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In this supplementary material, we will provide a theoretical analysis to the proposed memory effi-
cient Transformer adapter (META) in Section S1, provide a detailed description of the experimental
datasets in Section S2, provide a detailed description of the experimental settings in Section S3,
provide more result comparisons under different pre-trained weights in Section S4, provide more
ablation study results in Section S5, show class activation map comparisons of instance segmen-
tation before and after adding the Conv branch in Section S6,qualitative visualizations of instance
segmentation and semantic segmentation results in Section S7, as well as the pseudo-code for when
the stripe size is set to 2 in Section S8.

S1 THEORETICAL ANALYSIS OF META

This supplementary is for Section 3 of the main paper. In this section, we will prove that META ex-
hibits superior generalization capability and stronger adaptability compared to existing ViT adapters.
To achieve this goal, we will prove that the proposed memory efficient adapter (MEA) block pos-
sesses larger information entropy (IE) than the existing attention-based ViT adapters (Hu et al., 2022;
Jie & Deng, 2023; Chen et al., 2022; Ma et al., 2024; Luo et al., 2023; Shao et al., 2024), which pro-
vides evidence that the MEA block has more comprehensive feature representations. Then, based
on the maximum mean discrepancy (MMD) theory (Cheng & Xie, 2021; Arbel et al., 2019; Wang
et al., 2021a), larger IE in the ViT adapter framework leads to superior generalization capability and
stronger adaptability. The detailed theoretical analysis process is as follows:
Lemma S1.1. In any case of mutual information, the MEA block will gain larger information en-
tropy after fusing Xvit and Xcon.

Proof. As introduced in Section 3.2 of the main paper, the proposed MEA block can be viewed
as an operation that integrates the ViT features (i.e., the Attn branch and the FFN branch) and
the convolution features (i.e., the Conv branch). Therefore, we begin by formalizing the obtained
features into the following two basic elements: the ViT features and the convolution features. To
formalize the learning setting, we express the ViT features as Xvit and the convolution features as
Xcon. It is evident that if Xvit and Xcon are extracted from the same image, then Xvit and Xcon

are not independently distributed, and there exists some mutual information between them (Zhang
et al., 2022; Wu et al., 2021; Zhang et al., 2023; Peng et al., 2021). Therefore, the IE of the fused
feature of Xvit and Xcon within the MEA block can be expressed as:

H(Xvit,Xcon) = H(Xvit) + H(Xcon)− I(Xvit;Xcon), (1)

where H(·) is utilized to calculate the IE of the given variate, which can be formulated as:

H(Xvit) = −
∑

P (xvit)log(P (xvit)),

H(Xcon) = −
∑

P (xcon)log(P (xcon)),
(2)

where P (xvit) represents the probability of Xvit taking on the value of xvit. The similar definition
of P (xcon). I(·; ·) in Eq. equation 1 is used to compute the mutual information between Xvit and
Xcon, which can be expressed as:

I(Xvit;Xcon) =
∑∑

P(Xvit,Xcon)log(P(Xvit,Xcon)(P(Xvit),P(Xcon))), (3)
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where P(Xvit,Xcon) is their joint probability distribution. Since I(Xvit;Xcon) is always non-
negative, H(Xvit,Xcon) may still be greater than H(Xvit) or H(Xcon) (Paninski, 2003; Gabrié et al.,
2018). This suggests that the IE of the features extracted by MEA is always greater than the feature
representation extracted by either of them separately.

Specifically, if I(Xvit;Xcon) is small, the IE gain after fusion may still be significant, which is
beneficial for improving the generalization capability and adaptability of the block. However, when
I(Xvit;Xcon) is large, the IE gain after fusion may be reduced. This means that I(Xvit;Xcon) may
affect the IE improvement of the fused model. Next, we will discuss the impact of Xvit and Xcon

on improving the IE of the adapter based on the size of I(Xvit;Xcon), which can be divided into the
following three cases:

• Small I(Xvit;Xcon). This is an ideal state. When the dependency between Xvit and Xcon is
small, it indicates that I(Xvit;Xcon) is small, that is, Xvit and Xcon respectively represent
different information of the image. In this case, fusing Xvit and Xcon can bring a significant
increase in IE, which is beneficial to improving the adapter’s generalization capability and
adaptability.

• Medium I(Xvit;Xcon). When I(Xvit;Xcon) is between small and large, it indicates that
there is a certain degree of correlation between them. In this case, fusing Xvit and Xcon

may still bring some IE gain. The specific improvement effect depends on the degree of
correlation between Xvit and Xcon and their complementarity in image representations.
Fortunately (Zhang et al., 2022; 2023; Marouf et al., 2024; Liu et al., 2023), a large amount
of work has validated that ViT and convolutional layers can extract distinctive information
from images. Therefore, in this case, fusing Xvit and Xcon can still bring IE gains.

• Large I(Xvit;Xcon). When I(Xvit;Xcon) between Xvit and Xcon is large, it indicates that
there is a high correlation between them, i.e., global ViT and local convolution features
may represent similar or overlapping information of the image. In this case, the IE gain
brought by fusing Xvit and Xcon may decrease because there is a lot of information overlap
between them. However, in our case, the probability of such a scenario occurring is almost
non-existent, fusing Xvit and Xcon may still improve the performance of the model to some
extent, because they may capture the detailed information of the image to varying degrees.

Based on the aforementioned theoretical analysis, we can conclude that the proposed MEA block
has a larger IE than existing ViT adapters (which are primarily based on the attention mechanism)
under any scenario. This provides evidence that the MEA block has more comprehensive feature
representations.

As the MEA block includes a parallel convolutional branch, it can better capture local inductive
biases compared to the traditional ViT adapter, which mainly uses self-attention (Hu et al., 2022;
Jie & Deng, 2023; Chen et al., 2022; Ma et al., 2024; Luo et al., 2023; Shao et al., 2024; Mercea
et al., 2024). Therefore, the MEA block’s feature space should be more capable of distinguishing
different samples, resulting in a larger MMD value. Our MEA block’s feature space is obtained
by combining the attention branch, the feed-forward network branch, and the local convolutional
branch, enabling it to capture both local and global inductive biases of the given image. In contrast,
the traditional ViT adapter’s feature space is mainly obtained through self-attention and may not be
able to capture local features well. Therefore, according to the MMD theory (Cheng & Xie, 2021;
Arbel et al., 2019; Wang et al., 2021a), we can conclude that if the MEA block’s feature space is
more discriminative than the traditional ViT adapter’s feature space, then the MEA block’s feature
space is more suitable for adapter feature space and can better improve the model’s generalization
capability and adaptability.

S2 INTRODUCTION OF THE EXPERIMENTAL DATASETS

This supplementary is for Section 4.1 of the main paper. In our paper, two representative datasets
are used to evaluate the effectiveness and efficiency of our method, including MS-COCO (Caesar
et al., 2018) for ODet and ISeg, and ADE20K (Zhou et al., 2017) for SSeg. Below are the details of
the used datasets:
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Methods Pre-Trained Params.↓ APm ↑
Swin-B (Liu et al., 2021) ImageNet-1k (Deng et al., 2009) 107.1 43.3

ViT-Adapter-B (Chen et al., 2022) ImageNet-1k (Deng et al., 2009) 120.2 43.6
META-B(Ours) ImageNet-1k (Deng et al., 2009) 115.3 44.3+0.7

Swin-B (Liu et al., 2021) ImageNet-22k (Steiner et al., 2021) 107.1 44.3
ViT-Adapter-B (Chen et al., 2022) ImageNet-22k (Steiner et al., 2021) 120.2 44.6

META-B(Ours) ImageNet-22k (Steiner et al., 2021) 115.3 45.2+0.6

Swin-B (Liu et al., 2021) Multi-Modal (Zhu et al., 2022) 107.1 –
ViT-Adapter-B (Chen et al., 2022) Multi-Modal (Zhu et al., 2022) 120.2 45.3

META-B(Ours) Multi-Modal (Zhu et al., 2022) 115.3 45.9+0.6

Table S1: Result comparisons on Params. (M) and AP (%) under different pre-trained weights with
Mask R-CNN (3× +MS schedule) (He et al., 2017) as the baseline model on the val set of MS-
COCO (Caesar et al., 2018). “–” denotes there is no such a result in its paper.

• MS-COCO (Caesar et al., 2018) is a representative yet challenging dataset for common
scene IS and object detection, which consists of 118k, 5k and 20k images for the training
set, the val set and the test set, respectively. In our experiments, the model is trained on the
training set and evaluated on the val set.

• ADE20K (Zhou et al., 2017) is a scene parsing dataset with 20k images and 150 object
categories. Each image has pixel-level annotations for SS of objects and regions within
the scene. The dataset is divided into 20k, 2k, and 3k images for training, val and test,
respectively. Our model is trained on the training set and evaluated on the val set.

For data augmentation, random horizontal flip, brightness jittering and random scaling within the
range of [0.5, 2] are used in training as in (Chen et al., 2022; Luo et al., 2023; Zhang et al., 2023;
Mercea et al., 2024). By default, the inference results are obtained at a single scale, unless explicitly
specified otherwise.

S3 INTRODUCTION OF THE EXPERIMENTAL SETTINGS

This supplementary is for Section 4.2 of the main paper. Experiments on object detection and in-
stance segmentation are conducted using the open-source MMDetection framework (Chen et al.,
2019). The training batch size is set to 16, and AdamW (Loshchilov & Hutter, 2017) is used as the
optimizer with the initial learning rate of 1 × 10−4 and the weight decay of 0.05. The layer-wise
learning rate decay is used and set to 0.9, and the drop path rate is set to 0.4. Following (Xiong et al.,
2024; Wang et al., 2021b; Chen et al., 2022; Liu et al., 2022), to ensure a fair result comparison, we
choose two training schedules, 1× (i.e., 12 training epochs) and 3× (i.e., 36 training epochs). For
the 1× training schedule, images are resized to the shorter side of 800 pixels, with the longer side not
exceeding 1, 333 pixels. In inference, the shorter side of images is consistently set to 800 pixels by
default. For the 3× training schedule, the multi-scale training strategy is also used as in (Chen et al.,
2022), and the shorter side is resized to 480 to 800 pixels, while the longer side remains capped at
1, 333 pixels.

This supplementary is for Section 4.3 of the main paper. Experiments on semantic segmentation
are conducted using the MMSegmentation framework (Contributors, 2020). The input images are
cropped to a fix size of 512 × 512 pixels as in (Xiong et al., 2024; Chen et al., 2022). The training
batch size is set to 16, and AdamW (Loshchilov & Hutter, 2017) is used as the optimizer with the
initial learning rate of 1× 10−5 and the weight decay of 0.05. Following (Li et al., 2022; Liu et al.,
2021), the layer-wise learning rate decay is set to 0.9 and the drop path rate is set to 0.4. We report
the experimental results on both single scale training and multi-scale training strategies.

S4 RESULT COMPARISONS UNDER DIFFERENT WEIGHTS

This supplementary is for Section 4.2 of the main paper. In this section, we present the experimental
results of META on object detection and instance segmentation with different pre-trained weights
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Settings ViT-B Attn FFN Conv Cascade APm ↑ FPS↑ Params.↓ FLOPs↓ MC↓
Baseline model ✓ ✗ ✗ ✗ ✗ 41.3 11.5 113.6M 719G NA

Shared normalization ✓ ✓ ✓ ✗ ✗ 43.4 11.3 114.4M 719G 7.5GB
Non-shared normalization ✓ ✓ ✓ ✗ ✗ 43.2 10.5 114.4M 737G 8.8GB

Table S2: Ablation study results on shared layer normalization.

Methods AP↑ FPS↑ Params. (M)↓ FLOPs (G)↓ Momory (GB)↓
WindowAtt (Liu et al., 2021) 41.2 11.6 145.0 982 18.5

PaleAttention (Wu et al., 2022) 42.8 14.4 155.2 1,029 16.7
Attention (Vaswani et al., 2017) 43.1 5.2 188.4 1,250 18.3
CSWindow (Dong et al., 2022) 43.1 13.7 144.6 990 12.9

SimplingAtte (He & Hofmann, 2024) 43.3 12.2 126.3 994 17.1
DeformableAtt (Xia et al., 2022) 43.7 13.5 166.0 988 15.2

MiniAdapters (Marouf et al., 2024) 41.9 15.0 131.8 995 12.2
VL-Adapter (Sung et al., 2022) 42.7 14.5 167.2 993 14.0

META-B(Ours) 44.3 17.4 115.3 720 8.1

Table S3: Result comparisons with different adapters.

and compare them with other state-of-the-art methods including SwinViT (Liu et al., 2021) and
ViT-Adapter (Chen et al., 2022) as in (Chen et al., 2022). Mask R-CNN (He et al., 2017) is used
as the baseline, and ViT-B (Li et al., 2022) is used as the backbone. The 3× training schedule with
MS training strategy is used. The obtained experimental results are given in Table S1. From this
table, we can observe that our method is applicable to different pre-trained weights (i.e., ImageNet-
1k (Deng et al., 2009), ImageNet-22k (Steiner et al., 2021), and Multi-Modal (Zhu et al., 2022)),
and achieves more accurate AP with fewer model parameters compared to ViT-Adapter (Chen et al.,
2022), across different pre-trained weights.

S5 MORE ABLATION STUDY RESULTS

This supplementary is for Section 4.4 of the main paper. In our main paper, we present the experi-
mental results of deploying adapters with Attn branch and FFN branch as components on ViT-B (Li
et al., 2022). It is noteworthy that the layer normalization operation has been shared between the
Attn branch and the FFN branch to reduce the memory access costs associated with the normaliza-
tion operations. In this section, we demonstrate a result comparison between the experimental results
of using shared layer normalization operation and those of not using it in the traditional setting (i.e.,
the non-shared normalization). The obtained experimental results are shown in Table S2. It can be
observed that sharing layer normalization does not significantly improve the performance in terms
of AP. However, compared to FPS, FLOPs, MC, our approach can achieve satisfactory performance
gains.

This supplementary is for Section 4.4 of the main paper. META is proposed as a simple and fast ViT
adapter by minimizing inefficient memory access operations. In this section, we compare META
with other efficient attention methods and advanced adapter methods (Marouf et al., 2024; Xia et al.,
2022; Sung et al., 2022). All methods are used with their default settings and the same settings as
the injector and extractor in ViT-adapter (Chen et al., 2022). Following the same setup as in (Chen
et al., 2022), the attention mechanism is utilized as the ViT-adapter layer. Therefore, during the
experimental comparisons, we replace the attention mechanism in the ViT-adapter with alternative
attention mechanisms to ensure a fair comparison. The obtained experimental results are given in
Table S3. We can observe that compared to these methods, META achieves new state-of-the-art
performance in both accuracy and efficiency. We ultimately achieve an AP of 44.3% with 115.3M
parameters, 720G FLOPs, 17.4 FPS, and 8.1 GB MC.
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Figure S1: Class activation map comparisons of instance segmentation before and after adding the
Conv branch. The sample images are from the training set of MS-COCO (Caesar et al., 2018).

S6 VISUALIZATIONS UNDER THE CONV BRANCH

This supplementary is for Section 3.2 of the main paper. In this section, to observe if the adapter has
learned local inductive biases through the Conv branch, we visualize the model’s class activation
maps. The obtained visualizations are given in Figure S1. From this figure, it can be observed that
after adding the Conv branch, the model focuses more on the specific object area (e.g.,“ the dog” and
“the person”) rather than the surrounding area that may extend beyond the object itself, as was the
case before adding the Conv branch. This indicates that our method effectively learns local inductive
biases after incorporating the Conv branch.

S7 QUALITATIVE VISUALIZATION RESULTS

This supplementary is for Section 4.2 and 4.3 of the main paper. In this section, we show qualitative
results on both instance segmentation and semantic segmentation. To demonstrate the superiority of
our method, we present visualization results of ablation studies on instance segmentation, as well as
comparisons with state-of-the-art methods on both instance segmentation and semantic segmenta-
tion. The obtained visualization results are shown in Figure S2. From the results, it can be observed
that compared to other methods, our method can achieve more accurate object masks that better fit
the actual boundaries of the objects themselves.

as well as the pseudo-code for when the stripe size is set to 2 in Section S8.

S8 PSEUDO-CODE FO STRIPE SIZE = 2

In this code snippet, stripe size is set to 2, and relevant features are directly obtained using the gather
function instead of reshaping them with img2windows. This operation can reduce unnecessary
reshaping operations and improves the efficiency of the code.
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Figure S2: Qualitative results. The sample images are from the val set of MS-COCO (Caesar
et al., 2018) for instance segmentation, and are from the val set of ADE20K (Zhou et al., 2017) for
semantic segmentation. “w/o Conv” denotes that the Conv branch is not used in the experiments.
“20K” and “MM” refers to the backbone network being pre-trained on ImageNet-22k (Steiner et al.,
2021) and Multi-Modal (Zhu et al., 2022), respectively.

function cross_shaped_window_attention(x, num_heads, window_size):
# x: given feature
# num_heads: head number
# window_size: window size

# Get dimensions
(batch_size, seq_length, d_model) = shape(x)

# Split into multiple heads
Q, K, V = split_heads(x, num_heads)

# Initialize attention output
attention_output = zeros(batch_size, seq_length, d_model)

# Initialize previous head’s output for cascaded attention
previous_Q = zeros(batch_size, seq_length, d_model)
previous_K = zeros(batch_size, seq_length, d_model)
previous_V = zeros(batch_size, seq_length, d_model)

# Calculate attention for each head
for head in range(num_heads):
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for position in range(seq_length):
# Get cross-shaped window indices
window_indices = get_cross_shaped_window_indices(position,

window_size)

# Gather Q, K, V for the current window
Q_window = gather(Q[head], window_indices)
K_window = gather(K[head], window_indices)
V_window = gather(V[head], window_indices)

# Incorporate previous head’s output for cascaded attention
if head > 0:

Q_window += previous_Q
K_window += previous_K
V_window += previous_V

# Calculate attention scores
attention_scores = softmax(Q_window * K_windowˆT / sqrt(d_k))

# Compute the attention output for the current position
attention_output[position] = attention_scores * V_window

# Update previous head’s output for the next head
previous_Q = Q_window
previous_K = K_window
previous_V = V_window

# Final linear transformation
attention_output = linear_transform(attention_output)
return attention_output

function feed_forward_network(x):
# Feed Forward Network
x = ReLU(linear(x))
x = linear(x)
return x

def get_cross_shaped_window_indices(position, window_size, seq_length):
# Initialize the list of indices
indices = []

# Add the current position
indices.append(position)

# Add vertical neighbors (up and down)
for offset in range(-window_size, window_size + 1):

if position + offset >= 0 and position + offset < seq_length:
indices.append(position + offset)

# Remove duplicates and sort the indices
indices = list(set(indices))
indices.sort()

return indices
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