
A Selecting ε for MNIST483

Figure 8: We selected ε = 10−2 for our MNIST coupling experiments as it results in transport maps
that are not too blurry or sharp.

B Other models for continuous OT484

While developing the hyper-network or Meta ICNN in sect. 3.2 for predicting couplings between485

continuous measures, we considered alternative modeling formulations briefly documented in this486

section. We finalized only the hyper-network model because it is conceptually the most similar to487

predicting the optimal dual variables in the continuous setting and results in rapid predictions.488

B.1 Optimization-based meta-learning (MAML-inspired)489

The model-agnostic meta-learning setup proposed in MAML [Finn et al., 2017] could also be ap-490

plied in the Meta OT setting to learn an adaptable initial parameterization. In the continuous setting,491

one initial version would take a parameterized dual potential model ψϕ(x) and seek to learn an ini-492

tial parameterization ϕ0 so that optimizing a loss such as the W2GN loss L from eq. (12) results in493

a minimal L(ϕK) after adapting the model for K steps. Formally, this would optimize:494

arg min
ϕ0

L(ϕK) where ϕt+1 = ϕt −∇ϕL(ϕt) (18)

Tancik et al. [2021] explores similar learned initializations for coordinate-based neural implicit rep-495

resentations for 2D images, CT scan reconstruction, and 3d shape and scene recovery from 2D496

observations.497

Challenges for Meta OT. The transport maps given by T = ∇ψ can significantly vary depending on498

the input measures α, β. We found it difficult to learn an initialization that can be rapidly adapted,499

and optimizing eq. (18) is more computationally expensive than eq. (17) as it requires unrolling500

through many evaluations of the transport loss L. And, we found that only learning to predict501

the optimal parameters with eq. (17), conditional on the input measures, and then fine-tuning with502

W2GN to be stable.503

Advantages for Meta OT. Exploring MAML-inspired methods could further incorporate the knowl-504

edge that the model’s prediction is going to be fine-tuned into the learning process. One promising505

15

direction we did not try could be to integrate some of the ideas from LEO [Rusu et al., 2018] and506

CAVIA [Zintgraf et al., 2019], which propose learn a latent space for the parameters where the507

initialization is also conditional on the input.508

B.2 Neural process509

The (conditional) neural process models considered in Garnelo et al. [2018b,a] can also be adapted510

for the Meta OT setting. In the continuous setting, this would result in a dual potential that is also511

conditioned on a representation of the input measures, e.g. ψϕ(x; z) where z := f emb
ϕ (α, β) is a512

learned embedding of the input measures that is learned with the parameters of ψ. This could be513

formulated as514

arg min
ϕ

E
(α,β)∼D

L(ϕ, f emb
ϕ (α, β)), (19)

where L modifies the model used in the loss eq. (12) to also be conditioned on the context extracted515

from the measures.516

Challenges for Meta OT. This raises the issue on best-formulating the model to be conditional on517

the context. One way could be to append z to the input point x in the domain, but if ψ is an input-518

convex neural network, then the model would only need to be convex with respect to x and not z.519

Advantages for Meta OT. A large advantage is that the representation z of the measures α, β would520

be significantly lower-dimensional than the parameters ϕ that our Meta OT models are predicting.521

C Additional experimental and implementation details522

We have attached the Jax source code necessary to run and reproduce all of the experiments in our523

paper and will open-source all of it. Here is a basic overview of the files:524

meta_ot Meta OT Python library code

conjugate.py Exact conjugate solver for the continuous setting

data.py

models.py

utils.py

config Hydra configuration for the experiments (containing hyper-parameters)

train_discrete.py Train Meta OT models for discrete OT

train_color_single.py Train a single ICNN with W2GN between 2 images (for debugging)

train_color_meta.py Train a Meta ICNN with W2GN

plot_mnist.py Visualize the MNIST couplings

plot_world_pair.py Visualize the spherical couplings

eval_color.py Evaluate the Meta ICNN in the continuous setting

eval_discrete.py Evaluate the Meta ICNN for the discrete tasks525

16

Connecting to the data is one difficulty in running the experiments. The easiest experiment to re-run526

is the MNIST one, which will automatically download the dataset:527

528
1 ./ train_discrete.py # Train the model , outputting to <exp_dir >529

2 ./ eval_discrete.py <exp_dir > # Evaluate the learned models530

3 ./ plot_mnist.py <exp_dir > # Produce further visualizations531532

We lastly summarize the hyper-parameters we used:533

C.1 Hyper-parameters534

Here we briefly summarize the hyper-parameters we used for training, which we did not extensively535

tune. In the discrete setting, we use the same hyper-parameters for the MNIST and spherical settings.536

Table 3: Discrete OT hyper-parameters.

Name Value

Batch size 128
Number of training iterations 50000

MLP Hidden Sizes [1024, 1024, 1024]
Adam learning rate 1e-3

537

Table 4: Continuous OT hyper-parameters.

Name Value

Meta batch size (for α, β) 8
Inner batch size (to estimate L) 1024

Cycle loss weight (γ) 3.
Adam learning rate 1e-3
`2 weight penalty 1e-6

Max grad norm (for clipping) 1.
Number of training iterations 200000

Meta ICNN Encoder ResNet18
Encoder output size (both measures) 256×2

Meta ICNN Decoder Hidden Sizes [512]

17

D Additional color transfer results538

α β T#α T−1
β

Figure 9: Meta ICNN (initial prediction)

18

α β T#α T−1
β

Figure 10: Meta ICNN + W2GN fine-tuning

19

α β T#α T−1
β

Figure 11: W2GN (final)

20

