
A Appendix464

A.1 Proof of Proposition 3.1465

Proposition A.1 Consider epoch j of the PARL algorithm with a RELU-network value-to-go estimate466

V̂
⇡j�1

✓ (s) for some fixed policy ⇡j�1. Suppose ⇡j , ⇡̂
⌘
j are the optimal policies as described in Problem467

(1) and its corresponding SAA approximation respectively. Then, 8 s,468

lim
⌘!1

⇡̂
⌘
j (s) = ⇡j(s).

where ⇡j(s) is as described in Problem (1) and ⇡̂
⌘
j (s) is the corresponding SAA approximation.469

Proof Consider any state s and let g(s, a, d) = R(s, a, d)+�V̂
⇡j�1

✓ (T (s, a, d)). We start by showing470

that g⌘(s, a, d) uniformly converges to E[g(s, a,D)] with probability 1. We prove this result by471

proving two main properties of g(s, a, d): (i) g(s, a, d) is continuous in a for almost every d 2 D, and472

(ii) g(s, a, d) is dominated by an integrable function. To prove (ii), we show that g(s, a, d)  C < 1473

w.p. 1 8a 2 A(s).474

First, notice that g(s, a, d) is an affine function of the immediate reward R(s, a, d) and NN approxi-475

mation of the value-to-go function. By assumption, the immediate reward follows these properties.476

Hence, to show these properties for g(s, a, d), we only need to illustrate that the value-to-go estimation477

also follows these properties.478

Consider the value-to-go approximation, simply denoted as V̂✓(T (s, a, d)) with ✓ =479

(c, {(Wk, bk)}K�1
k=1 ) denoting the parameters of the K-layer RELU-network. As T (s, a, d) is contin-480

uous and V̂✓(s) is continuous, V̂✓(T (s, a, d)) is continuous. Note that T (s, a, d) lies in a bounded481

space for any realization of the uncertainty d. Furthermore, since the parameters of the NN ✓ are482

bounded, the outcome of each hidden layer, and subsequently the outcome of the NN are also483

bounded. This proves that the NN is uniformly dominated by an integrable function. Then, following484

Proposition 8 of [40], we have uniform convergence of g⌘(s, a, d) to E[g(s, a,D)] w.p. 1. Finally,485

convergence of the optimal solution follows from a direct application of Theorem 5.3 of [41], where486

we have used the fact that for all s the set of feasible actions is a bounded polyhedron A(s) and that487

for any ⌘, the set of optimal actions ⇡̂⌘(s) is non-empty. This proves the final result. ⇤488

A.2 Math-Programming Actor in PARL for Inventory Management489

Below we show mixed-integer linear reformulation of the inventory management MDP described490

in § 4 using PARL for the value-to-go terms. This formulation can be solved using commercially491

available standard optimization software such as CPLEX and Gurobi.492
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Ĩ
0
li = I

0
l + I

1
l + d

p
li +

X

l02Ol

xl0l Ll0l=0 �
X

{l02⇤|l2Ol0}

xll0 , 8 l 2 ⇤, i, (18)

I
0
li
0 = Ĩ
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B
j
li � 0, 8 j = 0, · · · ,max

l02Ol

Ll0l, l 2 ⇤, i, (21)

(I0�i, z2qi, y2qi) 2 P (W1q, b1q,0, Ū) 8q 2 N1, (22)
(zk,i, zk+1,qi, yk+1,qi) 2 P (Wkq, bkq, lk, uk) 8q 2 Nk, k = 2, · · · ,K � 1. (23)

We describe the extra notation that use in formulating the PARL actor as a MIP. Let I0�i be the vector493

of I0li across all the locations l which is an input to the DNN for every uncertainty sample i. We494

denote Nk as the number of neurons indexed by in layer k of the RELU-network and it is indexed495

by q. We let lk and uk are pre-computed lower and upper bounds of the inputs to every layer of the496

NN given the fixed bounds [0, Ū] of the first later and computed as described in § 3. We introduce a497

binary variable wll0 which is 1 if xll0 > 0 and 0 otherwise. This is enforced with Eqs. (16-17). A498

sales variable sli is modeled via Eqs. (14-15) to be less than demand d
d
li and the auxiliary inventory499

variable Ĩ
0
li. Since the sales is multiplied by price pl, a positive constant, sales will be exactly the500

minimum of the demand and inventory. Bj
li is decision variable that captures the inventory spilled501

over which is positive if the state update variables I 0li exceeds Ūl and 0 otherwise. This condition is502

enforced using a small linear penalty term �Bli in the objective.503

A.3 Hyperparameters and parameter tuning504

In this section, we discuss the different parameters selected for PARL and the other benchmark505

methods and the corresponding tuning procedure.506

A.3.1 Fixed hyper parameters507

Here we report the fixed set of hyper parameters used by all methods. These were determined508

based on two factors: (1) the commonly used settings across the RL literature (for example 64x64509

architecture and batch size 64 is most commonly used across many different problems and methods),510

and by sampling random combinations from a large grid of hyper parameters and comparing results511

trends to narrow down the set of hyper parameters to consider to consistently well-performing values512

and reasonable ranges.513

This was an iterative process where we tried a range of hyper parameters, then refined. We focused514

mostly on the PPO method at first as it was the first one we had implemented and started testing515

in this supply chain setting, but it gave us a general sense of what kind of hyper parameters had516

a chance at working well for these problems and environments. In particular, we tried larger517

network architectures, including 128x128, 512x512, 1024x1024, 128x128x128, 512x256, 1024x512,518

1024x512x256, 128x32, 512x128, 512x256x64, but generally did not see significant improvement519

across environments, especially when using the continuous action and state spaces (perhaps also520

because the limited size of our observation and action spaces) - so decided to fix everything to the521

standard 64x64 for fair comparison, and improved computationally efficiency. We tried 32, 64, and522

128 batch size, but also did not see significant difference in what gave the best results, so set this523

to the most commonly used 64. We also consistently saw ReLU activation performing as good or524

better than tanh (overall it gave close but slightly better results) - so fixed the activation to ReLU525

across methods for fair comparison, and since ReLU is known to enable more efficient optimization526

[42, 43]. These initial experiments also revealed that the standard gamma value of 0.99 consistently527

gave much poorer results than smaller gamma values for most environments (trying 0.99, 0.9, 0.85,528

0.8 and 0.75) - so we included smaller gamma values in our hyper-parameter grids but still kept529

the option of the traditionally used 0.99 gamma for the benchmark RL methods in case they were530

able to factor in longer-term impact better. Furthermore, we originally tried different observation531

and action space representations, including discrete, multi-discrete and continuous for each decision532

variable (normalized to be within -1 to 1). Interestingly, and somewhat surprisingly to us, we found533

both continuous action representation and continuous state representation to work as good or better534

than multi-discrete (and much better than discrete) while offering significant computational speedup,535

even enabling significantly higher mean reward in some cases, so we fixed the state and action536

representations to continuous (i.e., the box space - continuous for each action variable and normalized537

to be within -1 to 1). This may be because of the much fewer model parameters required, and the538

main focus in the majority of RL research on continuous spaces, potentially making the existing set539

of algorithms most suited for such spaces. Additionally for number of internal training iterations per540

collected buffer (PPO-specific setting) we tried 10, 20, and 40, and 70 found best results with 10-20,541

so fixed the amount to 20. Finally, for the number of steps per epoch / update (PPO and A2C-specific542
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setting) we tried 512, 1024 and 2048 and found the larger number to give better results generally543

so fixed this to 2048. For PPO we also found early stopping the policy update per epoch, based on544

KL-divergence threshold of default 0.15, to consistently provide better results than not using this.545

These initial evaluations using PPO were also used to set the suitable range of hyper-parameters for546

our PARL algorithm. In particular we fixed all the hyper-parameters as specified in Table 3 (as with547

the other methods), and also the 20 internal train iterations as with PPO. Additionally we tried a few548

values of gamma before fixing it to 0.75 (included in the range of gammas for the benchmark RL549

algorithms) in order to speed up experiments for PARL by having a reduced grid of hyper parameters.550

The final set of fixed hyper-parameters used across all experiments, models, runs, and environments551

are given in Table 3.552

Table 3: Fixed set of hyper-parameters used for all methods

Batch size Net arch.
(hidden layers
per net)

Activation State repre-
sentation

Action repre-
sentation

Epoch
length

64 64x64 ReLU continuous
(normalized)

continuous
(normalized)

2048

A.3.2 Tuning hyper parameters553

Here we show the set of tuning hyper parameters that were applied to each method and all environ-554

ments, from which the best set of hyper parameters were selected per environment for each method.555

PPO and A2C tuning hyper parameters are given in Table 4 and SAC and TD3 in Table 5. This best556

set of hyper parameters was then used for the evaluation of the RL model - by retraining 10 different557

times with different random seeds using those best hyper paramaters for each method, and reporting558

statistics on the 20-episode evaluations of the best epoch model across the 10 runs.559

Besides initial experimentation to set some of the hyper-parameters as mentioned in the previous560

section, and specific hyper parameters that were tuned here, all other hyper parameters were set at561

their default values in the Stable Baselines 3 implementation (so please refer to the API1 for other562

settings not listed here). Note, default optimizers are used, which is ADAM for all except A2C which563

uses RMSprop by default.564

Table 4: Tuning hyper parameters and additional fixed hyper parameters for PPO and A2C - we vary
gamma, learning rate, and value function coefficient - resulting in 36 hyper parameter combinations

Hyper Parameters for PPO and A2C Value(s)
Discount Factor - Gamma (G) 0.99, 0.9, 0.80, 0.75
Learning rate (LR) 0.01, 0.003, 0.0003
Value function coefficient (in loss) (VFC) 0.5, 1.0, 3.0
Number of steps to run per update (epoch length) 2048
Max gradient norm (for clipping) 0.5
GAE lambda (trade-off bias vs. variance for Generalized Advantage
Estimator)

0.95 (PPO) and 1.0
(A2C) (defaults)

Number of epochs to optimize surrogate loss (internal train iterations
per update - PPO only) 20

KL divergence threshold for policy update early stopping per epoch
(PPO only)

0.15
(“target_kl”=0.1)

Clip range (PPO only) 0.2
RMSprop epsilon (A2C only) 1e-05

1https://stable-baselines3.readthedocs.io/en/master/
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Table 5: Tuning hyper parameters and additional fixed hyper parameters for SAC and TD3 - we vary
gamma, learning rate, and exploration options - resulting in 32 hyper parameter combinations

Hyper Parameters for SAC and TD3 Value(s)
Discount Factor - Gamma (G) 0.99, 0.9, 0.80, 0.75

Learning rate (LR) 0.01, 0.003, 0.0003,
0.00003

Use generalized State Dependent Exploration vs. Action Noise Explo-
ration (SAC) or Action Noise vs. not (TD3) (EO) True, False

Tau (soft update coefficient) 0.005
Replay buffer size 105

Entropy regularization coefficient (SAC only) auto

Table 6: Tuning hyper parameters for PARL

Hyper Parameters for PARL Value(s)
Discount Factor - Gamma (G) 0.99, 0.9, 0.8, 0.75
Learning rate (LR) 0.01, 0.003, 0.001
Sample approximation averaging (SAA) approach used to generate
demand samples quantile, random

SAA samples per step 2, 3

A.3.3 Evaluation hyper parameters565

Here we show the selected set of best hyper parameters used for each benchmark RL method566

and environment, in Table 7. These were selected based on what gave the best average reward567

(maximum over the training epochs), averaged across 10 different model runs for that hyper-parameter568

combination.569

Table 7: Best hyper parameters selected for each environment and method, for the benchmark RL
methods. See Tables 4 and 5 for hyper parameter abbreviations.

method SAC TD3 PPO A2C
setting

1S-3R-High G=0.9
LR=0.01
EO=True

G=0.9
LR=0.0003
EO=False

G=0.9
LR=0.003
VFC=1.0

G=0.8
LR=0.003
VFC=0.5

1S-3R G=0.75
LR=0.003
EO=True

G=0.8
LR=0.0003
EO=False

G=0.8
LR=0.003
VFC=1.0

G=0.8
LR=0.003
VFC=0.5

1S-10R G=0.8
LR=0.003
EO=True

G=0.9
LR=0.0003
EO=True

G=0.8
LR=0.003
VFC=1.0

G=0.9
LR=0.003
VFC=1.0

1S-2W-3R G=0.8
LR=0.003
EO=False

G=0.9
LR=0.0003
EO=False

G=0.8
LR=0.003
VFC=1.0

G=0.8
LR=0.003
VFC=3.0

1S-2W-3R
(DS)

G=0.9
LR=0.0003
EO=True

G=0.9
LR=0.0003
EO=True

G=0.75
LR=0.003
VFC=3.0

G=0.8
LR=0.003
VFC=0.5

For PARL, a common set of hyper-parameters were used across all five settings. The discount factor570

was set to 0.75, learning-rate was set to 0.001, and the sample-averaging approach used was quantile571

sampling with 3 demand-samples per step.572
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A.4 Supply chain environment problem parameters573

In the table below we provide the details of the environment parameters in a concise format for the 5574

different supply chain networks that we study and we describe it below.575

We assume deterministic production constant per-period production and that the variability is only576

in the demand. The parameters are provided node type - Retailer (R), Supplier (S) and Warehouse577

(W) - and then by links between them. Whenever they are provided in a list format, they correspond578

to the retailers and warehouses in a chronological order (i.e., R1, R2, R3 or W1, W2). Also, when579

there are more nodes or links than the parameters (few elements in the list specified in the table),580

it means the parameters list in repeated in a cyclic fashion. For example the lead time (S or W to581

R) for the environment 1S-10R is given by [1,2,3] and this means the lead time for links [S-R1,582

S-R2,....,S-R10] is (1,2,3,1,2,3,1,2,3,1). The notation for the distributions used are N(µ,�) for a583

normal distribution with mean µ and standard deviation � and U(a, b) discrete uniform between a584

and b. Note that because demand is discrete and positive, when we use a normal distribution, we585

round and take the positive parts of the realizations. The lead-time list has a tuple representation in586

the dual-sourcing setting to represent the lead time of a retailer from the two different warehouses.587

For example (1,5) in the list represents the lead time for W1-R1 and W2-R2. Lastly, the environment588

only imposes spillage cost at the node if the on-hand exceeds the holding capacity, while PARL MIP589

actor imposes it on the pipeline inventory actor to ensure it is not over-ordering. As the maximum590

order is less or equal to the holding capacity on various links, such a constraint in PARL actor helps591

to avoid over-ordering in dual sourcing settings. The ability of PARL to gainfully incorporate such592

constraints exactly when they are known, possibly provides it an edge over vanilla RL methods.593

Parameters 1S-3R-High 1S-3R 1S-10R 1S-2W-3R 1S-2W-3R (DS)

Retailer demand distribution [N(2,10)] [N(2,10)] [N(2,10)] [N(2,10)] [N(2,10)]

Retailer revenue per item [50] [50] [50] [50] [50]

Retailer holding cost [1,2,4] [1,2,4] [1,2,4,8] [1,2,4] [1,2,4]

Retailer holding Capacity [50] [50] [50] [50] [50]

Supplier production per step 15 10 25 10 10

Supplier holding capacity 100 100 150 100 100

Warehouse holding cost - - - [0.5] [0.5, 0.1]

Warehouse holding capacity - - - [150] [150]

Spillage cost at S,W,R [10] [10] [10] [10] [10]

Lead time (S or W to R) [1,2,3] [1,2,3] [1,2,3] [1,2,3] [(1,5),(2,6),(3,7)]

Lead time (S to W) - - - [2] [2]

Fixed order cost (S or W to R) [50] [50] [50] [50] [50]

Fixed order cost (S to W) - - - [0] [0]

Variable order cost (any link) [0] [0] [0] [0] [0]

Maximum order (any link) [50] [50] [50] [50] [50]
Initial inventory distribution

(node or link) [U(0,4)] [U(0,4)] [U(0,4)] [U(0,4)] [U(0,4)]
Table 8: Environment parameters for different supply chains studied

Then for all methods, given a selected best hyper-parameter combination per method and environment,594

we trained 10 different models for each (i.e., with different random seeds). Each training run used an595

episode (trajectory) length of 256, an epoch length of 2048 and 500 epochs. Finally, for each trained596

model, we took the best epoch model according to the observed reward during training, and then597

evaluated each of the 10 trained models with 20 test episodes, initialized with random seeds, and598

using trajectory length 256, to get our final reported mean and standard deviation per method and599

environment.600
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A.5 Comparison of quantile and random sampling in PARL601

Here we compare the use of quantile sampling and random sampling to generate realizations of the602

uncertainty in (3). For the five settings under consideration, we compare the per-step reward and603

per-step training time across the two sampling approaches.604

As can be seen in Table 9, random sampling yields per-step rewards which are close to those obtained605

via quantile sampling. In terms of training time, random sampling is slower in certain settings (e.g.606

1S-3R-High and 1S-10R), with higher per-step train-time average and variance.607

Setting
PARL-quantile
per-step reward

PARL-random
per-step reward

PARL-quantile
per-step train-time (s)

PARL-random
per-step train-time (s)

1S-3R-High
514.8 ± 5.3

514.3
505.3 ± 11.0

505.1 0.178 ± 0.06 0.457 ± 0.26

1S-3R
400.3 ± 3.3

400.8
399.5 ± 2.8

400.8 0.051 ± 0.01 0.053 ± 0.01

1S-10R
1006.3 ± 29.5

1015.7
1005.4 ± 21.1

1007.3 0.089 ± 0.03 0.12 ± 0.07

1S-2W-3R
398.3 ± 2.5

399.7
395.3 ± 3.1

395.9 0.051 ± 0.01 0.050 ± 0.01

1S-2W-3R (DS)
405.4 ± 2.0

405.9
398.9 ± 9.7

402.0 0.044 ± 0.01 0.043 ± 0.01

Table 9: Comparison of quantile and random sampling in PARL.
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