-optimal in443

terms of validating CIRL algorithms.444

Figure A.2: From left to right, the constraint violation rate (top) and rewards (bottom) of the PPO
and PPO-Lag agents in the HighD environments with constraints 1) Ego Car Velocity < 30 m/s, 2)
Ego Car Velocity < 35 m/s, 3) Car Distance > 40 m, and 4) Car Distance > 60 m.

We have explored the option of using a 30m/s velocity constraint (The first column on the left in445

Figure A.2) and 35m/s velocity constraint (The second column on the left in Figure A.2). Ideally,446

these constraints should be closer to the realistic speed limit in most countries. However, the HighD447

dataset comes from German highways where there is no speed limit. Moreover, when building the448

environment, the ego car is accompanied by an initial speed calculated from the dataset. We observed449

that the initial speed is already higher than the speed limit (e.g., 35m/s) in many scenarios, and thus450

the violation rate will always be 1 in these scenarios, leaving no opportunity for improving the policy.451

This explains why the corresponding violation rates are high for the PPO and the PPO-Lag agents.452

We also explored the option of using a 40m distance constraint (third column in Figure A.2) and a453

60m distance constraint (fourth column in Figure A.2). Ideally, these constraints should be more454

consistent with the 2-second gap recommendation (the average speed is around 30m/s in HighD, so455

the recommended gap is 2*30m/s=60m), but we find the controlling performance of the PPO-Lag456

agents are very limited, which shows the agent cannot even develop a satisfying control policy when457

knowing the ground-truth constraints. This is because the ego car learns to frequently go off-road in458

order to maintain the large gap.459

B More Experimental Results460

B.1 The Effect of Demonstration Dataset461

We study the influence on model performance by utilizing 1) noisy demonstration datasets that record462

some random actions during data generation. 2) smaller demonstration datasets that include only463

a subset of expert trajectories in the original data. Figure B.1 shows the experimental results. We464

find the model performance, especially the rewards collected by the agent, is significantly influenced465

after replacing some expert actions with random ones. This is because the random actions induce466
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Figure B.1: Model performance of VCIRL in the Blocked Half-Cheetah environment. We use a noisy
demonstration dataset with 100%, 80%, 50%, 20% and 0% random actions (left) and a dataset with
only 30%, 50% and 100% (full) trajectories of expert demonstration (right) during training.

sub-optimal trajectories, which are less effective in terms of reflecting the preference of expert agents467

and thus leads to some inaccurate constraints. When it comes to the influence of reducing the size of468

demonstration data, we find the constraint violation rate becomes higher. This is because the expert469

agent trained by PPO-Lag applies a stochastic policy. The diversity of recorded actions and states is470

influenced if we reduce the roll-out numbers (i.e., number of trajectories).471

B.2 Complementary Results in the Realistic Environment472

Figure B.2 reports the average velocity, collision rate, off-road rate, time-out rate and goal-reaching473

rate during training. We find the off-road rate of GACL is significantly higher than other methods. It474

explains why GACL cannot achieve a satisfying performance. Another main limitation of current475

baselines is their incapability of preventing the collision events, especially under the car distance476

constraints.477

C Societal Impact478

Positive Societal Impacts The ability to discover what can be done and what cannot be done is an479

important function of modern AI systems, especially for systems that have frequent interactions with480

humans (e.g., house keeping robots and smart home systems). As an important stepping stone towards481

the design of effective systems, constraint models can help develop human-friendly AI systems and482

facilitate their deployments in real applications.483

Negative Societal Impacts Possible real-world applications of constraint models include au-484

tonomous driving systems. Since constraint models are often represented by black-box deep models,485

there is no guarantee that the models are trustworthy and interpretable. When an autonomous vehicle486

is involved into an accident, it is difficult to identify the cause of this accident, which might cause a487

loss of confidence in autonomous systems while negatively impacting society.488
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