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Supplementary Materials: Deep Instruction Tuning for Segment
Anything Model

1 QUANTITATIVE ANALYSIS
1.1 Training Memory Consumption

We compare the memory overhead of L-DIT and existing methods
in Tab. 1. From this table, we can see that the additional cost of
backbone frozen is close to linear probe tuning and smaller than the
full finetuning. In addition, the GPU overhead of full finetuning is
even much smaller than LAVT [8] in referring image segmentation,
since L-DIT does not require another deep fusion model. Compared
with LAVT, our L-DIT is simpler and more intuitive, which only
requires linear projections to insert text words into each SAM’s
layer. These results further validate the efficiency of L-DIT.

Table 1: The memory consumption of L-DIT and existing
methods. Here, v/ means that the encoder is frozen, while
Xis updated.

Model Visual Text Batch Size GPU memory
L-DIT v v 32 11.9G
L-DIT v X 32 12.4G
L-DIT X X 32 17.1G
Lavrisy X X 8 24G
ReLA[z] X X 32 12G

1.2 The impact of shared parameters for the
injection of text features into the visual

backbone

In the visual backbone, the shallow and deep layers typically extract
low- and high-level features, respectively. To validate this intuition,
we experiment on the progressive cascade structure in Tab. 2. From
this table, we see that there is no obvious difference between layer-
wise and cascade structures. To explain, DIT aims to project the text
words onto the visual semantic space of SAM, and simple linear
projections may be enough. Similar findings can be also found on
recent MLLMs [3], where the bridge part is often a stack of linear
layers.

Table 2: The impact of shared parameters for the injection of
text features into the visual backbone. Cascade means linear
layers replace with progressive cascade structure.

val ‘ testA ‘ testB
Structure
mloU  oloU ‘ mloU  oloU ‘ mloU  oloU
Layer-wise DIT  69.97 67.50 | 72.44 69.55 | 68.12 64.77
Cascade DIT 69.94 66.76 | 72.20 69.72 | 66.93 63.38

Table 3: Comparison of methods using additional data.

val ‘ testA ‘ testB

Setting Data Backbone

oloU mIoU‘oIoU mIoU‘oIoU mloU

Default-SAM  3.88M  ViT-B  67.17 69.85(69.99 72.33|65.62 68.08

LISA-7B [1] 18.16M ViT-H 7490 - |79.10 - 7230 -
PolyFormer [4] 57M  Swin-L 7596 - [78.29 - |73.25 -
Layer-wise DIT 3.88M  ViT-B  76.20 77.15|77.85 79.03(73.53 75.01

1.3 Speed comparison and using more training
data

When training from scratch, L-DIT with ViT-B performs slightly
worse than methods using Swin-B. However, it significantly out-
paces these state-of-the-art (SOTA) methods in terms of speed,
achieving 123 ms compared to 320 ms for ReLA, 350 ms for CARIS,
and 530 ms for PolyFormer. Furthermore, as the amount of train-
ing data increases, L-DIT demonstrates its potential by surpassing
SOTA methods like PolyFormer, as illustrated in Tab. 3. This high-
lights L-DIT’s promising capabilities in text-guided segmentation.

Table 4: Comparison on the multi-target GRES dataset.

1 testA testB
Method Backbone va ‘ €s ‘ es

oloU mloU ‘ oloU mloU ‘ oloU mloU

CRIS [6] CLIP-R101 55.34 56.27 | 63.82 63.42 | 51.04 51.79
LAVT [8] Swin-B  57.64 58.40 | 65.32 65.90 | 55.04 55.83
ReLA[2] Swin-B 6242 63.60 |69.26 70.03 | 59.88 61.02

LDIT  ViTB 6376 65.87 | 67.19 6825 | 6185 64.52

1.4 Comparison with the state-of-the-art
methods on GRES.

In Tab.4, we present a comparison of our L-DIT against the state-of-
the-art (SOTA) methods for multi-target referring image segmen-
tation on the GRES[2] dataset, utilizing the oloU metric. Notably,
L-DIT demonstrates outstanding performance on the GRES dataset,
showcasing capabilities that exceed those of existing SOTA meth-
ods [2, 8].

1.5 The effect of freezing encoders

In Tab. 5, we also ablate DITs under the parameter efficient set-
ting [5, 7]. It can be seen that when freezing the SAM’s image
backbone and the directly plugged-in BERT, L-DIT can still achieve
67.16% oloU on RefCOCO wval, which is even much better than fully
tuning the default SAM, as shown in Tab. 5. Unfreezing both en-
coders can greatly improve performance. But compared with the
pre-trained BERT, the significance of updating image encoder is
much more obvious, e.g., +4.88% oloU on val. This result suggests
that in DIT, the image encoder is capable of visual feature learning
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Table 5: The impact of freezing the visual and text encoders. Here, v/means that the encoder is frozen, while Xis updated.

. val testA testB
Visual Text Method

P@0.5 P@0.7 P@0.9 oloU mloU |P@0.5 P@0.7 P@0.9 oloU mloU |P@0.5 P@0.7 P@0.9 oloU mloU
\/ t/ End-to-end 71.83 57.95 18.83 60.76 62.87 | 75.41 62.49 19.05 63.61 65.67 | 68.15 5243 1954 57.97 60.23
\/ / Layer-wise 80.93 69.26 25.00 67.16 69.56 | 81.64 71.33 23.00 68.24 70.60 | 73.98 61.01 25.29 62.70 65.59
v X End-to-end 76.51 66.00 23.19 6296 66.87 | 78.89 6841 2131 63.74 67.83 | 7290 60.01 2539 60.43 64.63
v X Layer-wise 81.22  70.21 2431 67.50 69.97 | 83.89 7466 2436 69.55 72.44 | 77.26 65.44 28.26 64.77 68.12
X )( End-to-end 81.78 73.07 28.27 68.07 71.46 | 85.28 77.17 27.56 70.81 73.90 | 78.02 67.60 30.20 65.58 69.36
X X Layer-wise 85.68 76.61 29.89 71.98 74.73 | 88.06 79.17 2594 74.51 75.62 | 81.28 69.11 30.95 68.77 71.21

Table 6: The impact of different text encoders for L-DIT.

val ‘ testA ‘ testB
Text encoder
oloU mloU ‘ oloU mloU ‘ oloU mloU
BERT 67.50 69.97 | 69.55 72.44 | 64.77 68.12
CLIP 67.19 69.82 | 68.99 71.60 | 64.88 67.67

and cross-modal interactions, well confirming our intuition about
DIT.

1.6 The impact of different text encoder on
Layer-wise DIT

Tab. 6 examines the impact of different language encoders. It can
be seen that BERT outperforms CLIP in most cases, though the
gap between the two encoders is not significant. For example, CLIP
performs slightly better than BERT in terms of oloU on testB. We
believe this is due to the typically concise descriptions in the dataset,
resulting in a relatively limited impact of the text encoder on DIT-
SAM.

2 QUALITATIVE ANALYSIS

The Deep Instruction Tuning (DIT) approach can be effectively
adapted to tackle multi-objective task in GRES. To illustrate the
effectiveness of this extension, we present a visualization of the re-
sults achieved in multi-object segmentation, as shown in Fig. 1. This
figure highlights the performance improvements and the ability of
DIT to handle multiple objectives simultaneously, demonstrating
its versatility and efficiency in complex segmentation scenarios.

To gain deep insights into DIT, we visualize the attention maps of
our DIT tuning methods and the default SAM in Fig. 2. We observe
some interesting findings about the self-attention of SAM backbone
after inserting text tokens.

For instance, under the frozen backbone setting, the inserted text
tokens mainly interact with the visual ones on the higher layers of
SAM’s encoder, e.g., the 8-th or 11-th layers. This suggests that the
text mainly interacts with the high-level visual semantics of SAM
when only tuning the DIT projections.

In contrast, under the full tuning setting, the interactions mainly
happen at the shallow layers, e.g., 2-nd and 4-th layers. It might
indicate that the text information is early embedded into the visual
tokens and then for the deep multi-modal fusion in the image
encoder of SAM.

Moreover, it can be observed from the visual attention map that
for each layer of the visual backbone, the attentive area of the
text instruction is different. For default SAM, it has no obvious
interested area, which mainly divides the image into foreground
and background. However, for E-DIT and L-DIT, it can be clearly
seen that each layer has its attention tendency for different text
instructions. The initial layers are interested in entity nouns in text
instructions. The 4-th layer is more sensitive to comparative words.
At 11-th layer, it mainly focuses on digital information. The 12-th
layer is more inclined to color information.

Prediction Image

N

Expr.2: back of gold tapestry chair at table
closest to us and left chair- back facing us

Expr.1: a bowl of carrots on the bottom left side
and the plant with purple vase on the top middle

M B ;
Expr.3 a bowl of steamed egg in the left top
corner of the plate and a person sitting on the
right of the plate with his legs acrossed

Expr.4: the guy wearing white uniform with
one knee on the ground in the left and the bat
held by the guy in the middle

Figure 1: Visualized multi-target segmentations by DIT-SAM.
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Expr.: number 16 player
Image Default SAM

Ground Truth E-DIT

II

Expr.: the remote with the purple and red buttons
Default SAM

Ground Truth E-DIT

Expr.: couch that everyone is 31tt1ng on
Image Default SAM

Expr.: tallest zebra with less body
Default SAM

R

Expr.: the black handle of a plzza kmfe stlckmg out from under a shce of pizza
Image Default SAM

1st layer 2nd layer 3rd layer 4th layer 5th layer 6th layer 7th layer 8th layer 9th layer 10th layer 11th layer 12th layer

Figure 2: The attention maps of the default SAM and our end-to-end and layer-wise DITs, i.e., E-DIT and L-DIT. Both methods
can follow text instructions better than the default SAM and adjust the area of interest according to text instructions.

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348



	1 Quantitative Analysis
	1.1 Training Memory Consumption
	1.2 The impact of shared parameters for the injection of text features into the visual backbone
	1.3 Speed comparison and using more training data
	1.4 Comparison with the state-of-the-art methods on GRES.
	1.5 The effect of freezing encoders
	1.6 The impact of different text encoder on Layer-wise DIT

	2 Qualitative Analysis
	References

