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ABSTRACT

Although small language models (SLMs) are efficient and perform well across a
wide range of tasks, they are still prone to errors. A critical and highly sought-after
capability is their ability to self-correct. While prior research has often depended
on external tools or large proprietary models, this work explores self-correction
in SLMs through iterative fine-tuning using exclusively self-generated data. We
propose the Self-Taught Self-Correction (STaSC) algorithm and its generalized
variant, G-STaSC. Experimental results on a question-answering task highlight the
effectiveness of STaSC over alternative methods and G-STaSC variations, offering
significant insights into the mechanisms of self-correction. To facilitate further
research, we provide open access to our user-friendly codebase and lightweight
models.

1 INTRODUCTION

Recent advanced language models employ complex reasoning (Guo et al., 2025) and meta-
reasoning (Xiang et al., 2025), expanding their capabilities. However, even the most advanced
models are prone to errors, including hallucinations (Huang et al., 2025) and logical inconsisten-
cies (Ghosh et al., 2024), requiring symbolic or human verification. To address those problems,
self-correction — the ability to revise their own outputs — has been evolved (Madaan et al., 2023).

The existing approaches mostly use zero-shot prompting (Madaan et al., 2023; Shinn et al., 2024),
external evaluators for correction or feedback (Zhang et al., 2024) or apply large proprietary models
and focus specifically on mathematical tasks (Kumar et al., 2024). In this study, we focus on the
self-correction of small language models (SLMs) through iterative fine-tuning on self-generated
data. This approach is efficient as it avoids reliance on stronger external models or tools during
inference, revealing the model’s intrinsic self-correction abilities without external influence.

We introduce the Self-Taught Self-Correction (STaSC) algorithm, which adapts the core idea of
STaR (Zelikman et al., 2022) for self-correction. Additionally, we present its generalized version,
G-STaSC, which unifies and extends both STaSC and the Self-Correction (SC) algorithms (Welleck
et al., 2022). Unlike prior methods, G-STaSC offers flexible control over initial answer exploration,
correction filtering, and iterative fine-tuning, effectively encompassing both STaSC and SC as spe-
cial cases, and showing how different algorithmic choices affect self-correction performance.

Our results on the Natural Questions dataset (Kwiatkowski et al., 2019) show that SLMs can learn
to self-correct using self-synthesized data, while also improving their initial answer quality despite
being trained solely for corrections. We release easy-to-use and adaptable code for self-correction
and self-improvement algorithms at https://github.com/VityaVitalich/STASC/.

The contributions of the paper are as follows:

• We propose the Self-Taught Self-Correction (STaSC) algorithm and its generalized version, G-
STaSC, which unifies and extends existing self-correction methods.

• We conduct extensive experiments on a purely Natural Language Processing (NLP) task — Question
Answering — using an open-source SLM, demonstrating its ability to learn self-correction with self-
synthesized data.

• We release open-source, easily adaptable code for self-correction, along with efficient SLMs with
fewer than 2B parameters, making self-correction practical and accessible.
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2 GENERALIZED SELF-TAUGHT SELF-CORRECTION
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Figure 1: Illustration of the self-improvement method STaR (left) Zelikman et al. (2022), self-
correction method SC (center) Welleck et al. (2022), and our method, G-STaSC (right). STaCS
offers flexible control over initial answer exploration, correction filtering, and iterative fine-tuning.
It is inspired by STaR and effectively encompasses SC as a special case. SC and G-STaSC allow
several initial answers and corrections. The dotted line in the G-STaSC denotes two possible setups:
fine-tuning the model and generating from it at the next iteration (Evolving Fine-Tuning) and keep-
ing the Generator frozen and fine-tuning the Corrector model only (Fixed Fine-Tuning).

In this Section, we introduce the Self-Taught Self-Correction (STaSC) algorithm, an adaptation of STaR (Zelik-
man et al., 2022) for self-correction through iterative fine-tuning on self-synthesized data. We also present its
generalized version, G-STaSC, which encompasses STaSC, the Self-Correction (SC) algorithm (Welleck et al.,
2022), and their possible multiple variations.

Formally, Algorithm 1 begins with an initial language model state, M0, and an initial dataset, D0, consisting
of input-output pairs (x, y). Additionally, we define a number of improvement iterations T , the number of
sampled initial generations Ninit, the number of sampled corrections Ncorr, and a reward function r, which
evaluates the quality of model-generated outputs.

The algorithm follows the structure of STaR for self-correction when using Ninit = 1, Ncorr = 1, sampling
initial answers with Mt−1, forming strictly improving pairs, and training from the initial model M0. It also
adopts the form of SC when configured with Ninit = 25, Ncorr = 3, sampling initial answers with M0, forming
strictly improving pairs, and training from the latest model Mt−1.

Step 1: Sample Initial Answers. In the first step, we sample Ninit initial answers ŷ1 for each input x in the
dataset D0. A key design choice at this stage is whether to sample with Fixed Initialization M0, as done in the
SC paper, or with Evolving Initialization from the previous iteration Mt−1, as in STaSC. The former approach
ensures robustness to variations in the self-improvement process, while the latter allows for greater exploration,
potentially leading to more diverse refinements.

Step 2: Sample Corrections. At the second step, we sample Ncorr corrections ŷ2 for each output ŷ1 in dataset
D0 using the model from the last iteration Mt−1.

Step 3: Filter Corrections. At the third step, we filter the corrections using the reward function r(ŷ2) to form
the fine-tuning dataset Dt. The design choice here is whether to use Improving Filter, selecting corrections that
are strictly improving reward r(ŷ2) > r(ŷ1), as done in STaSC and SC, or Non-Decreasing Filter, selecting
those may also remain unchanged if the initial answer was already correct, satisfying (r(ŷ2) = r(ŷ1)) ∩
(r(ŷ1) ≥ τ), as proposed in SCoRE (Kumar et al., 2024). The former approach enforces strict improvement
for every input, while the latter allows the model to retain an answer if it was already correct.

Step 4: Fine-Tuning. At the fourth step, we fine-tune the model on the dataset Dt formed in Step 3 to obtain
the improved model Mt. The design choice here is whether to use Fixed Fine-Tuning with the initial model
M0, as done in STaSC, or Evloving Fine-Tuning with the model from the previous iteration Mt−1, as in Self-
Correction.

3 EXPERIMENTAL SETUP

We evaluate our algorithm on the QA task using the Natural Questions dataset (Kwiatkowski et al., 2019),
which consists of factual simple questions. To ensure computational efficiency and consistency with previous
studies (Moskvoretskii et al., 2025; Trivedi et al., 2022; Jeong et al., 2024), we use a representative subset.
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Algorithm 1 Generalized Self-Taught Self-Correction (G-STaSC)
Require: Initial model M0, dataset D0, number of iterations T , initial samples Ninit, correction samples Ncorr, reward function r
1: for t = 1 to T do
2: Step 1: Sample Initial Answers
3: Ŷ 1

i = {ŷ1
ij}

Ninit
j=1 ∼ M(xi), ∀xi ∈ D0

4: Option 1: M = Mt−1 (Evolving Initialization)
5: Option 2: M = M0 (Fixed Initialization)
6: Step 2: Sample Corrections
7: Ŷ 2

i = {ŷ2
ijk}

Ncorr
k=1 ∼ Mt−1(xi, ŷ

1
ij), ∀ŷ1

ij ∈ Ŷ 1
i

8: Step 3: Filter Corrections
9: D+

t = {(xi, ŷ
1
ij , ŷ

2
ijk) | r(ŷ2

ijk) > r(ŷ1
ij)}

10: D=
t = {(xi, ŷ

1
ij , ŷ

2
ijk) | r(ŷ2

ijk) = r(ŷ1
ij) ∧ r(ŷ1

ij) ≥ τ}
11: Option 1: Dt = D+

t (Improving Filter)
12: Option 2: Dt = D+

t ∪ D=
t (Non-Decreasing Filter)

13: Step 4: Fine-Tuning
14: Mt = train(M, {ŷ2

ijk | (xi, ŷ
1
ij , ŷ

2
ijk) ∈ Dt})

15: Option 1: M = M0 (Fixed Fine-Tuning)
16: Option 2: M = Mt−1 (Evolvong Fine-Tuning)
17: end for

Table 1: Maximum reward r over iterations
for initial answer r(Ŷ 1) and for correction
r(Ŷ 2) for different number of samples and
initial generations. Bold corresponds to the
best performance.

Ninit Ncorr max{r(Ŷ 1)} max{r(Ŷ 2)}

1

1 - -
3 0.248± 0.011 0.208± 0.011
5 0.230± 0.011 0.228± 0.021

10 0.240± 0.010 0.236± 0.022

3

1 0.236± 0.007 0.232± 0.018
3 0.264± 0.015 0.238± 0.018
5 0.273± 0.017 0.236± 0.019

10 0.283± 0.018 0.242± 0.023

5

1 0.273± 0.012 0.250± 0.024
3 0.295± 0.019 0.244± 0.023
5 0.300± 0.020 0.248± 0.029

10 0.308± 0.023 0.244± 0.023

10
1 0.326± 0.030 0.246± 0.023
3 0.324± 0.029 0.236± 0.023
5 0.328± 0.062 0.154± 0.029
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Figure 2: Initial Accuracy and Correction Accuracy
for STaSC and SC algorithms. SC Initial Accuracy is
shown as dashed line due to fixed initialization. All
runs start from different random states.

Following prior work, we adopt In-Accuracy as the primary evaluation metric, which measures whether the
generated answer contains the reference answer. We conduct experiments using Qwen-2.5-1.5B (Qwen et al.,
2025), employing default generation parameters. The default setup for self-correction is 2-shot. More details
are provided in Appendix B.

4 RESULTS & DISCUSSION

In this section, we provide the results and discuss them, inspecting the STaSC algorithm design.

4.1 IMPACT OF NINIT AND NCORR

Firstly, we examine how the selection of parameters Ninit and Ncorr influences algorithm performance. To
encourage exploration, we sample initial answers from the model’s previous iteration and apply only improving
corrections, following SC and STaSC. Training is conducted from the base model to ensure stability. From the
Table 1, we can see that a greedy approach for Qwen-2.5-1.5B fails to ensure convergence, as no improvement
corrections are observed in the first iteration. In contrast, increased exploration yields significantly better
results, likely due to the weaker alignment of the initial model. Overall, setting Ninit = 5 and Ncorr = 5 is
the most stable and decently performing configuration. Therefore, this configuration is adopted for subsequent
experiments.

4.2 IMPACT OF G-STASC VARIATIONS

Table 2 in the Appendix B presents the performance of G-STaSC under different algorithmic design choices,
and Figures 3 and 4 illustrate the correction performance of STaSC and the SC algorithm with various config-
urations.
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Figure 3: STaSC versions corrections perfor-
mance.
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Figure 4: SC versions corrections perfor-
mance.

Evolving Initialization significantly boosts performance, enhancing SC results while causing a notable drop
for STaSC with Fixed Initialization. This is likely due to the model’s limited ability to improve initial answers
when starting from a fixed state. Non-Decreasing Filter slightly degrades performance across both STaSC and
SC, affecting both initial answers and corrections. This suggests that allowing non-improving corrections may
introduce confusion during fine-tuning. Evolving Fine-Tuning in STaSC shows an interesting trend—initial
performance gains followed by slight degradation over iterations, with recovery observed in later stages. This
fluctuation suggests that evolving fine-tuning requires more careful tuning. For SC, evolving fine-tuning con-
sistently improves performance, likely because it serves as the primary source of exploration when using fixed
initialization. Overall, STaSC achieves the best performance when combining Evolving Initialization, Improv-
ing Filter, and Fixed Fine-Tuning.

4.3 STASC VS SC

Figure 2 compares STaSC and SC in terms of both initial answers and corrections over training iterations.
Starting from roughly the same baseline, STaSC consistently outperforms SC, achieving higher quality in both
initial answers and corrections, with corrections often matching or slightly surpassing the quality of initial
answers. SC demonstrates greater stability with fewer fluctuations, and its corrections gradually improve to
match the quality of initial answers in the later iterations.

5 RELATED WORKS

Self-correction is a growing research area, defined as the ability of language models (LMs) to refine their
outputs during inference, sometimes using external tools or knowledge (Kamoi et al., 2024). Most existing work
focuses on external feedback from knowledge bases or verification tools (Jiang et al., 2023; Gou et al., 2024;
Pan et al., 2023; Xu et al., 2023), which, while effective, are often unavailable, costly, and do not challenge
LMs to develop intrinsic reasoning.

An alternative is intrinsic self-correction, where models refine their outputs without external critics. This can
be done in zero-shot settings (Madaan et al., 2023) or via external models trained on synthetic errors (Paul
et al., 2024) or self-generated data (Welleck et al., 2022). However, these approaches still rely on external
verification, limiting true self-correction.

The only work addressing genuine self-correction is the SCoRE framework (Kumar et al., 2024), which intro-
duces multi-turn reinforcement learning within the same model. Yet, SCoRE lacks formal theoretical ground-
ing, overlooks baseline algorithm adaptations, and relies on large proprietary models without open-source code,
limiting its reproducibility and impact.

6 CONCLUSION

In this study, we presented the Self-Taught Self-Correction (STaSC) algorithm, inspired by STaR (Zelikman
et al., 2022), along with its generalized version, G-STaSC, which unifies STaSC and the previously developed
Self-Correction (SC) algorithm (Welleck et al., 2022). Our experiments on a QA task with SLM demonstrated
the superiority of STaSC over SC and its variations, while also providing new insights into self-correction. To
support future research, we have open-sourced our code and lightweight models.
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A LIMITATIONS

• The study is limited to evaluating only one Small Language Model (SLM), which does not prove the
generalizability of the findings.

• The chosen SLM may lack the capacity to fully capture complex patterns, potentially limiting the
effectiveness of the self-correction process.

• Each experiment was carried out with a single run, which can introduce variability and reduce the
robustness of the results.

• The evaluation is confined to a single Question Answering (QA) task, leaving the performance on
other tasks or domains unexplored.

• Suboptimal hyperparameter tuning during training may have hindered the model’s potential perfor-
mance and learning efficiency.

• The study does not include a detailed analysis of the types or patterns of corrections made by the
model, limiting insights into the self-correction mechanism.

• The reward function used for training may not adequately capture the desired behavior, potentially
affecting the quality of the self-correction process.

B TECHNICAL DETAILS

The models are fine-tuned with a learning rate of 1 × 10−5, for 1 epoch with a batch size of 4. We apply a
weight decay of 0.1 and use the Adam optimizer with default betas, along with a cosine annealing scheduler.
Training is performed using Fully Sharded Data Parallel on two A100 GPUs, with an estimated total compute
of 80 GPU hours.

Initial answer sampling prompt

You are a helpful reasoning assistant in general domain question answering. Please reason
through the question step by step very shortly before giving a final answer.
Generate a short chain-of-thought rationale very shortly, and then provide the final answer.
Step-by-step reasoning:
Final Answer:

Question: {question text}

Reason step by step very shortly, then conclude with the answer.

Correction sampling prompt

You are a helpful reasoning assistant in general domain question answering.Your task is to
correct the initial response if it is incorrect.
Below is the question and the initial answer. Generate a correction to the initial answer if
it is incorrect. Disregard the information you already have, look for other options. Do not
use the information that does not match your criteria.
Step-by-step reasoning:
Final Answer:
Question: Which Portuguese soccer player has the most goals?
Step-by-step reasoning: Christiano Ronaldo has scored 900 goals in a career spanning 22
years. I cannot think of anyone else scoring more than him.
Final Answer: Christiano Ronaldo
Step-by-step reasoning: Yes, Christiano Ronaldo is the correct answer. Other details are
unimportant.
Final Answer: Christiano Ronaldo
Question: Which actress played in both movies: one about pregnancy and the other about
Tracey?
Step-by-step reasoning: 1. Identify movies about pregnancy and about Tracey. 2. Movies
about pregnancy include ’Juno’ and ’Knocked Up’. 3. Movie about Tracey is likely ’Tracy
Chapman’ or a documentary, but ’Tracy’ could be a reference to ’Tracy Flick’ in the movie
’Election’. 4. Considering well-known movies with these themes, actress Reese Wither-
spoon comes to mind as a possible match.
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Final Answer: Reese Witherspoon
Step-by-step reasoning: Let’s break down the answer. ’Juno’ is indeed a movie about
pregnancy, but it starred Ellen Page (now Elliot Page), not Reese Witherspoon. Reese
Witherspoon did not star in ’Juno.’ Therefore, the association between Reese Witherspoon
and ’Juno’ is incorrect. Movies About Tracey is likely ’Tracey Fragments (2007)’, a movie
in which Ellen Page also starred as the lead character, Tracey Berkowitz. Ellen Page (Elliot
Page) connects both movies.
Final answer: Ellen Page (now Elliot Page)
Question: {question text}

Initial Answer: {initial answer}
Write a correction if the initial answer is incorrect.

STaSC

You are a helpful reasoning assistant in general
domain question answering. Please reason

through the question step by step very shortly
before giving a final answer. Generate a short

chain-of-thought rationale very shortly, and then
provide the final answer in the format: "Final

answer: your answer"

Step-by-step reasoning: The question refers to two different movies, one about pregnancy and
another about Tracey. 

The actress who played in both needs to be identified. 

Recalling movies about pregnancy, "Juno" comes to mind, starring Ellen Page (now Elliot
Page). 
For a movie about Tracey, "Boys Don't Cry" features Hilary Swank playing the role of
Tracey. 

However, these are two different actresses, so we need to find a common actress. After fact-
checking, the actress who played in both movies is likely to be Reese Witherspoon, who starred in
"Legally Blonde" (where her character is named Elle, not Tracey) and "Sweet Home Alabama"
(which involves pregnancy). 
Final Answer: Reese Witherspoon

input

output

Please review the given answer for accuracy. If it is incorrect, identify the incorrect information
and provide the correct details. Ask and answer subquestions, and split the question into parts.
Disregard the information you already have.

system
prompt

system
prompt

input

Step-by-step reasoning: The initial analysis contains several inaccuracies regarding the
identification of an actress who starred in both a movie about pregnancy and another featuring a
character named Tracey. Let's address these inaccuracies and provide the correct information.  

Inaccuracies in the Initial Analysis:  
Elliot Page in "Juno": It's correctly noted that Elliot Page (formerly Ellen Page) starred in
"Juno," a film centered around teenage pregnancy. However, the analysis doesn't
connect Elliot Page to a film involving a character named Tracey. 
Hilary Swank in "Boys Don't Cry": Hilary Swank portrayed Brandon Teena in "Boys
Don't Cry," not a character named Tracey. This film doesn't align with the criteria of
featuring a character named Tracey. 
Reese Witherspoon in "Legally Blonde" and "Sweet Home Alabama": Reese
Witherspoon's characters in these films are named Elle Woods and Melanie Smooter,
respectively. Neither film prominently features a character named Tracey, nor are they
primarily about pregnancy. 

Correct Information:  
"Juno" (2007): Elliot Page plays the titular character, Juno MacGuff, a teenager dealing
with an unplanned pregnancy. 
"The Tracey Fragments" (2007): Elliot Page portrays Tracey Berkowitz, a 15-year-old
navigating personal challenges.  

Final answer: Elliot Page

🔥

Answer: Ellen (Elliot) Page

correct
answer

Question: Who played in the movies about
pregnancy and Tracey? Reason step by step
very shortly, then conclude with the answer.
Step-by-step reasoning:

Figure 5: Example of the STaSC pipeline.
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Table 2: Maximum reward r over iterations for initial answer r(Ŷ 1) and for correction r(Ŷ 2) for
different settings of STaSC Algorithm. Bold values correspond to the best performance, underlined
represent second best.

Step 1 Step 3 Step 4
max{r(Ŷ 1)} max{r(Ŷ 2)}Model Filter Model

M0

Improving M0 0.212 0.208± 0.014
Mn−1 0.212 0.212± 0.016

Non-Decreasing M0 0.212 0.198± 0.012
Mn−1 0.212 0.206± 0.014

Mn−1

Improving M0 0.244± 0.011 0.232± 0.023
Mn−1 0.236± 0.009 0.230± 0.024

Non-Decreasing M0 0.240± 0.009 0.222± 0.023
Mn−1 0.234± 0.013 0.228± 0.022
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