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A APPENDIX

A.1 DETAILS OF CALCULATING THE WEIGHT

To compute λij , we first calculate the Absolute Pose Error (APE) for each pose pair using the for-
mula: Eij = P−1

i Pj , where Pi and Pj are the different camera poses respectively. After obtaining
Eij , the APE is calculated as:

APEij = ∥Eij − I4×4∥F , (12)

where I4×4 is the identity matrix F and represents the Frobenius norm. In each iteration, the APE
values are normalized across all image pairs to derive the weights λij , as: λij =

APEij∑
k APEk

, where k
represents each image pair within one iterations. This normalization ensures they reflect the relative
contributions of each pose error in a consistent manner. This method is implemented based on the
APE computation approach in the evo library (Grupp, 2017).

A.2 DETAILS OF DATASET

We create a correspondence pair dataset based on the training set of DL3DV-10K (Ling et al., 2024)
dataset to fine-tune our VAE encoder. We randomly sample 784 scenes and extract correspondence
pairs from the multi-view images by using COLMAP. The correspondence points for each scene
will be pre-computed before the model fine-tuning process. We use a sequential matcher with the
number of overlapping images set to 10 and the number of quadratic overlaps set to 1. Such over-
lapping searching strategy ensures our model not only learns from easy and dense correspondence,
but also from challenging cases among far-view image pairs, adding great robutness for our model.
The ability to remain consistency in large view difference is particularly necessary for the outdoor
unbounded reconstruction. Moreover, we set the minimum number of inliers and minimum ratio of
inliers to 15 and 0.25 with the loop detection to make sure the extracted correspondence is accurate
enough. We also train the same number of latent 3D Gaussian splatting scenes from the DL3DV-
10K datasets to create a paired dataset of images and rendered latents, which are used for Stage-III
decoder fine-tuning.

A.3 IMPLEMENTATION DETAILS

For Stage-I, we employ the pre-trained VAE model (f = 8, KL), from LDM model zoo as the
backbone VAE model. We fine-tune the VAE on 2 NVIDIA A100-80GB GPUs for around one day,
by using the correspondence pair dataset with an image resolution of 512×512, the base learning rate
of 4.5e− 06, and the default optimizer. For Stage-III, we fine-tune the decoder on the image-latent
dataset with 2 NVIDIA A100-80GB GPUs for around one day.

In the implementation of LRF, we normalize the latent input to the radiance field using the scale of
all input views to stabilize radiance field optimization, and apply denormalization during rendering.
During the VAE encoding stage, we start the discriminator at step 501 for better image quality, and
we set KLweight = 1.0 × 10−6, and Dweight = 0.5. For the decoder training, we use the same
configuration as the original VAE, except KLweight = 0 to ensure only the decoder was optimized.

A.4 IMAGE RECONSTRUCTION PERFORMANCE

To verify that our approach does not degrade the performance on downstream tasks, we evaluate the
image reconstruction performance of our fine-tuned VAE by calculating PSNR between the original
images and the reconstructed images. As shown in Table 4, adding the correspondence consistency
constraint to inject 3D awareness and applying a regularization loss to keep the latent space close to
the original latent space perform minimal impact on the VAE’s reconstruction performance. This en-
sures that our VAE model can still be effectively used in conjunction with other pre-trained models,
such as the Stable Diffusion model, without any fine-tuning.
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Table 4: Evaluation of PSNR for images reconstructed by VAEs on NeRF-LLFF, DL3DV-10K, and
Mip-NeRF360 datasets.

Method Metric NeRF-LLFF DL3DV-10K Mip-NeRF360
VAE PSNR ↑ 23.47 24.59 24.54
Our-VAE PSNR ↑ 23.59 23.25 24.24

A.5 MORE IMAGE GENERATION RESULTS

Fig. 7 demonstrates that our VAE model can generate 3D objects guided by text prompts without
any fine-tuning of the diffusion model. Moreover, Fig. 8 shows that our VAE can also improve the
GSGEN (Chen et al., 2024) to achieve better 3D generations with complicated text prompts.

A.6 EFFICIENCY ANALYSIS

Table 5 demonstrates that our method reduces input resolutions, model storage space, and GPU
usage for photorealistic NVS, which is particularly useful in cases with limited communication
bandwidth and storage. For instance, some individuals may not have GPUs with large memories,
where our method is an efficient solution for them to run photorealistic NVS algorithms.

Table 5: Efficiency comparison of different image-space and latent-space NVS methods.
Method Input resolution Training Time ↓ GPU Usage ↓ Storage ↓ Rendering FPS ↑ Decoding FPS ↑ PSNR ↑ SSIM ↑ LPIPS ↓
3DGS 512×512 5.9 min 3 GB 200.41 MB 100 - 26.17 0.778 0.009
3DGS/8 64×64 3.1 min 1 GB 59.15 MB 200 - 14.03 0.352 0.541
3DGS-VAE 64×64 4.8 min 2 GB 250.97 MB 80 20 20.57 0.595 0.346
Latent-NeRF 64×64 27.2 min 10 GB 350.50 MB 0.09 20 18.16 0.530 0.432
Ours 64×64 3.9 min 1 GB 96.42 MB 180 20 22.45 0.667 0.197

A.7 MORE EXPERIMENTAL RESULTS

To demonstrate the effectiveness and generalizability of our method for 3D latent reconstruction,
we show more NVS and 3D generation results on four datasets covering indoor scenes, outdoor
scenes, and object-level scenes. As shown in Fig. 9, 10, 11 and 12, our method yields a significant
improvement in image quality.
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Ours Dreamfusion Ours Dreamfusion Ours Latent-NeRF

A small saguaro cactus
planted in a clay pot

A hamburger A stack of pancakes cov-
ered in maple syrup

An ice cream A temple A lego man

Figure 7: Samples for text-to-3D generation on the image and latent space.

Ours GSGEN Ours GSGEN Ours GSGEN

A DSLR photo of a tray of sushi
containing pugs

A zoomed out DSLR photo of a
cake in the shape of a train

A zoomed out DSLR photo of a
plate of fried chicken and waffles

Figure 8: More samples for text-to-3D generation on the image space.
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Groundtruth Ours 3DGS-VAE

Mip-Splatting Feature-GS 3DGS

Figure 9: More NVS results on the DL3DV-10K dataset.

17



Published as a conference paper at ICLR 2025

Groundtruth Ours 3DGS-VAE

Mip-Splatting Feature-GS 3DGS

Figure 10: More NVS results on the NeRF-LLFF dataset.
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Groundtruth Ours 3DGS-VAE

Mip-Splatting Feature-GS 3DGS

Figure 11: More NVS results on the Mip-NeRF360 dataset.
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Groundtruth Ours 3DGS-VAE Mip-Splatting Feature-GS 3DGS

Figure 12: More NVS results on the MVImgNet dataset.
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