
Appendix

A Network Architectures

In this section, we describe the details of the network architectures used in Sec. 4 and 5.

We mainly used 4 GPUs (NVIDIA V100; 16GB) for the experiments in Sec. 4 and 5 and it took about 4 hours per
seed (in the case of 3M steps). Actually, we conducted exhaustive evaluations through the enormous experiments,
and we hope our empirical observations and recommendations help the practitioners to explore the explosive
configuration space.

Architecture MPO AWR AWAC SAC
Policy network (256, 256, 256) (128, 64) (256, 256) (256, 256)
Value network (512, 512, 256) (128, 64) (256, 256) (256, 256)
Activation function ELU ReLU ReLU ReLU
Layer normalization ! – – –
Input normalization – ! – –

Optimizer Adam SGD
(momentum=0.9) Adam Adam

Learning rate (policy) 1e-4 5e-5 3e-4 3e-4
Learning rate (value) 1e-4 1e-2 3e-4 3e-4
Weight initialization Uniform Xavier Uniform Xavier Uniform Xavier Uniform
Initial output scale (policy) 1.0 1e-4 1e-2 1e-2
Target update Hard – Soft (5e-3) Soft (5e-3)
Clipped Double Q False – True True

Table 7: Details of each network architecture. We refer the original implementations of each algorithm which is
available online [23, 14, 48, 27, 42]. Note that AWR uses different learning rates of the policy per environment.

MPO Hopper-v2 Walker2d-v2 HalfCheetah-v2 Ant-v2 Humanoid-v2 Swimmer-v2
Learning rate (η) 1e-2
Dual constraint 1e-1
Mean constraint 3.34e-4 1.67e-4 1e-3 1e-3 5.88e-5 1e-3
Stddev constraint 3.34e-7 1.67e-7 1e-6 1e-6 5.88e-8 1e-6
Action penalty constraint 1e-3
Inital stddev scale 0.7 0.3 0.5 0.5 0.3 0.5
Discount factor γ 0.99

Table 8: Hyper-parameters of MPO. We follow the implementation by Hoffman et al. [27]. Some of mean &
stddev constraint are divided by the number of dimensions in the action space as suggested by Hoffman et al.
[27], which is empirically better.

AWR Hopper-v2 Walker2d-v2 HalfCheetah-v2 Ant-v2 Humanoid-v2 Swimmer-v2
Learning rate (policy) 1e-4 2.5e-5 5e-5 5e-5 1e-5 5e-5
Stddev scale 0.4 0.4 0.4 0.2 0.4 0.4
Exp-Advantage Weight clip 20.0
Action penalty coefficient 10.0
Discount factor γ 0.99
λ for TD(λ) 0.95

Table 9: Hyper-parameters of AWR. We follow the implementation by Peng et al. [48].

Small Network (AWR) We denote the policy and value network used in AWR as a small (S) network,
described as follows (in Sec. 5.4, we didn’t change the activation and distribution):

from torch import nn

activation = nn.ReLU()
distribution = GaussianHeadWithFixedCovariance()

policy = nn.Sequential(
nn.Linear(obs_size, 128),

16

activation,
nn.Linear(128, 64),
activation,
nn.Linear(64, action_size),
distribution,

)
vf = nn.Sequential(

nn.Linear(obs_size, 128),
activation,
nn.Linear(128, 64),
activation,
nn.Linear(64, 1),

)

Medium Network (SAC) We denote the policy and value network used in SAC as a medium (M) network,
described as follows (in Sec. 5.4, we didn’t change the activation and distribution):

from torch import nn

activation = nn.ReLU()
distribution = TanhSquashedDiagonalGaussian()

policy = nn.Sequential(
nn.Linear(obs_size, 256),
activation,
nn.Linear(256, 256),
activation,
nn.Linear(256, action_size * 2),
distribution

)
q_func = nn.Sequential(

ConcatObsAndAction(),
nn.Linear(obs_size + action_size, 256),
activation,
nn.Linear(256, 256),
activation,
nn.Linear(256, 1)

)

Large Network (MPO) We denote the policy and value network used in MPO as a large (L) network,
described as follows (in Sec. 5.4, we didn’t change the activation and distribution):

from torch import nn

activation = nn.ELU()
distribution = GaussianHeadWithDiagonalCovariance()

policy = nn.Sequential(
nn.Linear(obs_size, 256),
nn.LayerNorm(256),
nn.Tanh(),
activation,
nn.Linear(256, 256),
activation,
nn.Linear(256, 256),
activation,
nn.Linear(256, action_size * 2),
distribution

)
q_func = nn.Sequential(

ConcatObsAndAction(),
nn.Linear(obs_size + action_size, 512),
nn.LayerNorm(512),
nn.Tanh(),
activation,

17

nn.Linear(512, 512),
activation,
nn.Linear(512, 256),
activation,
nn.Linear(256, 1)

)

B Relations to Other Algorithms

We here explain the relation of the unified policy iteration scheme covers other algorithms. While we mainly
focused on AWR, MPO, and SAC in the this paper, our unified scheme covers other algorithms too, as summarized
in Table 1:

EM control algorithms:
• PoWER [30]: πp (= πθ) update is analytic. G = η logQπp and Qπp is estimated by TD(1). πθ =
N (µθ(s),Σθ(s)) .

• RWR [49]: πp = πθ is updated by SG. G = η log r , and πθ = N (µθ(s),Σ) . When the reward is
unbounded, RWR requires adaptive reward transformation (e.g. uβ(r(s, a)) = β exp(−βr(s, a)); β is a
learnable parameter).

• REPS [50]: πp is πq of the previous EM step (on-policy) or a mixture of all previous πq (off-policy), which
is approximated by samples. G = Aπp and estimated by a single-step TD error with a state-value function
computed by solving a dual function. πq is assumed as a softmax policy for discrete control in the original
paper.

• UREX [41]: πp = πθ is updated by SG. G = Qπp and estimated by TD(1). πθ is assumed as a softmax
policy for discrete control in the original paper.

• V-MPO [56]: Almost the same as MPO, but a state-value function is trained by n-step bootstrap instead of
Q-function. Top-K advantages are used in E-step.

KL control algorithms:
• TRPO [52]: πq = πθ = N (µθ(s),Σθ). The KL penalty is converted to a constraint, and the direction of the

KL is reversed. G = Aπp and estimated by TD(1). πp is continuously updated to πq .
• PPO with a KL penalty [54]: πq = πθ = N (µθ(s),Σθ). The direction of the KL penalty is reversed.
G = Aπp and estimated by GAE [53]. An adaptive η is used so that DKL(πp || πq) approximately matches
to a target value.

• DDPG3 [36]: πq = πθ is the delta distribution and updated by SG. G = Qπq and estimated by TD(0). η = 0
(i.e., the KL divergence and πp update are ignored).

• TD32 [13]: It is a variant of DDPG and leverages three implementational techniques, clipped double
Q-learning, delayed policy updates, and target policy smoothing.

• BRAC [68] and BEAR [31] (Offline RL): When we assume πp = πb (any behavior policy), and omitting its
update, some of the offline RL methods, such as BRAC or BEAR, can be interpreted as one of the KL control
methods. Both algorithms utilize the variants of clipped double Q-learning (λ-interpolation between max and
min).

3Note that DDPG and TD3 are not the “inference-based” algorithms, but we can classify these two as KL
control variants.

18

C Benchmarks on DeepMind Control Suite

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

�
�
�
�
��
�
��
�
��
�
�
�
�
�
�

����������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

����������������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

�����������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

���������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

�
�
�
�
��
�
��
�
��
�
�
�
�
�
�

������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

����������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

����������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

�
�
�
�
��
�
��
�
��
�
�
�
�
�
�

�����������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

���������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

�
�
�
�
��
�
��
�
��
�
�
�
�
�
�

�����������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

����������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

���������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

����������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

�
�
�
�
��
�
��
�
��
�
�
�
�
�
�

����������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

����������������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

����������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

����������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

�
�
�
�
��
�
��
�
��
�
�
�
�
�
�

������������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

�����������������������

��� ��� ��� ��� ��� ���
�

���

���

���

���

����

�����������������������

� � ��
�

���

���

���

���

����

������������������������

��� ��� ��� ��� ��� ���

�������������������

�

���

���

���

���

����

�
�
�
�
��
�
��
�
��
�
�
�
�
�
�

�����������������������������������

��� ��� ��� ��� ��� ���

�������������������

�

���

���

���

���

����

�����������������������������������

� � ��

�������������������

�

���

���

���

���

����

��������������������������

� � ��

�������������������

�

���

���

���

���

����

�������������������������

��� ������ ������ �������� ��� ���

Figure 2: Benchmarking results on DeepMind Control Suite 28 environments. The performances are averaged
among 10 random seeds. We use an action repeat of 1 throughout all experiments for simplicity.

In this section, we show the benchmarking results on 28 tasks in DeepMind Control Suite (Figure 2). Each
algorithm is run with 2.5M steps (except for humanoid domain; 14M steps), following Abdolmaleki et al. [2].
While the previous work mentioned that tuning the number of action repeats was effective [33], we used an
action repeat of 1 throughout all experiments for simplicity. We also use the hyper-parameters of each algorithm

19

presented in Appendix A. As discussed in Sec. 5.3, we incorporate ELU and layer normalization into SAC
in several domains where SAC is behind MPO or AWR. ELU and layer normalization significantly improve
performances, especially in pendulum_swingup and cartpole_swingup_sparse. Some of MPO results don’t seem
to match the original paper, but we appropriately confirmed that these results are equivalent to those of its public
implementation [27].

SAC SAC-E+ SAC-L+ SAC-E+L+ MPO AWR
cartpole_balance 975± 12 – – – 824± 118 905± 146
manipulator_bring_ball 0.27± 0.0 0.80± 0.1 0.96± 0.3 0.72± 0.1 0.79± 0.1 0.85± 0.2
ball_in_cup_catch 980± 0.5 – – – 976± 6 538± 328
point_mass_easy 850± 75 – – – 632± 254 597± 329
reacher_easy 949± 14 – – – 920± 18 934± 25
reacher_hard 962± 18 – – – 941± 22 868± 70
hopper_hop 151± 50 – – – 41± 22 0.1± 0.2
walker_run 615± 56 – – – 416± 99 133± 40
finger_spin 962± 39 – – – 888± 69 317± 185
hopper_stand 720± 207 – – – 640± 199 5± 1
walker_stand 972± 6 – – – 945± 18 633± 221
fish_swim 152± 23 317± 32 108± 9 130± 6 434± 66 97± 13
swimmer_swimmer15 199± 15 – – – 139± 14 52± 4
swimmer_swimmer6 229± 12 223± 11 138± 13 189± 17 238± 29 170± 4
acrobot_swingup 10± 10 21± 10 15± 7 34± 27 127± 36 4± 2
cartpole_swingup 822± 45 – – – 776± 109 767± 106
pendulum_swingup 542± 279 550± 232 718± 62 830± 4 819± 11 1± 4
acrobot_swingup_sparse 0.40± 0.1 0.43± 0.2 0.46± 0.0 0.42± 0.1 4± 4 0.0± 0.0
finger_turn_easy 922± 34 – – – 556± 116 374± 117
finger_turn_hard 904± 21 – – – 410± 156 109± 113
fish_upright 876± 25 – – – 631± 166 478± 143
cheetah_run 682± 44 – – – 331± 60 285± 73
walker_walk 916± 77 960± 7 866± 93 875± 97 931± 25 482± 115
humanoid_run 17± 47 3± 2 52± 62 71± 39 22± 42 0.8± 0.0
cartpole_balance_sparse 987± 27 892± 119 982± 30 982± 10 949± 76 1000± 0.0
cartpole_swingup_sparse 370± 370 582± 261 648± 324 745± 36 585± 294 3± 10
humanoid_stand 221± 231 469± 245 448± 359 630± 129 651± 183 6± 0.0
humanoid_walk 182± 255 166± 148 250± 209 219± 177 224± 197 1± 0.0

Table 10: Raw scores of Figure 2. The performances are averaged among 10 random seeds. Each algorithm is
run with 2.5M steps (except for humanoid domain; 14M steps), following Abdolmaleki et al. [2]. We use an
action repeat of 1 throughout all experiments for simplicity.

D Benchmarks on MuJoCo Manipulation Tasks

We extensively evaluate their performance in the manipulation tasks (Figure 3). The trend seems the same as the
locomotion tasks, while AWR beats SAC and MPO in Striker, which means they fall into sub-optimal.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

cu
m

ul
at

iv
e

re
wa

rd
s

Reacher-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

60

50

40

30

20

10

0

cu
m

ul
at

iv
e

re
wa

rd
s

Pusher-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

350

300

250

200

150

100

cu
m

ul
at

iv
e

re
wa

rd
s

Striker-v2
SAC AWR MPO

Figure 3: Benchmarking results on OpenAI Gym MuJoCo manipulation environments. All experiments are
run with 10 random seeds. SAC and MPO completely solve Reacher and Pusher, while in Striker they fall into
sub-optimal.

20

E Reproduction Results of AWR on MuJoCo Locomotion Environments

We re-implemented AWR based on PFRL, a pytorch-based RL library [14], referring its original implementa-
tion [48]. Figure 4 shows the performance of our implementation in the original experimental settings, also
following hyper-parameters. We recovered the original results in Peng et al. [48] properly.

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps(1e7)

0

500

1000

1500

2000

2500

3000

3500

4000

cu
m

ul
at

iv
e

re
wa

rd
s

Hopper-v2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Steps(1e7)

0

1000

2000

3000

4000

5000

6000

7000

cu
m

ul
at

iv
e

re
wa

rd
s

Walker2d-v2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Steps(1e7)

0

2000

4000

6000

8000

cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah-v2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Steps(1e7)

1000

2000

3000

4000

5000

cu
m

ul
at

iv
e

re
wa

rd
s

Ant-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training Steps(1e7)

0

1000

2000

3000

4000

5000

6000

7000

cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid-v2

AWR

Figure 4: Reproduction of Advantage Weighted Regression (AWR). We obtained comparable results to the
original paper.

21

F Learning Curves

In this section, we present learning curves of the experiments in Sec. 5.

F.1 Clipped Double Q-Learning

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps(1e6)

0

500

1000

1500

2000

2500

3000

3500

4000

cu
m

ul
at

iv
e

re
wa

rd
s

Hopper-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

1000

2000

3000

4000

5000

6000

cu
m

ul
at

iv
e

re
wa

rd
s

Walker2d-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

2500

5000

7500

10000

12500

15000

17500

cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

2000

0

2000

4000

6000

8000

cu
m

ul
at

iv
e

re
wa

rd
s

Ant-v2

0 2 4 6 8 10
Training Steps(1e6)

0

2000

4000

6000

8000

10000

cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

20

40

60

80

100

120

140

160

cu
m

ul
at

iv
e

re
wa

rd
s

Swimmer-v2

SAC(double) SAC(single) AWAC(double) AWAC(single) MPO(double) MPO(single)

Figure 5: The learning curves of Table 2; ablation of Clipped Double Q-Learning. We test original SAC (double),
AWAC (double), MPO (single), and some variants; SAC without clipped double Q-learning (single), AWAC
(single), and MPO with clipped double Q-learning (double).

F.2 Action Distribution for the Policy

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps(1e6)

0

500

1000

1500

2000

2500

3000

3500

4000

cu
m

ul
at

iv
e

re
wa

rd
s

Hopper-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

1000

2000

3000

4000

5000

6000

cu
m

ul
at

iv
e

re
wa

rd
s

Walker2d-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

2500

5000

7500

10000

12500

15000

17500

cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

2000

0

2000

4000

6000

8000

cu
m

ul
at

iv
e

re
wa

rd
s

Ant-v2

0 2 4 6 8 10
Training Steps(1e6)

0

2000

4000

6000

8000

10000

cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

50

25

0

25

50

75

100

125

150

cu
m

ul
at

iv
e

re
wa

rd
s

Swimmer-v2

SAC SAC(w/o tanh) AWR AWR(w/ tanh) MPO MPO(w/ tanh)

Figure 6: The learning curves of Table 3; ablation of Tanh transformation. A line that stopped in the middle
means that its training has stopped at that step due to numerical error. We test SAC without tanh squashing,
AWR with tanh, and MPO with tanh.

22

F.3 Activation and Normalization

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps(1e6)

0

500

1000

1500

2000

2500

3000

3500

4000

cu
m

ul
at

iv
e

re
wa

rd
s

Hopper-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

1000

2000

3000

4000

5000

6000

cu
m

ul
at

iv
e

re
wa

rd
s

Walker2d-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

2000

4000

6000

8000

10000

12000

14000

16000

cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

1000

2000

3000

4000

5000

6000

7000

8000

cu
m

ul
at

iv
e

re
wa

rd
s

Ant-v2

0 2 4 6 8 10
Training Steps(1e6)

0

2000

4000

6000

8000

10000

cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

20

40

60

80

100

120

140

cu
m

ul
at

iv
e

re
wa

rd
s

Swimmer-v2

SAC
SAC-E+

SAC-L+

SAC-E+L+
MPO
MPO-E

MPO-L
MPO-E L

AWR
AWR-E+

AWR-L+

AWR-E+L+

Figure 7: The learning curves of Table 4; incorporating ELU/layer normalization into SAC and AWR. E+/L+

indicates adding, and E−/L− indicates removing ELU/layer normalization.

F.4 Network Size

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps(1e6)

0

500

1000

1500

2000

2500

3000

3500

4000

cu
m

ul
at

iv
e

re
wa

rd
s

Hopper-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

1000

2000

3000

4000

5000

6000

7000

cu
m

ul
at

iv
e

re
wa

rd
s

Walker2d-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

2000

4000

6000

8000

10000

12000

14000

16000

cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

1000

2000

3000

4000

5000

6000

7000

8000

cu
m

ul
at

iv
e

re
wa

rd
s

Ant-v2

0 2 4 6 8 10
Training Steps(1e6)

0

2000

4000

6000

8000

10000

cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

20

40

60

80

100

120

140

cu
m

ul
at

iv
e

re
wa

rd
s

Swimmer-v2

SAC (S)
SAC (M)

SAC (L)
AWR (S)

AWR (M)
AWR (L)

MPO (S)
MPO (M)

MPO (L)

Figure 8: The learning curves of Table 5; experiment for finer network sizes. (S) stands for the small network
size from AWR, (M) for the middle network size from SAC, and (L) for the large network size from MPO.

23

G Additional Experiments for Deeper Analysis of Implementation Details

We share the additional experimental results for deeper analysis of implementation details and co-adaptation
nature. We report the final cumulative return after 3M steps for Ant/HalfCheetah/Walker2d/Swimmer, 1M steps
for Hopper, and 10M steps for Humanoid. All results below are averaged among 10 random seeds. These
extensive experimental observations below suggest not only the co-adaptive nature and transferability of each
implementation and code detail (discussed in Sec. 6), but also the properties of each kind of algorithm (KL-
based and EM-based); KL-based methods, such as SAC, shows the co-dependent nature in implementation
details (clipped double Q-learning, Tanh-Gaussian Policy) but robustness to the code details related to
neural networks. In contrast, EM-based methods, such as MPO and AWR, show the co-dependent nature
in code details but robustness to the implementation details. We hope these empirical observations from our
experiments are valuable contributions to the RL community.

πp Update We test different types of πp Update as summarized in Table 1 to investigate the effectiveness of
implementation choices. We prepare 4 variants: (1) MPO or AWAC with a uniform prior, (2) SAC with target
policy instead of a fixed uniform prior, (3) MPO without trust-region (only SG update). The details of (1) - (3)
are described below:

(1) We use the actions sampled from uniform distribution as well as the samples from the policy at the past
iteration π

θ
(k−1)
p

for the M-step in EM-controls; aj ∼ αUnif. + (1− α)π
θ
(k−1)
p

, α ∈ (0, 1]. These variants
are much closer to SAC (using uniform distribution as πp). We test α = 0.25, 0.5, 0.75 for both MPO and
AWAC.

(2) We copy the parameter of πq at a certain interval and use it as πp in the objective of KL Control, similar to
MPO/PPO/TRPO. It seems “KL-regularized” actor-critic, rather than “soft” (entropy-regularized). We test
both Lagrangian constraint (ε = 0.1, 0.01, 0.001) and regularization coefficient (η = 1.0, 0.1, 0.01).

(3) Original MPO stabilizes the πp Update incorporating TR (trust-region) into SG. We test the effect of TR, just
removing TR term in the M-step of MPO.

However, the variants listed above have shown drastic degradation compared to the original choice (we omit
the performance table since most of them failed). For example, the larger α (1) we chose, the lower scores the
algorithm achieved. Also, KL-SAC (2) did not learn meaningful behaviors, and removing TR from MPO (3)
induced significant performance drops. These failures suggest that the implementation choice of πp Update
might be the most important one and should be designed carefully for both KL and EM control families.

G: Soft Q-function We investigate the effect of the soft Q-function, instead of standard Q function as
MPO or AWAC use. We prepare MPO with soft Q, AWAC with soft Q, and SAC without soft Q-function, just
modifying Bellman equation and keep the policy objectives as they are.

Table 11 shows that SAC without soft Q degrades its performance over 5 tasks except for Ant, while it is not so
drastic compared to clipped double Q or Tanh-Gaussian policy. In contrast, MPO with soft Q slightly improves
the performance (over 4 tasks), and AWAC with soft Q slightly also does (over 3 tasks). These trends are similar
to the clipped double Q or Tanh-Gaussian policy. We think these experiments support our empirical observation:
KL-based methods, such as SAC, show the robustness to the code details, while EM-based methods, such as
MPO and AWR, show the co-dependent nature in code details but robustness to the implementation details.

Hopper-v2 Walker2d-v2 HalfCheetah-v2 Ant-v2 Humanoid-v2 Swimmer-v2
SAC 3013± 602 5820± 411 15254± 751 5532± 1266 8081± 1149 114± 21
SAC (w/o Soft Q) 2487± 870 5674± 202 12319± 2731 6496± 305 6772± 3060 114± 33
MPO 2136± 1047 3972± 849 11769± 321 6584± 455 5709± 1081 70± 40
MPO (w/ Soft Q) 2271± 1267 3817± 794 11911± 274 6312± 332 6571± 461 80± 32
AWAC 2329± 1020 3307± 780 7396± 677 3659± 523 5243± 200 35± 8
AWAC (w/ Soft Q) 2545± 1062 3671± 575 7199± 628 3862± 483 5152± 162 35± 10

Table 11: Ablation of Soft Q-function (the choice of G in Table 1), adding to MPO and AWAC while removing
from SAC.

Network Size for AWAC To investigate the co-dependent nature between implementation and code details
more precisely, we add the network size ablation of AWAC, whose implementations stand between MPO and
AWR. AWAC differs πp Update and network size (the default choice of AWAC is (M)) from MPO (in fact, MPO
uses TD(0) in open-source implementation [27] and we assume the difference of πθ might be minor). Also,
AWAC differs G and G estimate from AWR.

The results of AWAC (Table 12) show a similar trend to AWR in high-dimensional tasks (Ant, Humanoid); a
larger network did not help. We may hypothesize that πp Update of AWR/AWAC, mixture+SG, is not good at
optimizing larger networks, compared to SG + TR of MPO. In contrast, especially, Hopper and Walker2d show a

24

similar trend to MPO; the larger, the better. Totally, AWAC with different network sizes shows the mixture trend
of AWR and MPO, which is the same as implementation details. We think these observations might highlight
the co-adaptation nature between implementation and code details.

Hopper-v2 Walker2d-v2 HalfCheetah-v2 Ant-v2 Humanoid-v2 Swimmer-v2
AWAC (L) 2764± 919 4350± 542 6433± 832 2342± 269 4164± 1707 40± 5
AWAC (M) 2329± 1020 3307± 780 7396± 677 3659± 523 5243± 200 35± 8
AWAC (S) 2038± 1152 2022± 971 5864± 768 3705± 659 5331± 125 34± 11

Table 12: Ablation of network size for AWAC.

Combination of Clipped Double Q-Learning/Tanh-Gaussian and Soft Q-function We observe
that both clipped double Q-learning/Tanh-Gaussian policy and soft Q-function are the important implementation
choices to KL control, SAC, which lead to significant performance gains. To test the co-adaptation nature more
in detail, we implement these two choices into MPO and AWAC at the same time.

The results (Table 13 and Table 14) show that incorporating such multiple combinations does not show any
notable improvement in EM Controls, MPO and AWAC. They also suggest the co-adaptation nature of those two
implementations to KL Controls, especially SAC.

Hopper-v2 Walker2d-v2 HalfCheetah-v2 Ant-v2 Humanoid-v2 Swimmer-v2
MPO (S) 2136± 1047 3972± 849 11769± 321 6584± 455 5709± 1081 70± 40
MPO (D) 2352± 959 4471± 281 12028± 191 7179± 190 6858± 373 69± 29
MPO (Soft Q, S) 2271± 1267 3817± 794 11911± 274 6312± 332 6571± 461 80± 32
MPO (Soft Q, D) 1283± 632 4378± 252 12117± 126 6822± 94 6895± 433 45± 4
AWAC (S) 2540± 755 3662± 712 7226± 449 3008± 375 2738± 982 38± 7
AWAC (D) 2329± 1020 3307± 780 7396± 677 3659± 523 5243± 200 35± 8
AWAC (Soft Q, S) 2732± 660 3658± 416 7270± 185 3494± 330 2926± 1134 36± 10
AWAC (Soft Q, D) 2545± 1062 3671± 575 7199± 628 3862± 483 5152± 162 35± 10

Table 13: Ablation of combination in implementation components; Soft Q-function (the choice of G) and Clipped
Double Q-Learning (the choice of G estimate), adding to MPO and AWAC. (D) denotes algorithms with clipped
double Q-learning, and (S) denotes without it.

Hopper-v2 Walker2d-v2 HalfCheetah-v2 Ant-v2 Humanoid-v2 Swimmer-v2
MPO 2136± 1047 3972± 849 11769± 321 6584± 455 5709± 1081 70± 40
MPO (Soft Q) 2271± 1267 3817± 794 11911± 274 6312± 332 6571± 461 80± 32

MPO (Soft Q, Tanh) 314± 8† 368± 47† 3427± 207† 628± 221† 5919± 202† 35± 8†

AWAC 2329± 1020 3307± 780 7396± 677 3659± 523 5243± 200 35± 8
AWAC (Soft Q) 2545± 1062 3671± 575 7199± 628 3862± 483 5152± 162 35± 10
AWAC (Soft Q, Tanh) 2989± 484 2794± 1692 6263± 247 3507± 458 66± 4 32± 5

Table 14: Ablation of combination in implementation components; Soft Q-function (the choice of G) and
Tanh-squashed Gaussian policy (the parameterization of the policy), adding to MPO and AWAC (†numerical
error happens during training).

25

H Failed Ablations

This section provides the failure case of ablations on tanh-squashed distributions and exchanging network
architectures, which shows the catastrophic failure during training, and unclear insights.

H.1 Action Distribution for the Policy: Without Action Clipping

We observe that naive application of tanh-squashing to MPO and AWR significantly suffers from numerical
instability, which ends up with NaN outputs (Table 15 and Figure 9). As we point out in Sec. 5.2, the practical
solution is to clip the action within the supports of distribution surely; a ∈ [−1 + ε, 1− ε]|A|.

eps = 1e-6
actions = torch.clamp(actions, min=-1.+eps, max=1.-eps)

SAC (w/) SAC (w/o) AWR (w/) AWR (w/o) MPO (w/) MPO (w/o)
Hopper-v2 3013± 602 6± 10 3267± 383 3085± 593 301± 12† 2136± 1047

Walker2d-v2 5820± 411 −∞ 3281± 1084† 4717± 678 328± 95† 3972± 849

HalfCheetah-v2 15254± 751 −∞ 1159± 599† 5742± 667 831± 242† 11769± 321

Ant-v2 5532± 1266 −∞ 152± 101† 1127± 224 202± 102† 6584± 455

Humanoid-v2 8081± 1149 108± 82† 538± 49† 5573± 1020 5642± 77† 5709± 1081

Swimmer-v2 114± 21 28± 11 117± 16 128± 4 37± 6† 70± 40

Table 15: Ablation of Tanh transformation (†numerical error happens during training). We test SAC without
tanh squashing, AWR with tanh, and MPO with tanh. SAC without tanh transform results in drastic degradation
of the performance, which can be caused by the maximum entropy objective that encourages the maximization
of the covariance.

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps(1e6)

0

500

1000

1500

2000

2500

3000

3500

4000

cu
m

ul
at

iv
e

re
wa

rd
s

Hopper-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

1000

2000

3000

4000

5000

6000

cu
m

ul
at

iv
e

re
wa

rd
s

Walker2d-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

2500

5000

7500

10000

12500

15000

17500

cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

2000

0

2000

4000

6000

8000

cu
m

ul
at

iv
e

re
wa

rd
s

Ant-v2

0 2 4 6 8 10
Training Steps(1e6)

0

2000

4000

6000

8000

10000

cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

50

25

0

25

50

75

100

125

150

cu
m

ul
at

iv
e

re
wa

rd
s

Swimmer-v2

SAC SAC(w/o tanh) AWR AWR(w/ tanh) MPO MPO(w/ tanh)

Figure 9: The learning curves of Table 15. We test SAC without tanh-squashed distribution, AWR with tanh, and
MPO with tanh. SAC without tanh transform (using MPO action penalty instead) results in drastic degradation
of the performance, which can be caused by the maximum entropy objective that encourages the maximization
of the covariance. AWR and MPO with tanh squashing become numerically unstable. A line that stopped in the
middle means that its training has stopped at that step due to numerical error.

26

H.2 Network Architecture: Whole Swapping

In contrast to prior works on TRPO and PPO, the network architecture that works well in all the off-policy
inference-based methods is not obvious, and the RL community doesn’t have an agreeable default choice. Since
the solution space is too broad without any prior knowledge, one possible ablation is that we test 3 different
architectures that work well on at least one algorithm.

To validate the dependency of the performance on the network architecture, we exchange the configuration of
the policy and value networks, namely, the size and number of hidden layers, the type of activation function,
network optimizer and learning rate, weight-initialization, and the normalization of input state (See Appendix A).
All other components remain the original implementations.

However, this ablation study might end up the insufficient coverage and the unclear insights. We broke down the
network architecture comparison into the one-by-one ablations of activation and normalization, and experimented
with finer network sizes.

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps(1e6)

0

500

1000

1500

2000

2500

3000

3500

4000

cu
m

ul
at

iv
e

re
wa

rd
s

Hopper-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

1000

2000

3000

4000

5000

6000

7000
cu

m
ul

at
iv

e
re

wa
rd

s
Walker2d-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

2000

4000

6000

8000

10000

12000

14000

16000

cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

1000

2000

3000

4000

5000

6000

7000

8000

cu
m

ul
at

iv
e

re
wa

rd
s

Ant-v2

0 2 4 6 8 10
Training Steps(1e6)

0

2000

4000

6000

8000

10000

cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

20

40

60

80

100

120

140

cu
m

ul
at

iv
e

re
wa

rd
s

Swimmer-v2

SAC
SAC(Net: AWR)

SAC(Net: MPO)
AWR

AWR(Net: SAC)
AWR(Net: MPO)

MPO
MPO(Net: AWR)

MPO(Net: SAC)

Figure 10: Swapping network architectures between each methods. These results suggest that these off-policy
inference-based algorithms might be fragile with other network architectures and more co-dependent with
architectures than on-policy algorithms. A line that stops in the middle means that training has stopped at that
step with numerical error due to NaN outputs.

Algorithm
Architecture

MPO AWR SAC
MPO 2136± 1047 623± 316 1108± 828
AWR 2509± 1117 3085± 593 2352± 960

SAC 2239± 669 651± 381† 3013± 602

Table 16: Results in Hopper-v2 environment (†numerical error happens during training). All results are averaged
over 10 seeds and we also show their standard deviations.

Algorithm
Architecture

MPO AWR SAC
MPO 3972± 849 481± 210 1548± 1390

AWR 1312± 680† 4717± 678 428± 89
SAC 5598± 795 117± 164 5820± 556

Table 17: Results in Walker2d-v2 environment (†numerical error happens during training). All results are
averaged over 10 seeds and we also show their standard deviations.

27

Algorithm
Architecture

MPO AWR SAC
MPO 11769± 321 339± 517 −∞
AWR 485± 57 5742± 667 1060± 146

SAC 16541± 341 589± 367† 15254± 751

Table 18: Results in HalfCheetah-v2 environment (†numerical error happens during training). All results are
averaged over 10 seeds and we also show their standard deviations.

Algorithm
Architecture

MPO AWR SAC
MPO 6584± 455 967± 202 −∞
AWR −30± 12 1127± 224 243± 167

SAC 7159± 1577 479± 463† 5532± 1266

Table 19: Results in Ant-v2 environment (†numerical error happens during training). All results are averaged
over 10 seeds and we also show their standard deviations.

Algorithm
Architecture

MPO AWR SAC
MPO 5709± 1081 288± 126 371± 72
AWR 420± 30 5573± 1020 507± 48
SAC 9225± 1010 205± 0 8081± 1149

Table 20: Results in Humanoid-v2 environment. All results are averaged over 10 seeds and we also show their
standard deviations.

Algorithm
Architecture

MPO AWR SAC
MPO 70± 40 41± 15 −∞
AWR 124± 3 128± 4 130± 8

SAC 53± 6† 47± 3 114± 21

Table 21: Results in Swimmer-v2 environment (†numerical error happens during training). All results are
averaged over 10 seeds and we also show their standard deviations.

28

