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QS-NeRV: Real-TimeQuality-Scalable Decoding with Neural
Representation for Videos
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(a) Other INR-based Methods (b) Our proposed Quality Scalable NeRV
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Figure 1: (a) Existing INR-based methods typically train separate networks for each compression quality level of a video,
which makes them difficult to apply to scalable compression. (b) Our proposed QS-NeRV can accommodate different quality
requirements by integrating one base layer with one or more extension packs.

ABSTRACT
In this paper, we propose a neural representation for videos that
enables real-time quality-scalable decoding, called QS-NeRV. QS-
NeRV comprises a Self-Learning Distribution Mapping Network
(SDMN) and Extensible Enhancement Networks (EENs). Firstly,
SDMN functions as the base layer (BL) for scalable video coding,
focusing on encoding videos of lower quality. Within SDMN, we
employ a methodology that minimizes the bitstream overhead to
achieve efficient information exchange between the encoder and
decoder instead of direct transmission. Specifically, we utilize an
invertible network to map the multi-scale information obtained
from the encoder to a specific distribution. Subsequently, during the
decoding process, this information is recovered from a randomly
sampled latent variable to assist the decoder in achieving improved
reconstruction performance. Secondly, EENs serve as the enhance-
ment layers (ELs) and are trained in an overfitting manner to obtain
robust restoration capability. By integrating the fixed BL bitstream
with the parameters of EEN as an extension pack, the decoder can
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produce higher-quality enhanced videos. Furthermore, the scala-
bility of the method allows for adjusting the number of combined
packs to accommodate diverse quality requirements. Experimen-
tal results demonstrate our proposed QS-NeRV outperforms the
state-of-the-art real-time decoding INR-based methods on various
datasets for video compression and interpolation tasks.

CCS CONCEPTS
• Computing methodologies → Image compression; Recon-
struction.

KEYWORDS
Video compression, Implicit neural representation, Quality-scalable,
Real-time decoding

1 INTRODUCTION
Scalable video coding (SVC) constitutes a critical technology for
adaptive video delivery, enabling dynamic, low-latency adjustments
of video quality in alignment with varying network conditions, de-
vice capabilities, and user preferences. Especially within the realm
of streaming media services, the implementation of real-time scal-
able decoding is vital for ensuring uninterrupted playback and
enhance the quality of user experience. Its related standards, i.e.,
Scalable Video Coding (SVC) [25] and High Efficiency Video Cod-
ing Scalability Extension (SHVC) [2], have been developed. There
are no less than two coding layers including one base layer (BL)
and one or more enhancement layers (ELs) in standards. The BL

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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contains essential information, while ELs provide additional details
and higher video quality.

Recently, implicit neural representations (INR) have shown promis-
ing applications in video compression tasks. In contrast to learning-
based explicit video compression methods [15, 17, 18], INR-based
methods provide a simpler compression pipeline and accelerated
decoding speed. INR-based methods transform video compression
into a model compression problem by representing videos as im-
plicit functions and encoding them into neural networks. NeRV [5]
first proposes an image-based implicit representation method that
utilizes frame indices as input and employs neural representation.
HNeRV [4] improves NeRV into a hybrid structure by incorpo-
rating a trainable encoder that generates frame embeddings with
more condensed information. DNeRV [34] additionally introduces
frame differences to utilize explicit motion information. INR-based
methods are characterized by slow encoding and real-time decod-
ing, which gives them great potential for application in the field of
video-on-demand (VoD).

However, it may be difficult for the existing INR-based methods
to achieve quality scalability. There are two main reasons: (1) As
shown in Fig. 1 (a), the encoding processes of videos at different
quality levels are independent of each other. The compression of
high-quality videos does not utilize or reference the low-quality
videos, resulting in redundancy between their bitstreams. Addition-
ally, the adoption of high-quality videos also involves discarding
low-quality ones. (2) Achieving higher quality often requires larger
models, and the drawback of prolonged training time associated
with INR-based methods becomes more conspicuous as the scale of
the models expands.

Inspired by the framework of SVC, we propose a neural represen-
tation for videos that enables real-time quality-scalable decoding,
called QS-NeRV. QS-NeRV comprises a Self-Learning Distribution
Mapping Network (SDMN) and Extensible Enhancement Networks
(EENs). As shown in Fig. 1 (b), first, SDMN assumes the role of BL
and is adopted to encode videos of the lowest quality. In SDMN, to
realize efficient information transfer between the encoder and de-
coder for better reconstruction performance with lower bitstream
overhead, we map the multi-scale information from the encoder to
a specific distribution via invertible networks. Subsequently, during
the decoding process, this information can be recovered from a
randomly sampled latent variable and utilized to facilitate frame
reconstruction. Secondly, EEN serves as an extension pack (also
known as EL) and is trained in an overfitting manner to realize ro-
bust restoration capability. By exploiting the decoding information
of the BL from the target frame and its adjacent frames, EEN of
the current EL performs progressive quality enhancement on the
output of the preceding layer. Higher-quality videos can be pro-
duced by combining the fixed BL bitstream with the parameters of
EEN. To accommodate diverse quality requirements, the scalability
of the method can be simply achieved by adjusting the number of
combined EENs.

The main contributions are summarized as follows:

• We propose a Quality-Scalable NeRV, consisting of an SDMN
and EENs, to achieve efficient scalable video encoding and
real-time decoding. SDMN is the BL to obtain the lowest
quality video, while EEN is the EL to provide higher-quality

video via referencing the preceding layer. QS-NeRV achieves
adaptability to diverse quality requirements by integrating
the BL bitstream with the parameters of EEN, while allowing
for the adjustment of the number of packs.

• In SDMN,we establish an invertible skip connection between
the encoder and decoder. Such distribution mapping and re-
sampling approach enables efficient information transfer
with lower bitstream overhead. Benefiting from the received
auxiliary information, the decoder can achieve higher recon-
struction performance.

• We evaluate our method on various datasets, and the ex-
perimental results demonstrate our proposed QS-NeRV is
superior to the state-of-the-art real-time decoding INR meth-
ods on the video compression and interpolation tasks.

2 RELATEDWORK
2.1 Scalable video compression
Scalable Video Compression focuses on the efficient compression
of video data while accommodating various levels of quality, reso-
lution, and bit rates. SVC [25] and SHVC [2], extends the capabil-
ities of the previous video coding standard (H.264/AVC [30] and
H.265/HEVC [26]) by introducing scalability features. They all em-
ploy a layered structure, consisting of a base layer (BL) and enhance-
ment layers (ELs). BL contains essential information necessary for
reconstructing a lower-quality version of the video, while ELs con-
tain additional information that improves the quality and details of
the video beyond the base layer. Decoders can selectively decode BL
and one or more ELs based on available resources, network band-
width, or user preferences. While deep neural networks (DNNs)
have made great progress in image/video compression, there have
been few studies that focus on the scalable compression task. [20]
propose a learning-based end-to-end scalable compression model
for images. [8] propose an interlayer restoration DNN (IRDNN) to
improve the quality of the interlayer frame and coding efficiency
of SHVC. There is an urgent need to fill the technology gap in the
learning-based scalable video compression field.

2.2 Implicit neural representations
Implicit Neural Representations (INR) have emerged as a central
paradigm that aims to parameterize signals (images, videos, 3D
signals, etc.) as continuous functions. It maps input information,
such as coordinate information, index information, and coded in-
formation, onto different types of signals to achieve a continuous
representation of signals. INR has numerous applications, ranging
from 3D object representation [6, 11] to view synthesis [1] and
image/video reconstruction [23]. Recently, INR has shown great
potential in the field of video compression [3, 5, 16, 19]. NeRV [5]
first proposes a frame-indexed neural representation to achieve
implicit video compression. Based on NeRV, CNeRV [3], E-NeRV
[16], D-NeRV [7], and NIR VANA [19], which belong to the index-
based NeRV methods, have achieved varying degrees of improve-
ment. Nevertheless, this type of method does not provide enough
content-specific coding information to the reconstruction network.
HNeRV [4], which is a hybrid between implicit and explicit meth-
ods, achieves more competitive results by storing information in
learnable frame-specific embeddings and a video-specific decoder.
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Figure 2: The overall structure of our proposed QS-NeRV.

However, existing INR-based methods typically train separate net-
works for each compression quality level of a video, which results
in unnecessary resource consumption when they are applied to
scalable video compression.

2.3 Invertible neural networks
Invertible Neural Networks (INN) have received a considerable
amount of attention since they were proposed by Dinh [10]. The
INN is a two-shot structure that receives inputs from two parts
and alternately couples the inputs through two or more neural
networks. The INN is strictly efficiently reversible because of the
reversibility of the coupling method. INNs are widely used in the
fields of image hiding (HiNet [9], Steg-cINN [24], RIIS [33]), image
compression [32], image rescaling (IRN [31], SelfC [27]), and image
and video super-resolution [35]. In particular, IRN and SelfC learn
INNs to map the high-frequency information of images to a specific
distribution and then recover it from a randomly drawn latent
variable, aiming to reduce the loss of high-frequency information
caused by down-sampling operations during the image rescaling
process. Inspired by this, we also adopt INNs to realize efficient
information transfer between the encoder and decoder with lower
bitstream overhead.

3 METHOD
3.1 Overview
The overall structure of our proposed Quality-Scalable NeRV (QS-
NeRV) is depicted in Fig. 2. Our processing pipeline is conducted

in two main parts: base layer (BL) and enhancement layers (ELs).
Firstly, the target frame 𝐼𝑡 is fed into a self-learning distributionmap-
ping network (SDMN) to obtain the lowest quality output 𝑂𝐿0

𝑡 and
the bitstream of BL 𝐵𝐿0𝑡 . Secondly, we train extensible enhancement
networks (EENs) to serve as extension packs for further quality
improvement. EENs are trained in an overfitting manner, where the
lower-quality frame is utilized as the input, and its corresponding
raw frame is employed as the label. Take EEN of the first EL as
an example, the compression result of BL 𝑂𝐿0

𝑡 is fed into EEN for
enhancement. By leveraging the decoding features of BL as auxil-
iary information, EEN can realize robust restoration capability and
generate a higher-quality frame 𝑂𝐿1

𝑡 . Similar to the combination
of BL and one or more ELs in conventional scalable video coding,
QS-NeRV achieves scalability by adjusting the number of EENs to
accommodate diverse quality requirements.

3.2 Self-learning distribution mapping network
In SDMN, 𝐼𝑡 is first downsampled progressively by the encoder to
extract features, and is eventually compressed into smaller frame
embeddings 𝐸𝐿0𝑡 . We employ the encoder blocks of [4] to build
our encoder. After receiving the frame embedding, the decoder
reconstructs the decoded frame. We introduce a reparameterization-
base decoder block, which improves upon the decoder block in [4].
As shown in Fig.3, during encoding (training), the HNeRV decoder
Block uses only one convolution layer, while our decoder block can
provide a more robust frame reconstruction capability by adopting
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Figure 3: Illustration of the HNeRV decoder block (left) and
the reparameterization-base decoder block (right). During en-
coding, our decoder block employs multiple branches, which
can be merged into one convolution layer during decoding.
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Figure 4: The structure of InvNet.

multi-branch convolution layers of different sizes. During decoding,
the learned kernels of multiple branches are merged into a single
convolution kernel, thereby maintaining the same total number
of parameters as the HNeRV decoder block. The decoder of BL is
cascaded by 𝑁 reparameterization-base decoder blocks.

During the compression process, the inevitable information loss
has an impact on the performance of the decoder. Establishing
information transfer between the encoder and decoder can allevi-
ate adverse effects, but directly transmitting whole features from
encoder to decoder would result in a significant bitstream over-
head. To address this problem, we adopt a distribution mapping
and sampling approach by utilizing an invertible network (InvNet)
to realize efficient information transfer between the encoder and
decoder. As shown in Fig. 4, give the feature 𝐹𝐸𝑡 ∈ R𝐶×𝐻×𝑊 output
by an encoder block, we first use multiple convolution layers to
generate a compact latent 𝑓 𝐸𝑡 ∈ R1×𝐻×𝑊 from 𝐹𝐸𝑡 . Then, 𝐹

𝐸
𝑡 and

𝑓 𝐸𝑡 are fed simultaneously into an InvNet for forward processing,
which can be formulated as follows:

𝐹𝐸𝑡 = 𝐹𝐸𝑡 ⊙ K(𝑓 𝐸𝑡 ) + F (𝑓 𝐸𝑡 )

𝑓 𝐸𝑡 = 𝑓 𝐸𝑡 ⊙ H(𝐹𝐸𝑡 ) + G(𝐹𝐸𝑡 )
where K , F , H , G are small DenseBlocks, and ⊙ denotes element-
wise product. In order to distinguish between different frames, we
preserve the 𝑓 𝐸𝑡 as a frame-specific feature, while 𝐹𝐸𝑡 is constrained
to obey a Gaussian distribution 𝐹𝐸𝑡 ∼ N(0, 𝜎2). Overall, the frame-
specific feature 𝑓 𝐸𝑡 and the parameters of InvNet will be directly
transmitted to the decoder as part of 𝐵𝐿0𝑡 .

During the decoding, 𝑓 𝐸𝑡 is received by the decoder, while 𝐹𝐸𝑡
need only be sampled from a randomly drawn latent variable. The
two features are fed into the transmitted InvNet for inverse process-
ing. Benefiting from the strict and efficient reversibility of INNs,
multi-scale information from the encoder can be recovered and used
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Figure 5: The structure of EEN.

to assist the decoder in achieving better reconstruction performance.
For compressing a video containing 𝑇 frames, transmitting the en-
tire feature incurs a significantly larger bitstream (𝑇 ×𝐶 × 𝐻 ×𝑊 )
compared to our adopted approach (𝑇 × 1×𝐻 ×𝑊 +𝑃𝑎𝑟𝑎𝑚𝐼𝑛𝑣𝑁𝑒𝑡 ).

To summarize, 𝐵𝐿0𝑡 contains multiple components, including the
parameters of 𝐸𝐿0𝑡 , 𝑓 𝐸𝑡 , 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 , and 𝐼𝑛𝑣𝑁𝑒𝑡𝑠 .

𝐵
𝐿0
𝑡 = 𝐸

𝐿0
𝑡 + 𝑓 𝐸𝑡 + 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 + 𝐼𝑛𝑣𝑁𝑒𝑡𝑠

3.3 Extensible Enhancement Network
In order to attain scalability, we introduce an extensible enhance-
ment network (EEN) as the enhancement layer. Inspired by SVC,
whose encoding process of ELs is usually built upon the BL by
encoding the differences to achieve progressive enhancement, we
take the lower-quality frames, the frame embedding of BL 𝐸

𝐿0
𝑡 , and

the features output by each decoding block of BL 𝐹
𝐷𝑛

𝑡 as inputs to
train EEN in an overfitting way, where 𝑛 ∈ [1, 𝑁 ] is the block index.
Considering that multi-frame reference facilitates the performance
of the reconstruction, we augment EEN by incorporating the fea-
tures of the neighboring frames, 𝐹𝐷𝑛

𝑡−1 and 𝐹
𝐷𝑛

𝑡+1, as side information.
As shown in Fig. 5, EEN also adopts a pyramid structure formed by
stacking the reparameterization-base decoder blocks. In the begin-
ning, 𝐸𝐵𝐿𝑡 is fed into the first block for processing. Meanwhile, we
fuse inter-frame information together. Firstly, we utilize 3 × 3 con-
volution layers to reduce the channels of the features generated by
the first decoding block of BL to 1. Then, we perform element-wise
summation to combine these squeezed features.

ℎ1 = 𝐶3×3 (𝐹𝐷1
𝑡−1) +𝐶3×3 (𝐹𝐷1

𝑡 ) +𝐶3×3 (𝐹𝐷1
𝑡+1),

where 𝐶𝑘×𝑘 denotes 𝑘 × 𝑘 convolution layer. After obtaining ℎ1,
three convolution layers of different sizes are adopted to extract
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Table 1: The parameter quantities of QS-NeRV of different
sizes over 1920×960 sequences containing 600 frames.

Models Parameters
BL ELs

QS-NeRV-3M 𝐸
𝐿0
𝑡 : 0.077M -
𝑓 𝐸𝑡 : 0.182M

QS-NeRV-4.5M 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 : 2.800M
𝐵
𝐿1
𝑡 : 1.5M𝐼𝑛𝑣𝑁𝑒𝑡𝑠: 0.182M

QS-NeRV-6M 𝐵
𝐿1
𝑡 + 𝐵

𝐿2
𝑡 : 3M

𝐵
𝐿0
𝑡 (𝑇𝑜𝑡𝑎𝑙): 3.251M

multi-scale information, and we integrate all information using a
concatenation operation followed by a convolution layer. A spatial-
wise attention map𝑀 is generated by applying the sigmoid opera-
tion on the integrated result.

𝑀 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶3×3 ( [𝐶1×1 (ℎ1),𝐶3×3 (ℎ1),𝐶5×5 (ℎ1)])),

where [·, ·] represents concatenation operation. Finally, we multiply
𝑀 by 𝐹

𝐷1
𝑡 to get the fused result, which will be combined with the

output of the first block as the input to the next block.
We use the same method to fuse the remaining BL features and

apply them to progressive refinement. In the end, a residual image
output by the last block will be added to the lower-quality frame to
obtain a higher-quality one.

𝑂
𝐿𝑚
𝑡 = 𝐸𝐸𝑁𝑚 (𝐹𝐷𝑛

𝑡−1, 𝐹
𝐷𝑛

𝑡 , 𝐹
𝐷𝑛

𝑡+1) +𝑂
𝐿𝑚−1
𝑡 ,

where 𝐸𝐸𝑀𝑚,𝑚 ∈ [1, 𝑀] denotes the𝑚-th enhancement layer. The
parameters of EENs will be used as the bitstream of ELs 𝐵𝐿𝑚𝑡 for
transmission and storage. Benefiting from the combination of BL
and ELs, we can adaptively adjust the number of adopted EENs
based on quality requirements. Table 1 presents an example of
parameter quantities for QS-NeRV of different sizes over 1920×960
sequences containing 600 frames.

4 EXPERIMENTS
4.1 Dataset
We validate the effectiveness of our proposed QS-NeRV on 𝐵𝑢𝑛𝑛𝑦

[4], UVG [21], and DAVIS datasets [29]. 𝐵𝑢𝑛𝑛𝑦 owns 132 frames at
1280×720. UVG comprises 7 videos with a resolution of 1920×1080
and lengths of either 600 or 300 frames. DAVIS consists of a group
of 50 high-quality, 1920 × 1080 video sequences. These sequences
exhibit diverse video compression challenges, including occlusion,
motion blur, and appearance changes. We select 𝐵𝑢𝑛𝑛𝑦, 7 videos
from UVG, and 22 videos from DAVIS for evaluation. Then, we
center-crop the videos into 1280 × 640 for 𝐵𝑢𝑛𝑛𝑦, and 1920 × 960
for UVG and DAVIS as in [5] and [4].

4.2 Training Details
For SDMN, we firstly use the Mean Square Error (MSE) loss to
minimize the difference between the output video and the original
video. Moreover, we introduce a distribution loss to make sure
that 𝐹𝐸𝑡 is mapped to the correct distribution. The loss function for

Table 2: PSNR on 𝐵𝑢𝑛𝑛𝑦 with different model sizes.

Real-time
Methods

Size Avg.
0.75M 1.5M 3M

NeRV 28.46 30.87 33.21 30.85
E-NeRV 30.95 32.09 36.72 33.25
HNeRV 32.81 35.57 37.43 35.27
DNeRV 32.39 35.21 37.82 35.14
FFNeRV 30.37 33.83 37.01 33.74
QS-NeRV 33.74 36.37 38.59 36.23

SDMN L𝑆𝐷𝑀𝑁 are defined as :

L𝑆𝐷𝑀𝑁 = ∥𝐼𝑡 ,𝑂𝐿0
𝑡 ∥2 + (−E𝑞 (𝐼𝑡 ) [log 𝑝 (𝐹

𝐸
𝑡 )])

where N is the number of the training samples.
For EENs, we use the MSE loss for training networks, and the

loss function for EENs L𝐸𝐸𝑁 is defined as:

L𝐸𝐸𝑁 = ∥𝐼𝑡 ,𝑂𝐿𝑚
𝑡 ∥2

We adopt Adam [12] as the optimizer, and the batch size is set as
1. The initial learning rate is set as 5𝑒 −4with a cosine learning rate
schedule. The training of both SDMN and the first EEN terminates
after 300 epochs, while the latter EENs only need to be finetuned
150 epochs on top of the previously trained EEN. The stride list and
kernel size settings of the decoding block in SDMN and EENs are
kept consistent with [4]. We use PSNR and SSIM to measure the
objective quality of the reconstructed video for our proposed QS-
NeRV and the state-of-the-art real-time decoding model, including
NeRV [5], E-NeRV [16], HNeRV [4], DNeRV [34] and FFNeRV [14].
All experiments are conducted in PyTorch [22] with GPU RTX4090.

4.3 Video Regression
The results of NeRV [5], E-NeRV [16], HNeRV [4] and FFNeRV [14]
are consistent with their original paper. To ensure a fair comparison,
we modify the model of DNeRV [34] to meet the predetermined
size requirements and retrain it on our dataset.
Bunny. We select SDMN with 0.75M parameters as BL. To extend
the QS-NeRV to versions with 1.5M and 3M parameters, the param-
eters of EENs of the first and second ELs are set to 0.75M and 1.5M,
respectively. As shown in Table 2, the comparison results illustrate
that QS-NeRV outperforms other methods across different sizes.
UVG. For UVG videos with resolutions of 1920×960, the model size
of BL is set to 3M parameters. Then, we scale up the model param-
eters to 4.5M and 6M by adding EENs with 1.5M parameters. The
results are reported in Table 3. We further implement performance
validation on the downsampled version of UVG (960 × 480), and
the results are shown in Table 4. Benefiting from the establishment
of information flow between the encoder and decoder in SDMN,
the performance of BL has been dramatically improved compared
with other methods. Combining with BL and leading performance
on multiple videos also proves the effectiveness of our EENs. Fig. 6
shows that the reconstruction performance of QS-NeRV is superior,
as it can generate richer details.
DAVIS. As for DAVIS, we compare the performance of models
with 3M parameters. As shown in the Table. 5, the results of ten
sequences demonstrate that our proposed QS-NeRV achieves the
most significant boost in terms of PSNR and SSIM.
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Table 3: PSNR (dB) on UVG at resolution 1920×960. Bold means best results.

Real-time Methods Size Beauty Bosph Bee Jockey Ready Shake Yacht Avg.
NeRV

3M

33.25 33.22 37.26 31.74 24.84 33.08 28.03 31.63
E-NeRV 33.17 33.69 37.63 31.63 25.24 34.39 28.42 32.02
HNeRV 33.58 34.73 38.96 32.04 25.74 34.57 29.26 32.69
DNeRV 33.67 34.79 39.22 32.58 26.24 34.71 28.80 32.86
FFNeRV 33.57 35.03 38.95 31.57 25.92 34.41 28.99 32.63
QS-NeRV (BL) 33.92 35.74 39.27 33.83 27.67 35.04 29.97 33.63
HNeRV

4.5M
33.89 35.48 39.43 32.90 26.73 35.17 30.01 33.37

DNeRV 33.80 35.06 39.30 33.60 27.36 34.99 29.60 33.39
FFNeRV 33.78 35.37 39.41 34.13 27.45 34.70 29.34 33.45
QS-NeRV (BL+EL×1) 34.11 36.69 39.38 34.89 28.75 35.68 30.94 34.35
HNeRV

6M
34.03 36.04 39.51 33.65 27.44 35.89 30.72 33.90

DNeRV 33.84 35.35 39.30 34.07 27.78 35.09 29.51 33.56
FFNeRV 33.98 36.63 39.58 33.58 27.39 35.91 30.51 33.94
QS-NeRV (BL+EL×2) 34.21 37.19 39.42 35.48 29.39 36.07 31.57 34.76

Table 4: PSNR (dB) on UVG at resolution 960×480. Bold means best results.

Real-time Methods Size Beauty Bosph Bee Jockey Ready Shake Yacht Avg.
NeRV

3M

36.27 35.07 40.76 32.58 25.81 35.33 30.11 33.70
E-NeRV 36.26 36.06 43.26 32.70 26.19 35.64 30.38 34.35
HNeRV 36.91 36.95 42.05 33.33 27.07 36.97 30.96 34.89
DNeRV 32.78 34.53 38.52 32.22 25.94 34.23 29.07 32.47
FFNeRV 35.27 34.84 41.46 33.13 26.27 35.02 29.14 33.59
QS-NeRV (BL) 35.15 37.32 40.73 35.00 29.02 37.02 32.38 35.06
HNeRV

4.5M
37.27 37.81 42.23 34.76 27.45 37.38 32.09 35.57

DNeRV 32.97 35.35 38.68 33.43 27.30 34.70 29.80 33.18
FFNeRV 35.76 36.41 42.06 34.62 27.89 35.88 30.44 34.72
QS-NeRV (BL+EL×1) 35.49 38.76 40.96 36.56 30.84 37.58 34.30 36.17
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Figure 6: Visualization example of video neural representations at various model sizes.

4.4 Downstream Tasks
4.4.1 Scalable Video Compression. We compare QS-NeRV with
SHM 12.4 [2], X264 [30], X265 [26], multiple real-time decoding INR-
based methods [4, 5, 14, 34] and a learning-based video compression
method, i.e., DCVC [15]. We quantize the INR-based models in 8 bits
with entropy encoding andwithout model pruning. To present more

intuitive, rate–distortion curves of our and other methods over the
UVG dataset are shown in Fig. 8. In this figure, we can observe that,
except for the official coding tool SHM 12.4 and DCVC, the curve
of QS-NeRV is above that of others. QS-NeRV surpasses traditional
video codecs H.264 or H.265 in PSNR, and it is also superior to the
state-of-the-art INR-based methods. Although learning-based video
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Table 5: PSNR (dB) and SSIM on DAVIS at resolution 1920×960. Bold means best results.

Video
Video Regression Video Interpolation

HNeRV DNeRV FFNeRV QS-NeRV DNeRV FFNeRV QS-NeRV
Blackswan 30.35/0.891 30.20/0.898 30.67/0.940 32.78/0.942 27.40/0.834 26.30/0.786 30.31/0.902
Bmx-trees 28.76/0.861 28.64/0.858 29.06/0.912 31.08/0.917 24.95/0.710 25.18/0.725 25.65/0.755
Car-shadow 31.32/0.936 30.23/0.924 33.06/0.964 33.89/0.954 26.29/0.872 27.63/0.883 29.70/0.927

Cows 24.11/0.792 24.29/0.798 22.36/0.707 25.13/0.842 23.06/0.752 22.36/0.707 24.36/0.821
Dog 30.96/0.898 31.10/0.900 31.22/0.936 33.35/0.943 26.36/0.724 26.95/0.757 28.69/0.798

Drift-straight 30.80/0.932 30.56/0.928 31.29/0.962 34.24/0.968 23.72/0.726 24.90/0.730 25.63/0.738
Goat 26.62/0.858 26.90/0.863 25.62/0.874 28.61/0.906 22.27/0.634 22.06/0.650 24.65/0.761

Mallard-fly 29.22/0.848 28.98/0.839 29.89/0.915 30.88/0.897 24.58/0.684 25.14/0.724 25.51/0.711
Parkour 26.56/0.851 26.69/0.853 26.97/0.874 28.01/0.891 23.31/0.739 23.85/0.774 24.55/0.791

Scooter-black 27.38/0.923 27.86/0.932 27.75/0.954 31.26/0.961 20.69/0.708 21.90/0.719 22.92/0.750
Average 28.61/0.879 28.55/0.879 28.79/0.904 30.90/0.922 24.26/0.743 24.63/0.745 26.20/0.795

HNeRV QS--NeRVDNeRVRaw

Figure 7: Visualization example of video interpolation at 3M model size.

Table 6: Video interpolation results on 1920 × 960 UVG in
PSNR. Bold means best results.

Video Beauty Bosph Bee Jockey Ready Shake Yacht Avg.
HNeRV 31.10 34.38 38.83 23.82 20.99 32.61 27.24 29.85
DNeRV 30.58 34.71 39.02 23.50 20.07 32.50 27.09 29.64
FFNeRV 30.43 32.77 38.58 26.84 23.18 31.78 26.31 29.98
QS-NeRV 32.85 34.80 39.17 25.45 24.21 34.27 29.11 31.38

compression methods exhibit superior compression efficiency, the
inability to facilitate real-time decoding constitutes a major barrier
to their practical application.

4.4.2 Video Interpolation. We assess the generalization capabilities
of various methods through video interpolation tasks. Following
the experimental setup outlined in [34], we present the quantita-
tive results on UVG and DAVIS datasets in Table 6 and Table 5,
respectively. For the UVG dataset, our method exhibited an average
improvement of 1.40−1.53dB in PSNR compared to other meth-
ods. In terms of the DAVIS dataset, our performance of PSNR and
SSIM on all videos exceeds the state-of-the-art method. Specifically,

Bpp
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X.265

SHVC (12.4)
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HNeRV

DNeRV

FFNeRV

QS-NeRV

Figure 8: Compression results of scalable video compression
on 1920 × 960 UVG.

comparing with the SOTAmethod, we obtained the largest improve-
ment on sequence Blackswan, with an enhancement of 2.91dB. The
maximum improvement in SSIM (0.111) is observed in sequence
Goat. The qualitative results are presented in Fig. 7.
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Figure 9: The speed comparison of scalable video encoding.

Table 7: The speed comparison of scalable video decoding.

Methods Param Dec time (ms) ↓ FPS ↑ Real-time
HNeRV

3M
8.1 124 ✓

DNeRV 7.9 127 ✓
FFNeRV 14.1 71 ✓
HiNeRV 65.3 15 ×
QS-NeRV 12.3 81 ✓

HNeRV
4.5M

15.3 65 ✓
DNeRV 13.6 73 ✓
FFNeRV 14.1 71 ✓
HiNeRV 77.4 13 ×
QS-NeRV 12.3 + 9.2 47 ✓

HNeRV
6M

18.0 55 ✓
DNeRV 14.9 67 ✓
FFNeRV 14.1 71 ✓
HiNeRV 90.0 11 ×
QS-NeRV 12.3 + 9.2 + 9.2 33 ✓

4.5 Processing Speed
Encoding time. Here, we analyze the scalable video encoding
time, which is equivalent to the training time of the network for
the INR-based methods. The evaluation is conducted on the video
containing 600 frames of 1920×960. As shown in Fig. 9, the encoding
time of SDMN (3M) is 3 hours, which is slightly longer than [4]
(2 hours) and [34] (2.6 hours). However, when aiming to achieve
higher-quality videos from existing lower-quality videos, other
methods typically train a larger network from scratch, and their
encoding time increases substantially. In contrast, our QS-NeRV
only needs to train smaller networks, i.e., EENs, as extension packs.
Moreover, from the second EL onwards, EEN can be finetuned by
fewer epochs on top of the previously trained EEN. In brief, as the
demand for video quality increases, the advantages of QS-NeRV in
scalable video encoding become increasingly apparent.
Decoding time. We further test the decoding time of QS-NeRV
(Float32). As shown in Table 7, QS-NeRV is capable of delivering
1920×960 video at various quality levels in real-time (>30 fps). To
satisfy the demand for different qualities, other methods need to
transmit all models to the decoding side for switching (3 + 4.5 +
6M), while QS-NeRV only needs to transmit the largest model
(3 + 1.5 + 1.5M) and adjust the number of ELs, which implies that
our decoding process is more flexible. It is worth mentioning that
INR-based methods are characterized by slow encoding and real-
time decoding, which gives them great potential for application
in the field of video-on-demand (VoD). However, HiNeRV [13]
sacrifices decoding speed to significantly improve performance,
making it difficult to apply in the real world.

Table 8: The comparison of different skip connections,𝑈𝑉𝐺 .

Type Params (M) PSNR (dB)
𝐷𝑒𝑐𝑜𝑑𝑒𝑟 Connection Total

w/o 3.16 0 3.16 33.30
Direct 2.80 12.29 15.09 33.88
Not invertible 2.80 0.36 3.16 33.52
Invertible 2.80 0.36 3.16 33.63

Table 9: The comparison of different training strategies,𝑈𝑉𝐺 .

Size Training strategy PSNR (dB)

4.5M Joint 34.19
Separate (3+1.5) 34.35

6M Joint 34.48
Separate (3+1.5+1.5) 34.76

4.6 Ablation Study
The effectiveness of the invertible skip connection. To ver-
ify the effectiveness of our proposed invertible skip connection,
we compare its performance with no skip connection, direct skip
connection, and not invertible connection. As depicted in Table 8,
the advantages of establishing information transmission between
the encoder and decoder are evident, resulting in remarkable im-
provement. Although achieving optimal performance by direct skip
connection, the large data volume imposes a significant burden on
the transmission. Our proposed method greatly reduces the trans-
mitted data and a slight degradation in performance is acceptable.
With the same number of parameters, we further rescale features
to be transmitted in a not invertible way, e.g. using convolution
layers. Comparative results show that information loss caused by
not invertible connections leads to performance degradation.
Joint vs. separate training. There are two strategies to train our
large model: one is to jointly train the BL and ELs, while the other
is to train ELs after BL has been trained. On the one hand, [28]
has proved that gradually fitting a distribution through multiple
steps is preferable to fitting it in one step. On the other hand, EEN
takes the output of the previous layer as input and learns a residual
image, the learning process becomes simpler, leading to a greater
enhancement. As shown in Table 9, separate training is better than
joint training. Furthermore, separate training is the key to achieving
scalable video coding.

5 CONCLUSION
In this paper, we achieve real-time quality-scalable decodingwith an
neural representation for videos (QS-NeRV). To realize scalability,
we train an SDMN to be the base layer and EENs to be enhancement
layers. Higher-quality videos can be produced by combining the
BL bitstream with the parameters of EEN. By adjusting the number
of combined EENs, QS-NeRV can accommodate diverse quality
requirements. Moreover, we establish efficient information transfer
between the encoder and decoder of SDMN by exploiting the distri-
bution mapping and resampling approach, resulting in enhancing
the reconstruction ability with lower bitstream overhead. Com-
prehensive comparisons across various aspects have consistently
demonstrated the superior performance of our method compared
to alternative methods.
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