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ABSTRACT

While standard bandit algorithms sometimes incur high regret, their performance
can be greatly improved by “warm starting” with historical data. Unfortunately,
how best to incorporate historical data is unclear: naively initializing reward esti-
mates using all historical samples can suffer from spurious data and imbalanced
data coverage, leading to computational and storage issues—particularly in con-
tinuous action spaces. We address these two challenges by proposing ARTIFICIAL
REPLAY, a meta-algorithm for incorporating historical data into any arbitrary
base bandit algorithm. ARTIFICIAL REPLAY uses only a subset of the histori-
cal data as needed to reduce computation and storage. We provide guarantees that
our method achieves equal regret as a full warm-start approach while potentially
using only a fraction of the historical data for a broad class of base algorithms that
satisfy independence of irrelevant data (IIData), a novel property that we intro-
duce. We complement these theoretical results with a case study of K-armed and
continuous combinatorial bandit algorithms, including on a green security domain
using real poaching data, to show the practical benefits of ARTIFICIAL REPLAY in
achieving optimal regret alongside low computational and storage costs. Across
these experiments, we show that ARTIFICIAL REPLAY performs well for all set-
tings that we consider, even for base algorithms that do not satisfy IIData.

1 INTRODUCTION

Multi-armed bandits and their variants are robust models for many real-world problems. Resulting
algorithms have been applied to wireless networks (Zuo & Joe-Wong, 2021), COVID testing regu-
lations (Bastani et al., 2021), and conservation efforts to protect wildlife from poaching (Xu et al.,
2021). Typical bandit algorithms assume no prior knowledge of the expected rewards of each ac-
tion, simply taking actions online to address the exploration–exploitation trade-off. However, many
real-world applications offer access to historical data. For example, in the wildlife conservation
setting, we may have access to years of historical patrol records that should be incorporated to learn
poaching risk before deploying any bandit algorithm.

There is no consensus on how to optimally incorporate this historical data into online learning al-
gorithms. The naive approach uses the full historical dataset to initialize reward estimates (Shiv-
aswamy & Joachims, 2012), possibly incurring unnecessary and onerous computation and storage
costs. These costs are particularly salient in continuous action settings with adaptive discretization,
where the number of discretized regions is a direct function of the number of historical samples. If
excessive data was collected on poor-performing actions, this spurious data with imbalanced data
coverage would lead us to unnecessarily process and store an extremely large number of fine dis-
cretizations in low-performing areas of the action space, even when a significantly coarser discretiza-
tion would be sufficient to inform us that region is not worth exploring. These two key challenges
highlight that the value of information of the historical dataset may not be a direct function of its
size. Real-world decision makers echo this sentiment: Martin et al. (2017) note that for conservation
decisions, more information does not always translate into better actions; time is the resource which
matters most.

A natural question one can ask is: Is there an efficient way (in terms of space, computational, and
sample complexity) to use historical data to achieve regret-optimal performance? For example,
many real-world applications of bandit algorithms, such as online recommender systems, may con-
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tain historical datasets with millions of data points. Processing these millions of points would require
an exceptional amount of upfront computation and storage cost, especially if many of those histori-
cal points are no longer relevant; many samples may encode out-of-date data such as old movies or
discontinued products.

To this end, we propose ARTIFICIAL REPLAY, a meta-algorithm that modifies any base bandit
algorithm to harness historical data. ARTIFICIAL REPLAY reduces computation and storage costs
by only using historical data on an as needed basis. The key intuition is if we could choose which
samples to include in the historical dataset, a natural approach would be to use a regret-optimal
bandit algorithm to guide the sampling. ARTIFICIAL REPLAY builds on this intuition by using
historical data as a replay buffer to artificially simulate online actions. Every time the base algorithm
picks an action, we first check the historical data for any unused samples from the chosen action.
If an unused sample exists, update the reward estimates and continue without advancing to the next
timestep. Otherwise, sample from the environment, update the estimates using the observion, and
continue to the next timestep. While this idea is easiest to understand in the context of the standard
K-armed bandit problem, we discuss later how this framework naturally extends to other structure
and information models, including continuous action spaces with semi-bandit feedback.

Although ARTIFICIAL REPLAY seems to be a natural heuristic to minimize use of historical data, it
is not clear how to analyze its regret—specifically how much it loses compared to “full warm-start”
(i.e., where the base algorithm is initialized with the full dataset). Surprisingly, however, we prove
that under a widely applicable condition, the regret of ARTIFICIAL REPLAY (as a random variable) is
distributionally identical to that of a full warm-start approach, while also guaranteeing significantly
better time and storage complexity. Specifically, we show a sample-path coupling1 between our AR-
TIFICIAL REPLAY approach and the full warm start approach with the same base algorithm, as long
as the base algorithm satisfies a novel independence of irrelevant data (IIData) assumption. While
our goal is not to show regret improvements, this result highlights how ARTIFICIAL REPLAY is a
simple approach for incorporating historical data with identical regret to full warm start (approach
done in practice) with significantly smaller computational overhead.

Finally, we show the practical benefits of our method by instantiating ARTIFICIAL REPLAY for
several broad classes of bandits and evaluating on real-world data. To highlight the breadth of
algorithms that satisfy the IIData property, we provide examples of regret-optimal IIData polices
for K-armed and continuous combinatorial bandits. We use these examples to prove that ARTIFI-
CIAL REPLAY can lead to arbitrary better storage and computational complexity requirements. We
close with a case study of combinatorial bandit algorithms for continuous resource allocation in the
context of green security domains, using a novel adaptive discretization technique. Across the ex-
periments, we observe concrete gains in storage and runtime using real-world poaching data from
the ARTIFICIAL REPLAY framework over a range of base algorithms, including algorithms that do
not satisfy IIData such as Thompson sampling and Information Directed Sampling (IDS).

1.1 RELATED WORK

Multi-armed bandit problems have a long history in the online learning literature. We highlight the
most closely related works below; for more extensive references please see our detailed discussion
in Appendix B and Bubeck et al. (2012); Slivkins (2019); Lattimore & Szepesvári (2020).

Multi-Armed Bandit Algorithms. The design and analysis of bandit algorithms have been con-
sidered under a wide range of models. These algorithms were first studied in the K-armed bandit
model in Lai & Robbins (1985), where the decision maker has access to a finite set of K possible
actions at each timestep. However, numerous follow-up works have considered similar approaches
when designing algorithms in continuous action spaces (Kleinberg et al., 2019) and with combina-
torial constraints (Chen et al., 2013; Xu et al., 2021; Zuo & Joe-Wong, 2021). Our work provides
a framework to modify existing algorithms to harness historical data. Moreover, we also propose
a novel algorithm to incorporate adaptive discretization for combinatorial multi-armed bandits for
continuous resource allocation, extending the discrete model from Zuo & Joe-Wong (2021).

1That is, we construct the regret process for both algorithms simultaneously on a joint probability space
such that each individual process has the correct marginal, but both processes are equal over each sample path.
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Incorporating Historical Data. Several papers have started to investigate how to incorporate
historical data into bandit algorithms, starting with Shivaswamy & Joachims (2012) who consider
a K-armed bandit model where each arm has a dataset of historical pulls. The authors develop
a “warm start” UCB algorithm to initialize the confidence bound of each arm based on the full
historical data—prior to learning. Bouneffouf et al. (2019) extended similar techniques to models
with pre-clustered arms. These techniques were later extended to Bayesian and frequentist linear
contextual bandits, where the linear feature vector is initialized based on standard regression over the
historical data (Oetomo et al., 2021; Wang et al., 2017). Our work provides a contrasting approach
to harnessing historical data in algorithm design: our meta-algorithm can be applied to any standard
bandit framework and uses the historical data only as needed, leading to improved computation and
storage gains.

2 PRELIMINARIES

We now define the general bandit model and specify the finite-armed and online combinatorial
allocation settings that we study in our experiments. See Appendix C for details.

2.1 GENERAL STOCHASTIC BANDIT MODEL

We consider a stochastic bandit problem with a fixed action set A. Let ℜ : A → ∆([0, 1]) be a
collection of independent and unknown reward distributions over A. Our goal is to pick an action
a ∈ A to maximize E[ℜ(a)], the expected reward, which we denote µ(a). The optimal reward is:

OPT = max
a∈A

µ(a) . (1)

For now, we do not impose any additional structure on A, which could potentially be discrete,
continuous, or encode combinatorial constraints.

Historical Data. We assume that the algorithm designer has access to a historical dataset Hhist =
{aHj , RH

j }j∈[H] containing H historical points with actions {aHj }j∈[H] and rewards RH
j sampled

according to ℜ(aHj ). We do not make any assumptions on how the historical actions aHj are chosen
and view them as deterministic and fixed upfront. Our goal is to efficiently incorporate this historical
data to improve the performance of a bandit algorithm.

Online Structure. Since the mean reward function µ(a) is initially unknown, we consider settings
where the algorithm interacts with the environment sequentially over T timesteps. At timestep
t ∈ [T ], the decision maker picks an action At ∈ A according to their policy π. The environment
then reveals a reward Rt sampled from the distribution ℜ(At). The optimal reward OPT would be
achieved using a policy with full knowledge of the true distribution. We thus define regret as:

REGRET(T, π,Hhist) = T · OPT −
∑T

t=1 µ(At) . (2)

where the dependence onHhist highlights that At can additionally depend on the historical dataset.

2.2 FINITE, CONTINUOUS, AND COMBINATORIAL ACTION SPACES

Finite-Armed Bandit. The finite-armed bandit model can be viewed in this framework by consid-
ering K discrete actions A = [K] = {1, . . . ,K}.
Combinatorial Multi-Armed Bandit for Continuous Resource Allocation (CMAB-CRA). A central
planner has access to a metric space S of resources with metric dS . They are tasked with splitting
a total amount of B divisible budget across N different resources within S . An action consists of
choosing N resources, i.e., N points in S, and allocating the budget among that chosen subset. The
feasible space of allocations is B = [0, 1] and the feasible action space is:

A =
{
(p⃗, β⃗) ∈ SN × BN

∣∣ ∑N
i=1 β

(i) ≤ B, dS(p
(i),p(j)) ≥ ϵ ∀i ̸= j

}
. (3)

The chosen action must satisfy the budgetary constraint (i.e.,
∑

i β
(i) ≤ B), and the resources must

be distinct (aka ϵ-away from each other according to dS for some ϵ > 0) to ensure the “same”
resource is not chosen at multiple allocations. We additionally assume that ℜ decomposes indepen-
dently over the (resource, allocation) pairs, in that µ(a) =

∑N
i=1 µ(p

(i), β(i)). Lastly, we assume

3



Under review as a conference paper at ICLR 2023

Algorithm 1 ARTIFICIAL REPLAY

Require: Historical datasetHhist = {(aHj , RH
j )}j∈[H], base algorithm Π

1: Initialize set of used historical data pointsHon
1 = ∅, and set of online dataH1 = ∅

2: for t = {1, 2, . . .} do
3: Initialize flag to be True
4: while flag is True do
5: Pick action Ãt ∼ Π(Hon

t ∪Ht)

6: if Ãt is not contained inHhist \ Hon
t then

7: Update flag to be False ▷ Finish a full timestep
8: Set online action At = Ãt

9: Execute action At and observe reward Rt ∼ ℜ(At) ▷ Take online sample
10: UpdateHt+1 = Ht ∪ {(At, Rt)} andHon

t+1 = Hon
t

11: else
12: UpdateHon

t to include one sample for Ãt from historical datasetHhist

the algorithm observes semi-bandit feedback of the form (p
(i)
t , β

(i)
t , R

(i)
t )i∈[N ] for each resource

and allocation pair sampled according to ℜ(p(i)
t , β

(i)
t ). Zuo & Joe-Wong (2021) proposed a discrete

model of this problem as a generalization of the works in Dagan & Koby (2018); Lattimore et al.
(2014; 2015) specialize it to consider scheduling a finite set of resources to maximize the expected
number of jobs finished.

Extension to Green Security. The CMAB-CRA model can be used to specify green security do-
mains from Xu et al. (2021) by letting the space S represent a protected area and letting B represent
the discrete set of patrol resources to allocate, such as number of ranger hours per week, with the
total budget B being 40 hours. This formulation generalizes to a more realistic continuous space
model of the landscape, instead of the artificial fixed discretization that was considered in prior work
consisting of 1 × 1 sq. km regions of the park. This also highlights the practical necessity that the
chosen resources (here, the patrol locations) are ϵ-far away to ensure sufficient spread. In Section 5,
we show that enabling patrol planning at a continuous level can help park rangers more precisely
identify poaching hotspots.

3 ARTIFICIAL REPLAY FOR HARNESSING HISTORICAL DATA

We propose ARTIFICIAL REPLAY, a meta-algorithm that can be integrated with any base algorithm
to incorporate historical data. We later prove that for any base algorithm satisfying independence of
irrelevant data (IIData), a novel property we introduce, ARTIFICIAL REPLAY has identical regret to
an approach which uses the full historical data upfront—showing that our approach reduces com-
putation costs without trading off performance. Additionally, in Appendix E we discuss empirical
improvements of ARTIFICIAL REPLAY applied to Thompson Sampling and Information Directed
Sampling, two algorithms which do not satisfy IIData.

Algorithm Formulation. Any algorithm for online stochastic bandits can be thought of as a func-
tion mapping arbitrary ordered histories (i.e., collections of observed (a,R) pairs) to a distribution
over actions in A. More specifically, let Π : D → ∆(A) be an arbitrary base algorithm where D
denotes the collection of possible histories (i.e., D = ∪i≥0(A × R+)). The policy obtained by a
base algorithm Π without incorporating historical data simply takes the action sampled according
to the policy π

IGNORANT(Π)
t = Π(Ht) where Ht is the data observed by timestep t. In comparison,

consider an algorithm π
FULL START(Π)
t which follows the same policy but uses the full historical data

upfront, so takes the action sampled according to Π(Hhist ∪Ht).

3.1 ARTIFICIAL REPLAY

The ARTIFICIAL REPLAY meta-algorithm incorporates the historical data Hhist into an arbitrary
base algorithm Π, resulting in a policy we denote by πARTIFICIAL REPLAY(Π). See Algorithm 1 for the
pseudocode. We let Hon

t be the set of historical datapoints used by the start of time t. Initially,
Hon

1 = ∅. For an arbitrary timestep t, the ARTIFICIAL REPLAY approach works as follows:
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Let Ãt ∼ Π(Hon
t ∪ Ht) be the proposed action at the start of time t. Since we are focused on

simulating the algorithm with historical data, we break into cases whether or not the current set of
unused historical datapoints (i.e.,Hhist \ Hon

t ) contains any additional information about Ãt.

• No historical data available: If Ãt is not contained inHhist \Hon
t , then the selected action

is At = Ãt, and we advance to timestep t+ 1. We additionally setHon
t+1 = Hon

t .

• Historical data available: If Ãt is contained inHhist \Hon
t , add that data point toHon

t and
repeat by picking another proposed action. We remain at time t.

Strikingly, our framework imposes minimal computational and storage overhead on top of exist-
ing algorithms, simply requiring a data structure to verify whether Ã ∈ Hhist \ Hon

t , which can be
performed with hashing techniques. It is clear that the runtime and storage complexity of ARTIFI-
CIAL REPLAY is no worse than FULL START. We also note that most practical bandit applications
incorporate historical data obtained from database systems (e.g. content recommendation systems,
wildlife poaching model discussed). This historical data will be stored regardless of the algorithm
being employed, and so the key consideration is around computational requirements and not storage.

Additionally, our approach extends naturally to the following different models:

Continuous Spaces. The ARTIFICIAL REPLAY framework can be applied in continuous action
spaces with discretization-based algorithms. For example, suppose that Π wants to select an action
a ∈ A, but the historical data has a sample from a + ϵ, a slightly perturbed point. Discretization-
based algorithms avoid precision issues since they map the continuous space to a series of regions
which together cover the action set, and run algorithms or subroutines over the discretization. Check-
ing for historical data simply checks for data within the bounds of the chosen discretized action.

Semi-Bandit Feedback. ARTIFICIAL REPLAY also naturally extends to combinatorial action
sets with semi-bandit feedback where actions are decomposable, that is, they can be written as
a = (a1, . . . , aN ) with independent rewards. Suppose that Π wants to select an action a =
(a1, a2, . . . , aN ) but the historical data has a sample from (a′1, a2, . . . a

′
N ). Even if the combina-

torial action a does not appear in its entirety in the historical data, as long as there exists some
subcomponent aHi (sometimes referred to as “subarm” in combinatorial bandits) in the historical
data (e.g., a2) , we can add that subcomponent aHi toHon

t to update the base algorithm.

3.2 INDEPENDENCE OF IRRELEVANT DATA AND REGRET COUPLING

It is not immediately clear how to analyze the regret of ARTIFICIAL REPLAY. To enable regret
analysis, we introduce a new property for bandit algorithms, independence of irrelevant data, which
essentially requires that when an algorithm is about to take an action, providing additional data about
other actions (i.e., those not selected by the algorithm) will not influence the algorithm’s decision.
Definition 3.1 (Independence of irrelevant data). A deterministic base algorithm Π satisfies the
independence of irrelevant data (IIData) property if whenever A = Π(H) then

Π(H) = Π(H ∪H′) (4)

for anyH′ containing data from any actions a′ other than A (that is, a′ ̸= A).

IIData is a natural robustness property for an algorithm to satisfy, highlighting that the algorithm
evaluates actions independently when making decisions. IIData is conceptually analogous to the
independence of irrelevant alternatives (IIA) axiom in computational social choice as a desiderata
used to evaluate voting rules (Arrow, 1951). In Theorem 3.2 we show that for any base algorithm
satisfying IIData, the regret of πFULL START(Π) and πARTIFICIAL REPLAY(Π) will be equal.
Theorem 3.2. Suppose that algorithm Π satisfies the independence of irrelevant data property. Then
for any problem instance, horizon T , and historical datasetHhist we have the following:

π
ARTIFICIAL REPLAY(Π)
t

d
= π

FULL START(Π)
t

REGRET(T, πARTIFICIAL REPLAY(Π),Hhist)
d
= REGRET(T, πFULL START(Π),Hhist) .
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Algorithm 2 Monotone UCB (MONUCB)
1: Initialize n1(a) = 0, µ1(a) = 1, and UCB1(a) = 1 for each a ∈ [K]
2: for t = {1, 2, . . .} do
3: Let At = argmaxa∈[K] UCBt(a)

4: Receive reward Rt sampled from ℜ(At)
5: Update nt+1(At) = nt(At) + 1, nt+1(a) = nt(a) for a ̸= At

6: Update µt+1(At) = (nt(At)µt(At) +Rt)/nt+1(At), µt+1(a) = µt(a) for a ̸= At

7: Update UCBt+1(a) = UCBt(a) for a ̸= At and
UCBt+1(At) = min{UCBt(At), µt+1(At) +

√
2 log(T )/nt+1(At)}

This theorem shows that ARTIFICIAL REPLAY allows us to achieve identical regret guarantees as
FULL START while simultaneously using data more efficiently. In the subsequent section, we show
three example regret-optimal algorithms which satisfy this property, even in the complex CMAB-
CRA setting. The algorithms we modify are all UCB-based algorithms. In fact, it is easy to modify
most UCB-based algorithms to satisfy IIData by simply imposing monotonicity of the confidence
bound estimates for an action rewards. This is easily implementable and preserves all regret guaran-
tees. While for brevity we only discuss IIData algorithms in the K-Armed and CMAB-CRA set-up,
it is easy to see how to modify other UCB-based algoriths (e.g. LinUCB for linear bandits (Abbasi-
Yadkori et al., 2011)) to satisfy IIData. In the existing bandit literature, there has been a narrow focus
on only finding regret-optimal algorithms. We propose that IIData is another desirable property that
implies ease and robustness for optimally and efficiently incorporating historical data.

4 IIDATA ALGORITHMS

In this section, we provide IIData algorithms with optimal regret guarantees for two settings: the
K-armed and CMAB-CRA models. We show that IIData is easy to guarantee for UCB algorithms
requiring only a minor modification to existing algorithms while not impacting confidence bounds
guarantees.

We defer algorithm details to Appendix D and proofs to Appendix F. We’ll show in Appendix E that
in practice, ARTIFICIAL REPLAY still performs nearly optimally even with algorithms that do not
satisfy IIData.

4.1 K-ARMED BANDITS

The first algorithm we propose, named Monotone UCB (denoted as MONUCB), is derived from
the UCB1 algorithm introduced in Auer et al. (2002). At every timestep t, the algorithm tracks the
following: (i) µt(a) for the estimated mean reward of action a ∈ [K], (ii) nt(a) for the number of
times the action a has been selected by the algorithm prior to timestep t, and (iii) UCBt(a) for an
upper confidence bound estimate for the reward of action a. At every timestep t, the algorithm picks
the action At which maximizes UCBt(a) (breaking ties deterministically). After observing Rt, we
increment nt+1(At) = nt(At) + 1, update µt+1(At), and set:

UCBt+1(At) = min

{
UCBt(At), µt+1(At) +

√
2 log(T )
nt+1(At)

}
. (5)

The only modification of Monotone UCB from standard UCB is the additional step forcing the UCB
estimates to be monotone decreasing over t. It is clear that this modification has no affect on the
regret guarantees. Under the “good event” analysis, if UCBt(a) ≥ µ(a) with high probability,
then the condition still holds at time t + 1, even after observing a new data point. In the following
theorem, we show that MONUCB satisfies IIData and is regret-optimal, achieving the same instance-
dependent regret bound as the standard UCB algorithm.
Theorem 4.1. Monotone UCB satisfies the IIData property and has for ∆(a) = maxa′ µ(a′)−µ(a):

REGRET(T, πIGNORANT(MONUCB),Hhist) = O(
∑

a
log(T )/∆(a)). (6)

This guarantee allows us to use Theorem 3.2 to establish that ARTIFICIAL REPLAY and
FULL START have identical regret with MONUCB as a base algorithm. In the next theorem, we
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show that ARTIFICIAL REPLAY is robust to spurious data, where the historical data has excess sam-
ples aHj coming from poor performing actions. Spurious data imposes computational challenges,
since the FULL START approach will pre-process the full historical dataset regardless of the ob-
served rewards or the inherent value of the historical data. In contrast, ARTIFICIAL REPLAY will
only use the amount of data useful for learning.

Theorem 4.2. For every H ∈ N there exists a historical dataset Hhist with |Hhist| = H where the
runtime of πFULL START(MONUCB) = Ω(H + T ) whereas the runtime of πARTIFICIAL REPLAY(MONUCB) =

O(T +min{
√
T , log(T )/mina ∆(a)2}).

This highlights that the computational overhead of ARTIFICIAL REPLAY in comparison to FULL
START can be arbitrarily better. For storage requirements, the FULL START algorithm requires
O(K) storage for maintaining estimates for each arm. In contrast, a naive implementation of AR-
TIFICIAL REPLAY requires O(K +H) storage since the entire historical dataset needs to be stored.
However, using hashing techniques can address the extra H factor. In Section 4.2 we will see an
example where IIData additionally has strong storage benefits over FULL START.

Lastly, to complement the computational improvements of ARTIFICIAL REPLAY applied to
MONUCB, we can also show an improvement of regret. This analysis crucially uses the regret
coupling, since FULL START(MONUCB) is much easier to reason about than its ARTIFICIAL RE-
PLAY counterpart.

Theorem 4.3. Let Ha be the number of datapoints inHhist for each action a ∈ [K]. Then the regret
of Monotone UCB with historical datasetHhist is:

REGRET(T, πARTIFICIAL REPLAY(MONUCB),Hhist) ≤ O
( ∑

a∈[K]:∆a ̸=0

max
{
0, log(T )

∆(a) −Ha∆(a)
})

.

Theorem 4.2 together with Theorem 4.3 helps highlight the advantage of using ARTIFICIAL REPLAY
over FULL START in terms of improving computational complexity while maintaining an equally
improved regret guarantee. This reduces to the standard UCB guarantee whenHhist = ∅. Moreover,
it highlights the impact historical data can have on the regret. If |Ha| ≥ log(T )/∆(a)2 for each
a then the regret of the algorithm will be constant not scaling with T . We note that there are no
existing regret lower bounds for incorporating historical data in bandit algorithms. Our main goal is
not to improve regret guarantees (although Theorem 4.3 highlights the advantage of historical data),
but instead highlight a simple, intuitive, and implementable approach through ARTIFICIAL REPLAY
which matches the performance of FULL START while simultaneously having smaller compute.

We close with an example of a K-armed bandit algorithm which does not satisfy the IIData as-
sumption. Thompson Sampling (Russo et al., 2018), which samples arms according to the posterior
probability that they are optimal, does not satisfy IIData. Data from other actions other than the one
chosen will adjust the posterior distribution, and hence will adjust the selection probabilities as well.
While we do not obtain a regret coupling, in Fig. 8 (appendix) we show that there are still empirical
gains for using ARTIFICIAL REPLAY over FULL START across a variety of base algorithms.

4.2 CMAB-CRA

Incorporating historical data optimally and efficiently is difficult in continuous action settings. Two
natural approaches are to (i) discretize the action space A based on the data using nearest neighbor
estimates, or (ii) learn a regression of the mean reward using available data. Consider a setting
where excessive data is collected from poor-performing actions. Discretization-based algorithms
will unnecessarily process and store a large number of discretizations in low-performing regions of
the space. Regression-based methods will use compute resources to learn an accurate predictor of the
mean reward in irrelevant regions. The key issues are that the computational and storage cost grows
with the size of the historical dataset, and the estimation and discretization is done independent of
the quality of the reward.

To contrast this approach, we present two discretization-based algorithms that satisfy IIData
with strong performance guarantees. In particular, we detail fixed and adaptive discretization
(ADAMONUCB in Algorithm 3) algorithms that only use the historical dataset to update estimates
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of the reward. Due to space, we describe the algorithms only at a high level and defer details to
Appendix D.

Our algorithms are Upper Confidence Bound (UCB) style as the selection rule maximizes Eq. (1)
over the combinatorial action set (Eq. (3)) through a discretization of S. For each allocation β ∈ B,
the algorithm maintains a collection of regions Pβ

t of S which covers S. For the fixed discretization
variant, Pβ

t is fixed at the start of learning, and in the adaptive discretization version it is refined over
the course of learning based on observed data. At every timestep t and region R ∈ Pβ

t , the algo-
rithm tracks the following: (i) µt(R, β) for the estimated mean reward of region R at allocation β,
(ii) nt(R, β) for the number of times R has been selected at allocation β prior to timestep t, and
(iii) UCBt(R, β) for an upper confidence bound estimate. At a high level, our algorithm performs
three steps in each iteration t:

1. Action selection: Greedily select at most N regions in Pβ
t to maximize UCBt(R, β) subject to

the budget constraints (see Eq. (10) in the appendix). Note that we must additionally ensure that
each region is selected at only a single allocation value.

2. Update parameters: For each of the selected regions, increment nt(R, β) by one, update
µt(R, β) based on observed data, and set UCBt+1(R, β) = min{UCBt(R, β), µt(R, β) +
b(nt(R, β))} for some appropriate bonus term b(·). This enforces monotonicity in the UCB
estimates similar to MONUCB and is required for the IIData property.

3. Re-partition: This step differentiates the adaptive discretization algorithm from fixed discretiza-
tion, which maintains the same partition across all timesteps. We split a region when the confi-
dence in its estimate (i.e., b(nt(R, β))) is smaller than the diameter of the region. This condition
may seem independent of the quality of a region, but since it is incorporated into a learning al-
gorithm, the number of samples in a region is correlated with its reward. In Fig. 4 (appendix) we
highlight how the adaptive discretization algorithm hones in on regions with large reward without
knowing the reward function before learning.

These algorithms modify existing approaches applied to CMAB-CRA in the bandit and reinforce-
ment learning literature, which have been shown to be regret-optimal (Xu et al., 2021; Sinclair et al.,
2021). We additionally note that these approaches are IIData.
Theorem 4.4. The fixed and adaptive discretization algorithms when using a “greedy” solution to
solve Eq. (1) have property IIData.

Here we require the algorithm to use the standard “greedy approximation” to Eq. (1), which is
a knapsack problem in the CMAB-CRA set-up (Williamson & Shmoys, 2011). This introduces
additional approximation ratio limitations in general. However, under additional assumptions on the
mean reward function µ(p, β), the greedy solution is provably optimal. For example, optimality of
the greedy approximation holds when µ(p, β) is piecewise linear and monotone, or more broadly
when µ(a) is submodular. See Appendix D for more discussion.

Finally, we comment that the FULL START implementation of these adaptive discretization algo-
rithms will have storage and computational costs proportional to the size of the historical dataset
(since the algorithms ensure that the discretization scales with respect to the number of samples).
In contrast, ARTIFICIAL REPLAY uses only a fraction of the historical dataset and so again has
improved computation and storage complexity. This is validated in the experimental results in Ap-
pendix E.

5 EXPERIMENTS

We show the benefits of ARTIFICIAL REPLAY by showing that our meta-algorithm achieves identical
performance to FULL START while offering significant practical advantages in reducing runtime
and storage. We consider two classes of bandit domains: K-armed and CMAB-CRA. As part of
our evaluation on combinatorial bandits, we introduce a new model for green security games with
continuous actions by adaptively discretizing the landscape of a large protected area of Murchison
Falls National Park in Uganda.

All of the code to reproduce the experiments is available at https://github.com/lily-x/
artificial-replay. Results are averaged over 60 iterations with random seeds, with standard
error plotted; experiment details and additional results are available in Appendix E.
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Figure 1: (CMAB-CRA) Cumulative regret (y-axis; lower is better) across time t ∈ [T ]. ARTIFICIAL
REPLAY performs equally as well as FULL START across all domain settings, including both fixed
discretization (top row) and adaptive discretization (bottom). REGRESSOR performs quite poorly.

Domains. We conduct experiments on the two bandit models described in Section 2.2: finite
K-armed bandits and CMAB-CRA, using both fixed and adaptive discretization. For the contin-
uous combinatorial setting, we provide two stylized domains: a piecewise-linear and a quadratic
reward function. To emphasize the practical benefit of ARTIFICIAL REPLAY, we evaluate on a real-
world resource allocation setting for biodiversity conservation. We study real ranger patrol data
from Murchison Falls National Park, shared as part of a collaboration with the Uganda Wildlife
Authority and the Wildlife Conservation Society. We use historical patrol observations to build the
history Hhist; we analyze these historical observations in detail in Appendix E to show that this
dataset exhibits both spurious data and imbalanced coverage as discussed in Section 4.

Baselines. We compare ARTIFICIAL REPLAY against IGNORANT and FULL START approaches
for each setting. In the K-armed model, we use MONUCB as the base algorithm. In CMAB-CRA
we use fixed and adaptive discretization as well as REGRESSOR, a neural network learner that is a
regression-based approach analogue to FULL START. REGRESSOR is initially trained on the entire
historical dataset, then iteratively retrained after 128 new samples are collected. We also compute
for each setting the performance of an OPTIMAL action based on the true rewards and a RANDOM
baseline that acts randomly while satisfying the budget constraint.

Results. The results in Fig. 1 empirically validate our theoretical result from Theorem 3.2: the
performance of ARTIFICIAL REPLAY is identical to that of FULL START, and reduces regret consid-
erably compared to the naive IGNORANT approach. We evaluate the regret (compared to OPTIMAL)
of each approach across time t ∈ [T ]. Concretely, we consider the three domains of piecewise-linear
reward, quadratic reward, and green security with continuous space S = [0, 1]2, N = 5 possible
action components, a budget B = 2, and 3 levels of effort. We include H = 300 historical data
points. See Fig. 9 (appendix) for regret and analysis of historical data use on the K-armed bandit.

Not only does ARTIFICIAL REPLAY achieve equal performance, but its computational benefits over
FULL START are clear even on practical problem sizes. As we increase historical data from H =
{10; 100; 1,000; 10,000} in Fig. 2, the proportion of irrelevant data increases. Our method achieves
equal performance, overcoming the previously unresolved challenge of spurious data, while FULL
START suffers from arbitrarily worse storage complexity (Theorem 4.2). With 10,000 historical
samples and a time horizon of 1,000, we see that 58.2% of historical samples are irrelevant to
producing the most effective policy.

When faced with imbalanced data coverage, the benefits of ARTIFICIAL REPLAY become clear—
most notably in the continuous action setting with adaptive discretization. In Fig. 3, as we increase
the number of historical samples on bad regions (bottom 20th percentile of reward), the additional
data require finer discretization, leading to arbitrarily worse storage and computational complexity
for FULL START with equal regret. In Fig. 3(c), we see that with 10% of data on bad arms, AR-
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Figure 2: (K-Armed) Increasing the number of historical samples H leads FULL START to use un-
necessary data, particularly as H gets very large. ARTIFICIAL REPLAY achieves equal performance
in terms of regret (plot a) while using less than half the historical data (plot b). In plot c we see that
with H = 1,000 historical samples, ARTIFICIAL REPLAY uses (on average) 117 historical samples
before taking its first online action. The number of historical samples used increases at a decreasing
rate, using only 396 of 1,000 total samples by the horizon T . Results are shown on the K-armed
bandit setting with K = 10 and horizon T = 1,000.
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Figure 3: (CMAB-CRA) Holding H = 10,000 constant, we increase the fraction of historical data
samples on bad arms (bottom 20% of rewards). The plots show (a) regret, (b) % of unused historical
data and (c) number of discretized regions in partition P . ARTIFICIAL REPLAY enables significantly
improved runtime and reduced storage while matching the performance of FULL START. Results on
the CMAB-CRA setting with adaptive discretization on the quadratic domain.

TIFICIAL REPLAY requires only 446 regions R compared to 688 used by FULL START; as we get
more spurious data and that fraction increases to 90%, then ARTIFICIAL REPLAY requires only 356
regions while FULL START still stores 614 regions.

6 CONCLUSION

We present ARTIFICIAL REPLAY, a meta-algorithm that modifies any base bandit algorithm to effi-
ciently harness historical data. We show that under a widely applicable IIData condition, the regret
of ARTIFICIAL REPLAY (as a random variable) is distributionally identical to that of a full warm-
start approach, while also guaranteeing significantly better time complexity. We additionally give
examples of regret-optimal IIData algorithms in the K-armed and CMAB-CRA settings. Our ex-
perimental results highlight the advantage of using ARTIFICIAL REPLAY over FULL START via a
variety of base algorithms, applied to K-armed and continuous combinatorial bandit models, in-
cluding for algorithms such as Thompson sampling and Information Directed Sampling (IDS) that
do not exhibit IIData. Directions for future work include (i) find IIData algorithms in other bandit
domains such as linear contextual bandits, (ii) incorporate the ARTIFICIAL REPLAY approach into
reinforcement learning, and (iii) provide theoretical bounds showing that ARTIFICIAL REPLAY has
optimal data usage when incorporating historical data.
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A TABLE OF NOTATION

Symbol Definition

Problem setting specifications

A Feasible action space (see Eq. (3))
ℜ Reward distribution, i.e., ℜ : A → ∆([0, 1])

OPT Optimal objective value of Eq. (1)
T Time horizon
REGRET(π, T,Hhist) Cumulative regret for an algorithm π on T timesteps with historical dataHhist

Hhist, H Historical data available to algorithm and number of historical datapoints
a Generic action a ∈ A
aHj Historical action at index j in historyHhist

At Selected action chosen at timestep t

Rt Reward observed at timestep t from action At

Π Base algorithm that maps ordered (a,R) pairs to a distribution over A
πARTIFICIAL REPLAY ARTIFICIAL REPLAY framework and its resulting policy
πFULL START FULL START: Full warm starting operation and its resulting policy
πIGNORANT IGNORANT: Original policy ignoring historical data

CMAB-CRA specification

CMAB-CRA Combinatorial Multi-Armed Bandit for Continuous Resource Allocation
S,B The continuous resource space, and (discrete) space of allocation values
dS , dmax Metric over S and the diameter of S
N, ϵ Maximum number of regions which can be selected, and the minimum distance
ℜ(p, β⃗) Reward distribution for a particular allocation (p, β⃗)

µ(p, β⃗) Mean reward for a particular allocation (p, β⃗)

Monotone UCB

µt(a), nt(a) Mean reward estimates and number of samples for action a ∈ [K]

UCBt(a) Upper confidence bound estimate of action a

Fixed Discretization

P Fixed ϵ covering of S
µt(R, β), nt(R, β) Mean reward estimates and number of samples for regionR ∈ P
UCBt(R, β) Upper confidence bound estimate of µ(R, β)
b(t) Bonus term (confidence radius) for a region which has been selected t times

Adaptive Discretization

Pβ
t Partition of space S at timestep t for allocation β ∈ B

µt(R, β), nt(R, β) Mean reward estimates and number of samples for regionR ∈ Pβ
t

UCBt(R, β) Upper confidence bound estimate of µ(R, β)
r(R) Diameter of a regionR
b(t) Bonus term for a region which has been selected t times

Table 1: List of common notations
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B DETAILED RELATED WORK

Multi-armed bandit problems and its sub-variants (including the finite-armed and CMAB-CRA
model discussed here) have a long history in the online learning and optimization literature. We
highlight the most closely related works below, but for more extensive references see Bubeck et al.
(2012); Slivkins (2019); Lattimore & Szepesvári (2020).

Multi-Armed Bandit Algorithms. The design and analysis of bandit algorithms have been con-
sidered under a wide range of models. These were first studied in the so-called K-Armed Bandit
model in Lai & Robbins (1985); Auer et al. (2002), where the algorithm has access to a finite set
of K possible actions at each timestep. The algorithm is characterized by its Optimistic Upper
Confidence Bound approach, where exploration is garnered by acting greedily with respect to op-
timistic estimates of the mean reward of each action. Numerous follow-up works have considered
similar approaches when designing algorithms in continuous action spaces (Kleinberg et al., 2019),
linear reward models (Chu et al., 2011), and with combinatorial constraints (Xu et al., 2021; Zuo
& Joe-Wong, 2021). Our work provides a framework for taking existing algorithms to additionally
harness historical data. Moreover, in Appendix D we also propose a novel algorithm incorporating
data-driven adaptive discretization for combinatorial multi-armed bandits for continuous resource
allocation.

Incorporating Historical Data. Several papers have started to investigate techniques for incorpo-
rating historical data into bandit algorithms. Shivaswamy & Joachims (2012) started by considering
a K-armed bandit model where each arm has a dataset of historical pulls. The authors develop a
Warm Start UCB algorithm where the confidence term of each arm is initialized based on the full
historical data, prior to learning. Similar techniques were extended to models where there are pre-
clustered arms, where the authors provide regret guarantees depending on the cluster quality of the
fixed clusters (Bouneffouf et al., 2019). These techniques were extended to Bayesian and frequentist
linear contextual bandits where the linear feature vector is updated by standard regression over the
historical data (Oetomo et al., 2021; Wang et al., 2017). The authors show empirically that these
approaches perform better in early rounds, and applied the set-up to recommendation systems. A
second line of work has considered warm-starting contextual bandit models with fully supervised
historical data and online bandit interaction (Swaminathan & Joachims, 2015; Zhang et al., 2019).
Lastly, Zuo et al. (2020) consider augmented data collection schemes where the decision maker can
“pre sample” some arms before decisions in the typical bandit set-up.

All of the prior work considers a FULL START approach in specific bandit models to incorporate
historical data. In contrast, we provide an efficient meta-algorithm for harnessing historical data
in arbitrary stochastic bandit models. We show our approach has improved runtime and storage
over a naive full-start approach. Additionally, we provide, to the best of our knowledge, the first
application of incorporating historical data to combinatorial bandit models.

Bandit Algorithms for Green Security Domains. Green security focuses on allocating defender
resources to conduct patrols across protected areas to prevent illegal logging, poaching, or overfish-
ing (Fang et al., 2015; Plumptre et al., 2014). These green security challenges have been addressed
with game theoretic models (Yang et al., 2014; Nguyen et al., 2016); supervised machine learning
(Kar et al., 2017; Xu et al., 2020); and multi-armed bandits, including restless (Qian et al., 2016),
recharging (Kleinberg & Immorlica, 2018), adversarial (Gholami et al., 2019), and combinatorial
bandits (Xu et al., 2021). Related notions of value of information have been studied in the context of
ecological decision making to quantify how obtaining more information can help to better manage
ecosystems (Canessa et al., 2015).

Combinatorial Bandits for Resource Allocation. The CMAB-CRA model is a continuous exten-
sion of the combinatorial multi-armed bandit for discrete resource allocation (CMAB-DRA) prob-
lem studied in Zuo & Joe-Wong (2021). They propose two algorithms which both achieve logarith-
mic regret when the allocation space is finite or one-dimensional. We extend their upper confidence
bound algorithmic approach to consider both fixed and adaptive data-driven discretization of the
continuous resource space, and additionally consider the impact of historical data in learning.

Adaptive Discretization Algorithms. Discretization-based approaches to standard multi-armed
bandits and reinforcement learning have been explored both heuristically and theoretically in dif-
ferent settings. Adaptive discretization was first analyzed theoretically for the standard stochastic
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continuous multi-armed bandit model, where Kleinberg et al. (2019) developed an algorithm which
achieves instance-dependent regret scaling with respect to the so-called “zooming dimension” of the
action space. This approach was later extended to contextual models in Slivkins (2011). In Elmach-
toub et al. (2017) the authors improve on the practical performance and scalability by considering
decision-tree instead of dyadic partitions of the action space. Similar techniques have been applied
to reinforcement learning, where again existing works have studied the theoretical challenges of
designing discretization-based approaches with instance-specific regret guarantees (Sinclair et al.,
2021), and heuristic performance under different tree structures (Uther & Veloso, 1998; Pyeatt &
Howe, 2001). However, none of these algorithms have been extensively studied within the concept
of including historical data, or applied to the combinatorial bandit model, with the exception of Xu
et al. (2021). Our work builds upon theirs through a novel method of incorporating historical data
into an algorithm, and by additionally considering adaptive instead of fixed discretization.

Experience Replay in Reinforcement Learning. Lastly, we note that the ARTIFICIAL REPLAY
approach has relations to experience replay in the reinforcement learning literature (Schaul et al.,
2017; Mnih et al., 2013). In contrast to ARTIFICIAL REPLAY, which is designed to use historical
data collected independently of the algorithm, experience replay uses online observations (i.e., dat-
apoints inHt) and requires using off-policy estimation procedures to incorporate the information in
learning.

C FULL PRELIMINARY DETAILS

In this section we restate and give further assumptions for the general stochastic bandit model de-
scribed in Section 2.

C.1 K-ARMED BANDIT

The finite-armed bandit model can be viewed in this framework by considering A = [K] =
{1, . . . ,K}. This recovers the classical model from Lai & Robbins (1985); Auer et al. (2002).

C.2 COMBINATORIAL MULTI-ARMED BANDIT FOR CONTINUOUS RESOURCE ALLOCATION
(CMAB-CRA)

A central planner has access to a metric space S of resources with metric dS . They are tasked with
splitting a total amount of B divisible budget across N different resources within S. For example,
in a wildlife conservation domain, the space S can be considered as the protected area of a park,
and the allocation budget corresponds to divisible effort, or proportion of rangers allocated to patrol
in the chosen area. We denote the feasible space of allocations as B and define the feasible action
space as follows:

A =

{
(p⃗, β⃗) ∈ SN × BN

∣∣ N∑
i=1

β(i) ≤ B, dS(p
(i),p(j)) ≥ ϵ ∀i ̸= j

}
. (7)

Note that we require the chosen action to satisfy the budgetary constraint (i.e.
∑

i β
(i) ≤ B), and

that the chosen resources are distinct (aka ϵ-away from each other according to dS ).

Further, let ℜ : S × B → ∆([0, 1]) be the unknown reward distribution over the resource and
allocation space. The goal of the algorithm is to pick an action A = (p⃗, β⃗) ∈ A in a way that
maximizes

∑N
i=1 E

[
ℜ(p(i), β(i))

]
, the expected total mean reward accumulated from the resources

subject to the budget constraints. Denoting E[ℜ(p, β)] as µ(p, β), the optimization problem is
formulated below:

max
p⃗,β⃗

N∑
i=1

µ(p(i), β(i)) (8)

s.t.
∑
i

β(i) ≤ B

dS(p
(i),p(j)) ≥ ϵ ∀i ̸= j .
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0

1

Figure 4: Comparison of a fixed (middle) and adaptive (right) discretization on a two-dimensional
resource set S for a fixed allocation level β. The underlying color gradient corresponds to the
mean reward µ(p, β) with red corresponding to higher value and blue to lower value (see figure on
left for legend). The fixed discretization algorithm is forced to explore uniformly across the entire
resource space. In contrast, the adaptive discretization algorithm is able to maintain a data efficient
representation, even without knowing the underlying mean reward function a priori.

Lastly, we consider the historical data Hhist to also be decomposed, in that each element is a partic-
ular (p, β, R) pair with R ∼ ℜ(p, β).

C.2.1 ASSUMPTIONS

We make two assumptions on the underlying problem. The first is a standard nonparametric as-
sumption, highlighting that the resource space S is a metric space and that the true underlying
reward function µ is Lipschitz with respect to dS . This assumption is common in the continuous
bandit literature; see Kleinberg et al. (2019) for more discussion.

Assumption 1. S is a compact metric space endowed with a metric dS with diameter dmax, and
B is a discrete space, both known to the decision maker. We assume that the mean reward function
µ(p, β) is Lipschitz with respect to the metric dS over p with known Lipschitz constant L.

The next assumption assumes access to an oracle for solving optimization problems of the form of
Eq. (8) for arbitrary choice of reward functions r(p, β). We can relax this assumption to instead
assume that there exists a randomized approximation oracle by appropriately shifting the regret
benchmark. However, in Section 5 we run experiments with exact solution oracles and omit this
discussion from this work.

Assumption 2. The optimization problem formulated in Eq. (8) can be solved for arbitrary reward
functions µ(p, β).

C.2.2 MAPPING TO GREEN SECURITY DOMAINS

The CMAB-CRA model can be used to specify green security domains from Xu et al. (2021). S is
used to represent the “protected region”, or geographic region of the park, and B is the discrete set
of potential patrol efforts to allocate, such as the number of ranger hours per week, with the total
budget B being 40 hours. This formulation generalizes Xu et al. (2021) to a more realistic continu-
ous space model of the landscape, instead of the artificial fixed discretization that was considered in
prior work consisting of 1× 1 sq. km regions on park).

D DISCRETIZATION-BASED ALGORITHMS FOR CMAB-CRA

In this section we detail a fixed and adaptive discretization algorithm for CMAB-CRA which satisfy
the IIData property. We start off by summarizing the main algorithm sketch, before highlighting the
key details and differences between the two. For pseudocode of the adaptive discretization algo-
rithm see ??. We describe the algorithm without incorporating historical data (where its counterpart
involving historical data can be used by treating this as the base algorithm Π and appealing to AR-
TIFICIAL REPLAY or FULL START described in Section 3).
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Our algorithms are Upper Confidence Bound (UCB) style as the selection rule maximizes Eq. (8)
approximately over a discretization of S. Both algorithms are parameterized by the time horizon T
and a value δ ∈ (0, 1).

For each allocation β ∈ B the algorithm maintains a collection of regions Pβ
t of S. Each element

R ∈ Pβ
t is a region with diameter r(R). For the fixed discretization variant, Pβ

t is fixed at the start
of learning. In the adaptive discretization algorithm, this partitioning is refined over the course of
learning in an data-driven manner.

For each time period t, the algorithm maintains three tables linear with respect to the number of
regions in the partitions Pβ

t . For every region R ∈ Pβ
t we maintain an upper confidence value

UCBt(R, β) for the true µ(R, β) value for points in R (which is initialized to be one), determined
based on an estimated mean µt(R, β) and nt(R, β) for the number of timesR has been selected by
the algorithm in timesteps up to t. The latter is incremented every time R is played, and is used to
construct the bonus term. At a high level, our algorithms perform two steps in each iteration t: select
an action via the selection rule and then update parameters. In addition, the adaptive discretization
algorithm will re-partition the space. In order to define the steps, we first introduce some definitions
and notation.

Let tR = nt(R, β) be the number of times the algorithm has selected regionR ∈ P at allocation β
by time t. The confidence radius (or bonus) of regionR is defined:

b(tR) = 2

√
2 log(T/δ)

tR
(9)

corresponding to the uncertainty in estimates due to stochastic nature of the rewards. Lastly, the UCB
value for a regionR is computed as UCBt(R, β) = min{UCBt−1(R, β), µt(R, β)+ b(nt(R, β)}.
This enforces monotonicity in the UCB estimates, similar to MONUCB, and is required for the
IIData property to hold.

At each timestep t, the algorithm selects regions according to the following optimization procedure:

max
z(R,β)∈{0,1}

∑
β∈B

∑
R∈Pβ

t

UCBt(R, β) · z(R, β) (10)

s.t.
∑
β∈B

∑
R∈Pβ

t

β · z(R, β) ≤ B

∑
β∈B

∑
R∈Pβ

t

z(R, β) ≤ N

z(R, β) +
∑
β′ ̸=β

∑
R̃∈Pβ′

t ,R⊂R̃

z(R̃, β′) ≤ 1 ∀β,R ∈ Pβ
t

The objective encodes the goal of maximizing the upper confidence bound terms. The first constraint
encodes the budget limitation, and the second that at most N regions can be selected. The final
constraint is a technical one, essentially requiring that for each region R ∈ S, the same region is
not selected at different allocation amounts. In the supplementary code base we provide an efficient
implementation which avoids this step by “merging” the trees appropriately so that each region
contains a vector of estimates of µt(R, β) for each β ∈ B. Based on the optimal solution, the final
action A is taken by picking (p, β) for each R such that p ∈ R and z(R, β) = 1. We lastly note
that this optimization problem is a well-known “knapsack” problem with efficient polynomial-time
approximation guarantees. It also has a simple “greedy” solution scheme, which iteratively selects
the regions with largest UCBt(R, β)/β ratio (i.e. the so-called “bang-per-buck”). See Williamson
& Shmoys (2011) for more discussion.

After subsequently observing the rewards for the selected regions, we increment tR = nt(R, β)
by one for each selected region, update µt(R, β) accordingly with the additional datapoint, and
compute UCBt(R, β). Then the two rules are defined as follows:

1. Selection rule: Greedily select at most N regions subject to the budgetary constraints
which maximizes UCBt(R, β) following Eq. (10).
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Algorithm 3 Adaptive Discretization Algorithm (ADAMONUCB)
1: procedure ADAPTIVE DISCRETIZATION FOR CMAB-CRA(S,B, T, δ)
2: Initiate |B| partitions Pβ

1 for each β ∈ B, each containing a single region with radius dmax

and µβ
1 estimate equal to 1

3: for each timestep {t← 1, . . . , T} do
4: Select the regions by the selection rule Eq. (10)
5: For each selected regionR (regions where z(R, β) = 1), add (a, β) to At for any a ∈ R
6: Play action At in the environment
7: Update parameters: t = nt+1(Rsel, β) ← nt(Rsel, β) + 1 for each selected region Rsel

with z(Rsel, β) = 1, and update µt(Rsel, β) accordingly with observed data
8:

9: if nt+1(R, β) ≥
(

dmax
r(R)

)2
and r(R) ≥ 2ϵ then SPLIT REGION(R, β, t)

10: procedure SPLIT REGION(R, β, t)
11: SetR1, . . . ,Rn to be an 1

2r(R)-packing ofR, and add each region to the partition Pβ
t+1

12: Initialize parameters µt(Ri, β) and nt(Ri, β) for each new region Ri to inherent values
from the parent regionR

2. Update parameters: For each of the selected regionsR, increment nt(R, β) by 1, update
µt(R, β) based on observed data, and update UCBt(R, β) while ensuring monotonicity.

D.1 FIXED DISCRETIZATION

This algorithm is additionally parameterized by a discretization level γ. The algorithm starts by
maintaining a γ-covering of S, which we denote as Pβ

t = P for all t ∈ [T ] and β ∈ B.

D.2 ADAPTIVE DISCRETIZATION

For each effort level β ∈ B the algorithm maintains a collection of regions Pβ
t of S which is refined

over the course of learning for each timestep t. Initially, when t = 1, there is only one region in
each partition Pβ

1 which has radius dmax containing S.

The key differences from the fixed discretization are two-fold. First, the confidence radius or bonus
of regionR is defined via:

b(t) = 2

√
2 log(T/δ)

t
+

2Ldmax√
t

.

The first term corresponds to uncertainty in estimates due to stochastic nature of the rewards, and
the second is the discretization error by expanding estimates to all points in the region.

Second, after selecting an action and updating the estimates for the selected regions, the algorithm
additionally decides whether to update the partition. This is done via:

3 Re-partition the space: Let R denote any selected ball and r(R) denote its radius. We
split when r(R) ≥ 2ϵ and nt(R, β) ≥ (dmax/r(R))2. We then cover R with new regions
R1, . . . ,Rn which form an 1

2r(R)-Net of R. We call R the parent of these new balls and
each child ball inherits all values from its parent. We then add the new balls R1, . . . ,Rn

to Pβ
t to form the partition for the next timestep Pβ

t+1.

Benefits of Adaptive Discretization. The fixed discretization algorithm cannot adapt to the under-
lying structure in the problem since the discretization is fixed prior to learning. This causes increased
computational, storage, and sample complexity since each individual region must be explored in or-
der to obtain optimal regret guarantees. Instead, our adaptive discretization algorithm adapts the
discretization in a data-driven manner to reduce unnecessary exploration. The algorithms keep a
fine discretization across important parts of the space, and a coarser discretization across unimpor-
tant regions. See Fig. 4 for a sample adaptive discretization observed, and Kleinberg et al. (2010);
Sinclair et al. (2021) for more discussion on the benefits of adaptive discretization over fixed.
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Implementation of Adaptive Discretization. In the attached code base we provide an efficient im-
plementation of ADAMONUCB, the adaptive discretization algorithm for the CMAB-CRA domain.
Pseudocode for ADAMONUCB is in Algorithm 3.

We represent the partition Pβ
t as a tree with leaf nodes corresponding to active balls (i.e. ones which

have not yet been split). Each node in the tree keeps track of nt(R, β), µt(R, β), and UCBt(R, β).
While the partitioning works for any compact metric space, we implement it in S = [0, 1]2 under the
infinity norm metric. With this metric, the high level implementation of the three steps is as follows:

• Selection rule: In this step we start by “merging” all of the trees for each allocation level β
(i.e. Pβ

t for β ∈ B) into a single tree, with estimates UCBt(R, ·) represented as a vector
for each β ∈ B rather than a scalar. On this merged partition of S we solve Eq. (10) over
the leaves to avoid modelling the constraint which ensures that each region is selected at a
single allocation amount.

• Update estimates: Updating the estimates simply updates the stored nt(R, β), µt(R, β),
and UCBt(R, β) for each of the selected regions based on observed data.

• Re-partition the space: In order to split a region R, we create four new subregions cor-
responding to splitting the two dimensions in half. For example, the region [0, 1]2 will be
decomposed to

[0, 1
2 ]× [0, 1

2 ] [0, 1
2 ]× [ 12 , 1] [ 12 ,

1
2 ]× [0, 1

2 ] [ 12 ,
1
2 ]× [ 12 ,

1
2 ] .

We add on the children to the tree with links to its parent node, and initialize all estimates
to that of its parent.

Lastly, we comment that in order to implement the FULL START and ARTIFICIAL REPLAY ver-
sions of the adaptive discretization algorithm we pre-processed the entire historical data into a tree
structure. This allowed us to check whether the given action has historical data available by simply
checking the corresponding node in the pre-processed historical data tree.

E EXPERIMENT DETAILS

We provide additional details about the experimental domains, algorithm implementation, and ad-
ditional results. The additional results include experiments to evaluate the performance of ARTI-
FICIAL REPLAY on algorithms for combinatorial finite-armed bandit (Chen et al., 2013) as well as
the standard K-armed bandit. For the later we include simulations with Thompson sampling (Russo
et al., 2018), and information-directed sampling (Russo & Van Roy, 2018), which do not satisfy
the IIData property, but still experience empirical improvements when using ARTIFICIAL REPLAY
against FULL START.

E.1 DOMAIN DETAILS

E.1.1 FINITE K-ARMED BANDIT

For the K-armed bandit, we generate mean rewards for each arm a ∈ [K] uniformly at random.

E.1.2 CMAB-CRA

Piecewise-linear. This synthetic domain has a piecewise-linear reward function to ensure that the
greedy approximation solution is optimal, as discussed in Section 4.2. As a stylized setting, this
reward function uses a very simple construction:

µ(p, β) = β ·
(p1
2

+
p2
2

)
. (11)

We visualize this reward in Fig. 6. The optimal reward is at (1, 1).

Quadratic. The quadratic environment is a synthetic domain with well-behaved polynomial reward
function of the form:

µ(p, β) = β
(
1− (p1 − 0.5)2 + (p2 − 0.5)2

)
(12)
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Figure 5: Reward function for the quadratic
environment.

Figure 6: Reward function for the piecewise-
linear environment.

which we visualize in Fig. 5). The optimal reward at is achieved at (0.5, 0.5).

Green Security Domain. For the green security domain, we wish to predict the probability
that poachers place snares throughout a large protected area using ranger patrol observations. We
use real-world historical patrol data from Murchison Falls National Park. The historical data are
continuous-valued GPS coordinates (longitude, latitude) marking trajectories with locations auto-
matically recorded every 30 minutes. Between the years 2015 and 2017, we have 180,677 unique
GPS waypoints.

We normalize the space of the park boundary to the range [0, 1] for both dimensions. For each point
p ∈ [0, 1]2 in this historical data, we compute “effort” or allocation by calculating straight-line
trajectories between the individual waypoints to compute the distance patrolled, allocating to each
waypoint one half the sum of the line segments to which it is connected. We then associate with each
point a binary label {0, 1} representing the observation. Direct observations of poaching are rather
rare, so to overcome strong class imbalance for the purposes of these experiments, we augment the
set of instances we consider a positive label to include any human-related or wildlife observation.
Everything else (e.g., position waypoint) gets a negative label.

To generate a continuous-action reward function, we build a neural network to learn the reward
function across the park and use that as a simulator for reward. The neural network takes three
inputs, a = (point1, point2, β), and outputs a value [0, 1] to indicate probability of an observation.
This probability represents µ(a) for the given point and allocation.

E.2 ADAPTIVE DISCRETIZATION

We offer a visual demonstration of the adaptive discretization process in Fig. 7, using 10,000 real
samples of historical patrol observations from Murchison Falls National Park. This discretization is
used to iteratively build the dataset tree used to initialize the FULL START algorithm with adaptive
discretization.

E.3 ADDITIONAL EXPERIMENTAL RESULTS

In Fig. 8 we evaluate the performance of ARTIFICIAL REPLAY compared to FULL START and IG-
NORANT using two multi-armed bandit algorithms that do not have the IIData property, Thompson
Sampling (TS) and Information-Directed Sampling (IDS). Although our theoretical regret guar-
antees do not apply to Thompson sampling or IDS as base algorithms, these results demonstrate
that empirically ARTIFICIAL REPLAY still performs remarkably well, matching the performance of
FULL START with Thompson sampling and avoiding the exploding regret that FULL START suffers
with IDS.

We note that with imbalanced data, FULL START is converging on a suboptimal action with more
historical data. This is because the IDS algorithm, when warm-started with historical data, maintains
a near-‘zero entropy’ posterior distribution over a sub-optimal action which is over-represented in
the historical dataset. Since the selection procedure takes the action that maximizes expected re-
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β = 0 β = 0.5 β = 1

Figure 7: Adaptive discretization in the S = [0, 1]2 space using 10,000 samples of real historical pa-
trol observations from Murchison Falls National Park. Each row depicts the distribution of historical
samples and the space partition after 500, 1,500, 6,000, and 10,000 samples are added to the dataset
tree. Each column visualizes the dataset tree for each of three levels of effort β ∈ B = {0, 0.5, 1}.
As shown, these real-world historical samples exhibit strong imbalanced data coverage, leading to
significantly fine discretizations in areas with many samples and very coarse discretization in other
regions.
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Figure 8: Cumulative regret (y-axis; lower is better) across time t ∈ [T ]. ARTIFICIAL REPLAY
performs competitively across all domain settings, with both Thompson sampling (Russo et al.,
2018) (left) and information-directed sampling (Russo & Van Roy, 2018) (right). In FULL START
applied to information-directed sampling with H = 1000 the algorithm converges on a sub-optimal
arm since its posterior variance is low (due to more data), resulting in poor regret performance due
to spurious data.

turn divided by posterior variance, the algorithm continuously picks this sub-optimal action at each
timestep.

In Fig. 9 we consider the combinatorial bandit setting with a set of K = 10 discrete arms and a
budget B = 3 over T = 1,000 timesteps. This setting is similar to Fig. 2 but instead here we
consider a combinatorial setting (where multiple arms can be pulled at each timestep) rather than a
standard stochastic K-armed bandit. Across different values of H , ARTIFICIAL REPLAY matches
the performance of FULL START (Fig. 9(a)) despite using an increasing smaller fraction of the
historical dataset Hhist (Fig. 9(b)). The regret plot in Fig. 9(c) shows that the regret of our method
is coupled with that of FULL START across time. Fig. 9(d) tracks the number of samples from
history Hhist, with H = 1,000, used over time: ARTIFICIAL REPLAY uses 471 historical samples
before taking its first online action. The number of historical samples used increases at a decreasing
rate and ends with using 740 samples.

E.4 EXPERIMENT EXECUTION

Each experiment was run with 60 iterations where the relevant plots are taking the mean of the re-
lated quantities. All randomness is dictated by a seed set at the start of each simulation for verifying
results. The experiments were conducted on a personal laptop with a 2.4 GHz Quad-Core Intel Core
i5 processor and 16 GB of RAM.

F OMITTED PROOFS

F.1 SECTION 3 PROOFS

Proof of Theorem 3.2. We start off by showing that πARTIFICIAL REPLAY(Π)
t

d
= πFULL START(Π) using the

reward stack model for a stochastic bandit instance introduced in Lattimore & Szepesvári (2020).
Due to the fact that the observed rewards are independent (both across actions but also across
timesteps), consider a sample path where (Ra,t)a∈A,t∈[T ] are pre-sampled according to ℜ(a). Upon
pulling arm a in timestep t, the algorithm is given feedback Ra,t.
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Figure 9: We consider a combinatorial bandit setting with finite actions: K = 10 arms, B = 3
budget, and horizon T = 1,000. Increasing the number of historical samples H leads FULL START
to use unnecessary data, particularly as H gets very large. ARTIFICIAL REPLAY achieves equal
performance in terms of regret (plot a) while using less than half the historical data (plot b). In
(plot c) we see that with H = 1,000 historical samples, ARTIFICIAL REPLAY uses 471 historical
samples before taking its first online action. The number of historical samples used increases at a
decreasing rate, using 740 total samples by the horizon T .
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It is important to note that the resulting probability space generated in the reward stack model is
identical in distribution to any sequence of histories observed by running a particular algorithm.
More specifically, it preserves the following two properties:

(a) The conditional distribution of the action At given the sequence
(A1, RA1,1), . . . , (At−1, RAt−1,t−1) is πt(· | Ht) almost surely.

(b) The conditional distribution of the reward Rt is ℜ(At) almost surely.

Based on this reward stack model, we show by induction on t that π
ARTIFICIAL REPLAY(Π)
t =

π
FULL START(Π)
t . Since this is true on an independent sample path, it results in a probabilistic cou-

pling between the two algorithms to have the same distribution.

Base Case: t = 1.

By definition of πFULL START(Π) we know that

π
FULL START(Π)
1 = Π(Hhist) .

However, consider πARTIFICIAL REPLAY(Π). The ARTIFICIAL REPLAY meta-algorithm will keep select-
ing actions until it creates a dataset Hon

1 ⊂ Hhist such that Π(Hon
1 ) has no more unused samples in

Hhist. Denoting A1 = Π(Hon
1 ), the unused samples Hhist \ Hon

1 contains no data on A1. As a re-
sult, by the independence of irrelevant data property for Π we have that Π(Hon

1 ) = Π(Hhist) and so
π

FULL START(Π)
1 = π

ARTIFICIAL REPLAY(Π)
1 . Note that this shows that the observed data for the algorithms

H2 are also identical (due to the reward stack model) viaH2 = {A1, RA1,1}.
Step Case: t− 1→ t.

Since we know that πFULL START(Π)
τ = π

ARTIFICIAL REPLAY(Π)
τ for τ < t, both algorithms have access to

the same set of observed online dataHt. By definition of πFULL START(Π):

π
FULL START(Π)
t = Π(Hhist ∪Ht) .

However, the ARTIFICIAL REPLAY algorithm continues to use offline samples until it generates a
subset Hon

t ⊂ Hhist such that Π(Hon
t ∪ Ht) has no further samples in Hhist. Hence, by the indepen-

dence of irrelevant data property again:

Π(Hhist ∪Ht) = Π(Hon
t ∪Ht) ,

and so π
FULL START(Π)
t = π

ARTIFICIAL REPLAY(Π)
t . Again we additionally have that Ht+1 = Ht ∪

{(At, RAt,t)} are identical for both algorithms.

Together this shows that πFULL START(Π) d
= πARTIFICIAL REPLAY(Π). Lastly we note that the defini-

tion of regret is REGRET(T, π,Hhist) = T · OPT −
∑T

t=1 µ(At) where At is sampled from π.

Hence the previous policy-based coupling implies that REGRET(T, πARTIFICIAL REPLAY(Π),Hhist)
d
=

REGRET(T, πFULL START(Π),Hhist) as well.

F.2 SECTION 4 PROOFS

Proof of Theorem 4.1. Suppose that the base algorithm Π is MONUCB, and let H be an arbitrary
dataset. Using the dataset, MONUCB will construct upper confidence bound values UCB(a) for
each action a ∈ [K]. The resulting policy is to pick the action Π(H) = argmaxa∈[K] UCB(a). Let
AH be the action which maximizes the UCB(a) value.

Additionally, let H′ be an arbitrary dataset containing observations from actions other than AH.
Based on the enforced monotonicty of the indices from MONUCB, any a ∈ [K] with a ̸= AH
will have its constructed UCB(a) no larger than its original one constructed with only using the
dataset H. Moreover, UCB(AH) will be unchanged since the additional data H′ does not contain
any information on AH. As a result, the policy will take Π(H∪H′) = AH since it will still maximize
the UCB(a) index.
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Next we provide a regret analysis for IGNORANT(MONUCB). We assume without loss of generality
that there is a unique action a∗ which maximizes µ(a). We let ∆(a) = µ(a∗) − µ(a) be the sub-
optimality gap for any other action a. To show the regret bound we follow the standard regret
decomposition, which notes that E

[
REGRET(T, π,Hhist)

]
=
∑

a ∆(a)E[nT (a)]. To this end, we
start off with the following Lemma, giving a bound on the expected number of pulls of MONUCB
in the “ignorant” setting (i.e., without incorporating any historical data).

Lemma F.1. The expected number of pulls for any sub-optimal action a of MONUCB satisfies

E[nT (a)] ≤
2K

T
+

8 log(T )

∆(a)2

Proof of Lemma F.1. Denote by Sa,τ to be the empirical sum of τ samples from action a. Note that
via an application of Hoeffding’s inequality:

P

(∣∣∣∣µ(a)− Sa,τ

τ

∣∣∣∣ ≥
√

2 log(T )

τ

)
≤ 2

T 4
.

A straightforward union bound with this fact shows that the following event occurs with probability
at least 1− 2K/T 2:

E =

{
∀a ∈ [K], 1 ≤ k ≤ T, |µ(a)− Sa,k/k| ≤

√
2 log(T )

k

}
.

Now consider an arbitrary action a ̸= a∗. We start by showing that on the event E that nt(a) ≤
4 log(T )/∆(a)2. If action a was taken over a∗ at some timestep t then:

UCBt(a) > UCBt(a
∗) .

However, using the reward stack model and the definition of UCBt(a) we know that

UCBt(a) = min
τ≤t

Sa,nτ (a)

nτ (a)
+

√
2 log(T )

nτ (a)
by definition of monotone UCB

≤
Sa,nt(a)

nt(a)
+

√
2 log(T )

nt(a)
.

Moreover, under the good event E we know that µ(a∗) ≤ UCBt(a
∗) and that

µ(a) ≥
Sa,nt(a)

nt(a)
−

√
2 log(T )

nt(a)
.

Combining this together gives

µ(a∗) ≤ µ(a) + 2

√
2 log(T )

nt(a)
.

Rearranging this inequality gives that nt(a) ≤ 8 log(T )/∆(a)2. Lastly, the final bound comes from
the law of total probability and the bound on P(E).

Lastly, Lemma F.1 can be used to obtain a bound on REGRET(T, πMONUCB,Hhist) =
O(
∑

a log(T )/∆(a)) using the previous regret decomposition, recovering the regret bound of stan-
dard UCB.

In order to show Theorems 4.2 and 4.3 we start by showing a lemma similar to Lemma F.1 but for
FULL START(MONUCB).
Lemma F.2. Let Ha be the number of datapoints in Hhist for an action a ∈ [K]. The expected
number of pulls for any sub-optimal action a of FULL START (MONUCB) satisfies

E[nT (a)] ≤
2K

T
+max

{
0,

8 log(T )

∆(a)2
−Ha

}
.
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Proof of Lemma F.2. We replicate the proof of Lemma F.1 but additionally add Ha samples to the
estimates of each action a ∈ [K]. Denote by Sa,τ the empirical sum of τ + Ha samples from
action a. Note that via an application of Hoeffding’s inequality:

P

∣∣∣∣µ(a)− Sa,τ

τ +Ha

∣∣∣∣ ≥
√

2 log(T )

τ +Ha

 ≤ 2

T 4
.

A straightforward union bound with this fact shows that the following event occurs with probability
at least 1− 2K/T 2:

E =

∀a ∈ [K], 1 ≤ k ≤ T, |µ(a)− Sa,k/(k +Ha)| ≤

√
2 log(T )

k +Ha

 .

Now consider an arbitrary action a ̸= a∗. If action a was taken over a∗ at some timestep t then:
UCBt(a) > UCBt(a

∗) .

By definition of the UCBt(a) term we know

UCBt(a) = min
τ≤t

Sa,nτ (a)

nτ (a) +Ha
+

√
2 log(T )

nτ (a) +Ha
(by definition of monotone UCB)

≤
Sa,nt(a)

nt(a) +Ha
+

√
2 log(T )

nt(a) +Ha
.

Moreover, under the good event E we know that µ(a∗) ≤ UCBt(a
∗) and that

µ(a) ≥
Sa,nt(a)

nt(a) +Ha
−

√
2 log(T )

nt(a) +Ha
.

Combining this together gives

µ(a∗) ≤ µ(a) + 2

√
2 log(T )

nt(a) +Ha
.

Rearranging this inequality gives that nt(a) ≤ 8 log(T )/∆(a)2−Ha. Lastly, the final bound comes
from the law of total probability and the bound on P(E).

Using the previous two lemmas we are able to show Theorems 4.2 and 4.3.

Proof of Theorem 4.2. Without loss of generality we consider a setting with K = 2. Let a∗ de-
note the optimal arm and a the other arm. Consider the historical dataset as follows: Hhist =
(a,RH

j )j∈[H] where each RH
j ∼ ℜ(a). By definition of FULL START(MONUCB) we know that

the time complexity of the algorithm is at least T + H since the algorithm will process the entire
historical dataset.

In contrast, ARTIFICIAL REPLAY(MONUCB) will stop playing action a after O(log(T )/∆(a)2)
timesteps via Lemma F.1. Hence the time complexity of ARTIFICIAL REPLAY(MONUCB) can be
upper bound by O(T + log(T )).

Proof of Theorem 4.3. First via Theorem 3.2 we note that in order to analyze
πARTIFICIAL REPLAY(MONUCB) it suffices to consider πFULL START(MONUCB). Using Lemma F.2 and
a standard regret decomposition we get that:

E
[
REGRET(T, πFULL START(MONUCB),Hhist)

]
=
∑
a̸=a∗

∆(a)E[nT (a)] (by regret decomposition)

≤
∑
a̸=a∗

∆(a)O

(
max

{
0,

log(T )

∆(a)2
−Ha

})
(by Lemma F.2)

=
∑
a̸=a∗

O

(
max

{
0,

log(T )

∆(a)
−Ha∆(a)

})
.

27



Under review as a conference paper at ICLR 2023

Proof of Theorem 4.4. Suppose that Π is discretization based, uses monotone confidence estimates,
and is using a greedy approximation solution to solving Eq. (8).

Using the dataset, the discretization based algorithm will construct upper confidence bound values
UCB(R, β) for eachR in some discretization of the space. The resulting policy is to pick the action
which solves an optimization problem of the form:

max
z

∑
β∈B

∑
R∈Pβ

t

UCB(R, β)z(R, β) (13)

s.t.
∑
β∈B

∑
R∈Pβ

t

βz(R, β) ≤ B

∑
β∈B

∑
R∈Pβ

t

z(R, β) ≤ N

z(R, β) +
∑
β′ ̸=β

∑
R̃∈Pβ′

t ,R⊂R̃

z(R̃, β′) ≤ 1 ∀β,R ∈ Pβ
t

where Pβ
t is a fixed discretization of the space S, and UCB(R, β) is constructed based on H. Let

AH be the resulting combinatorial action from solving the optimization problem.

Additionally, let H′ be an arbitrary dataset containing observations from actions other than the
subarms in AH. Based on the enforced monotonicty of the indices, any subarm which is not selected
will have its constructed UCB(R, β) no larger than its original one constructed with only using the
dataset H. Moreover, the indexes of the chosen regions will be unchanged since H′ contains no
information on them. Hence, since Π is solving the expression using a greedy selection rule we
know that the resulting action is the same, since the selected regions were unchanged and the UCB
values are monotone decreasing with respect to the historical dataset.
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