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Abstract

We study a novel variant of the parameterized bandits problem in which the learner1

can observe auxiliary feedback that is correlated with the observed reward. The2

auxiliary feedback is readily available in many real-life applications, e.g., an online3

platform that wants to recommend the best-rated services to its users can observe4

the user’s rating of service (rewards) and collect additional information like service5

delivery time (auxiliary feedback). We first develop a method that exploits auxiliary6

feedback to build a reward estimator with tight confidence bounds, leading to a7

smaller regret. We then characterize the regret reduction in terms of the correlation8

coefficient between reward and auxiliary feedback. Experimental results in different9

settings also verify the performance gain achieved by our proposed method.10

1 Introduction11

Parameterized bandits (Slivkins et al., 2019; Lattimore and Szepesvári, 2020) have many real-life12

applications in online recommendation, advertising, web search, and e-commerce. In this bandit13

problem, a learner selects an action and receives a reward for the selected action. Due to the large (or14

infinite) number of actions, the mean reward of each action is assumed to be parameterized by an15

unknown function, e.g., linear (Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011; Agrawal16

and Goyal, 2013), GLM (Filippi et al., 2010; Li et al., 2017; Jun et al., 2017), and non-linear (Valko17

et al., 2013; Chowdhury and Gopalan, 2017). The learner aims to learn the best action as quickly18

as possible. However, it depends on the tightness of confidence bounds of function that correlate19

action with the reward. The learner exploits any available information like side information (i.e.,20

information available to the learner before selecting an action, e.g., contexts) (Li et al., 2010; Agrawal21

and Goyal, 2013; Li et al., 2017) and side observations (Alon et al., 2015; Wu et al., 2015) (i.e.,22

information about other actions, e.g., graph feedback) to make confidence bounds as tight as possible.23

This paper considers another type of additional information (correlated with the reward) that a learner24

can observe with reward for the selected action, which we call auxiliary feedback.25

The auxiliary feedback is readily available in many real-life applications. For example, consider an26

online food delivery platform that wishes to recommend the best restaurants (actions) to its users.27

After receiving food, the platform observes user ratings (rewards) for the order and can collect28

additional information like food delivery time (auxiliary feedback). Since the restaurant’s rating29

also depends on overall food delivery time, one can expect it to be correlated with the user rating.30

The platform can estimate or know the average delivery time for a given order from historical data.31

Similar scenarios arise in recommending the best cab to users (auxiliary information can be the32

cab’s distance from the rider or driver’s response to ride request), e-commerce platforms choosing33

top sellers to buyers (auxiliary information can be seller’s response time for order confirmation and34

delivery), queuing network (Lavenberg and Welch, 1981; Lavenberg et al., 1982), jobs scheduler35

(Verma and Hanawal, 2021), and many more. Therefore, the following question naturally arises:36

How to exploit correlated auxiliary feedback to improve the performance of a bandit algorithm?37
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One possible method is to use auxiliary feedback in the form of control variates (Lavenberg et al.,38

1982; Nelson, 1990) for the observed reward. A control variate represents any random variable39

(auxiliary feedback) with a known mean that is correlated with the random variable of interest40

(reward). Several works (Kreutzer et al., 2017; Sutton and Barto, 2018; Vlassis et al., 2021; Verma41

and Hanawal, 2021) have used control variates to estimate the mean reward estimator with smaller42

variance, leading to tight confidence bounds and hence better performance. The closest work to our43

setting is Verma and Hanawal (2021). However, it only focuses on the non-parameterized setting and44

assumes a finite number of actions. We thus consider a more general bandit setting with a large (or45

even infinite) number of actions and allow a function to parameterize auxiliary feedback.46

Motivated by control variate theory (Nelson, 1990), we first introduce hybrid reward, which combines47

the reward and its auxiliary feedback in such a way that hybrid reward is an unbiased reward estimator48

with smaller variance than the observed reward. However, the optimal combination of reward and its49

auxiliary feedback requires knowing the covariance matrix among auxiliary feedback and covariance50

between reward and its auxiliary feedback, which may not be available in practice. Since the reward51

and its auxiliary feedback are functions of the selected action, no existing control variate result can52

be useful to our sequential setting. Naturally, we face the question of how to combine reward and its53

auxiliary feedback efficiently using available information. To answer this, we extend control theory54

results to the problems where known functions can parameterize control variates (in Section 3) and55

then extend to setting where unknown functions parameterize control variates (in Section 4). These56

contributions are themselves of independent interest in control variate theory.57

Equipped with these results, we show that the variance of hybrid rewards is smaller than observed58

rewards (Theorem 1 and Theorem 3). We then propose a method that uses hybrid rewards instead59

of observed rewards for estimating reward function, resulting in tight confidence bounds and hence60

lower regret. We introduce the Auxiliary Feedback Compatible (AFC) bandit algorithm. An AFC61

bandit algorithm can use hybrid rewards instead of only observed rewards. We prove that the expected62

instantaneous regret of any AFC bandit algorithm using hybrid rewards is smaller by a factor of63

O((1− ρ2)
1
2 ) compared to the same AFC bandit algorithm using only observed rewards, where ρ is64

the correlation coefficient of the reward and its auxiliary feedback (Theorem 2 and Theorem 4). Our65

experimental results in different settings also verify our theoretical results (in Section 5).66

1.1 Related work67

Several prior works use additional information to improve the performance of bandit algorithms. In68

the following, we discuss how auxiliary feedback differs from side information and side observation.69

Side Information: Several works use context as side information to select the best action to play.70

This line of work is popularly known as contextual bandits (Li et al., 2010; Chu et al., 2011; Agrawal71

and Goyal, 2013; Li et al., 2017). Here, the mean reward of each arm is a function of context and is72

often parameterized, e.g., linear (Li et al., 2010; Chu et al., 2011; Agrawal and Goyal, 2013), GLM73

(Li et al., 2017), and non-linear (Valko et al., 2013). These contexts are assumed to be observed74

before an action is taken. However, we consider a problem where additional information is correlated75

with rewards that can only be observed after selecting the action.76

Side Observations: Several works consider the different side observations settings in the literature,77

e.g., stochastic (Caron et al., 2012), adversarial (Mannor and Shamir, 2011; Kocák et al., 2014), graph78

feedback (Alon et al., 2015; Wu et al., 2015; Alon et al., 2017), and cascading feedback (Verma79

et al., 2019). Side observations represent the additional information available about actions that the80

learner does not select. Auxiliary feedback is different from side information as it is available only81

for selected action and provides more information about the reward of that action.82

Auxiliary Feedback: We use auxiliary feedback as control variates, which are used extensively for83

variance reduction in Monte-Carlo simulation of complex systems (Lavenberg and Welch, 1981;84

Lavenberg et al., 1982; James, 1985; Nelson, 1989, 1990; Botev and Ridder, 2014; Chen and85

Ghahramani, 2016). Recent works (Kreutzer et al., 2017; Vlassis et al., 2021; Verma and Hanawal,86

2021) and (Sutton and Barto, 2018, Chapter 7.4) have exploited the availability of these control87

variates to build estimators with smaller variance and develop algorithms that have better performance88

guarantees. The closest work to our setting is Verma and Hanawal (2021). However, they only89

consider a non-parameterized setting with a finite number of actions. We thus consider a more general90

bandit setting with large (infinite) actions and allow a function to parameterize auxiliary feedback.91
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2 Problem setting92

We consider a novel parameterized bandits problem in which the learner can observe auxiliary93

feedback correlated with the observed reward. In this problem, a learner has been given an action94

set, denoted by X ⊂ Rd where d ≥ 1. At the beginning of round t, the learner selects an action xt95

from action set X . Then, the environment generates a stochastic reward yt
.
= f(xt) + εt for the96

selected action xt, where f : Rd → R is an unknown reward function and εt is a zero-mean Gaussian97

noise with variance σ2. Apart from the stochastic reward yt, the environment generates q of auxiliary98

feedback. The i-th auxiliary feedback is denoted by wt,i
.
= gi(xt) + εwt,i, where gi : Rd → R and99

εwt,i is a zero-mean Gaussian noise with variance σ2
w,i. The multiple correlation coefficient of reward100

and its auxiliary feedback is denoted by ρ and assumed to be the same across all actions.101

The optimal action (denoted by x⋆) has the maximum function value, i.e., x⋆ ∈ argmaxx∈X f(x).102

After selecting an action xt, the learner incurs a penalty (or instantaneous regret) rt, where rt
.
=103

f(x⋆)− f(xt). Since the optimal action is unknown, we sequentially estimate the reward function104

using available information on rewards and associated auxiliary feedback for the selected actions and105

then use it for choosing the action in the following round. Our goal is to learn a sequential policy that106

selects actions such that the total penalty (or regret) incurred by the learner is as minimum as possible.107

After T rounds, the regret of a sequential policy π that selects action xt in the round t is given by108

RT (π)
.
=

T∑
t=1

rt =

T∑
t=1

(f(x⋆)− f(xt)) . (1)

A policy π is a good policy if it has sub-linear regret, i.e., limT→∞ RT (π)/T = 0. This implies that109

the policy π will eventually learn to recommend the best action.110

3 Known auxiliary feedback functions111

We first focus on a simple case where all auxiliary feedback functions are assumed to be known. This112

assumption is not very strict in many applications as the learner can construct auxiliary feedback113

such that its mean value is known beforehand (see Kreutzer et al. (2017), Vlassis et al. (2021), and114

Chapter 12.9 Sutton and Barto (2018) for such examples). When auxiliary feedback functions are115

unknown, we can estimate them using historical data or additional samples of auxiliary feedback.116

However, it will have some penalty in the performance (more details are in Section 4 and Section 5).117

The first challenge we face is how to exploit auxiliary feedback to get a better reward function118

estimator. To resolve this, we extend control variate theory (Nelson, 1990) to the problems where a119

function can parameterize control variates. This new contribution is itself of independent interest.120

3.1 Control variate121

Let µ be the unknown variable that needs to be estimated and y be its unbiased estimator, i.e.,122

E [y] = µ. Any random variable w with a known mean value (ω) can be treated as a control variate123

for y if it is correlated with y. The control variate method (Nelson, 1990) exploits errors in estimates124

of known random variables to reduce the estimator’s variance for the unknown random variable.125

This method works as follows. For any choice of a coefficient β, define a new random variable as126

z
.
= y − β(w − ω). Note that z is also an unbiased estimator of µ (i.e., E [z] = µ) as127

E [z] = E [y]− βE [(w − ω)] = µ− β(E [w]− ω) = µ− β(ω − ω) = µ.

Using properties of variance and covariance, the variance of z is given by128

V (z) = V (y) + β2V (w)− 2βCov(y, w).

The variance of z is minimized by setting β to β⋆ = Cov(y, w)/V (w) and the minimum value is129

(1 − ρ2)V (y), where ρ = Cov(y, w)/
√

V (w)V (y) is the correlation coefficient of y and w. We130

exploit this variance reduction to design a reward function estimator with tight confidence bounds.131

3.2 Auxiliary feedback as control variates132

Since the auxiliary feedback functions are known, we define a new variable using the reward sample133

and its auxiliary feedback. We refer to this variable as ‘hybrid reward.’ The hybrid reward definition134
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is motivated by the control variate method, except the control variate is parameterized by function135

in our setting. As wt,i is the ith auxiliary feedback observed with reward yt, the hybrid reward for136

reward (yt) with its q auxiliary feedback {wt,i}qi=1 is defined by137

zt,q
.
= yt −

q∑
i=1

βi(wt,i − gi(xt)) = yt − (wt − gt)β, (2)

where wt = (wt,1, . . . , wt,q), gt = (g1(xt), . . . , gq(xt)), and β = (β1, . . . , βq)
⊤. Let Σww ∈ Rq×q138

be the covariance matrix among auxiliary feedback and σyw ∈ Rq×1 be the vector of covariance139

between the reward and each of its auxiliary feedback. Then, the variance of zt,q is minimized by140

setting the coefficient vector β to β⋆ = Σ−1
wwσyw, and the minimum value is (1 − ρ2)σ2, where141

ρ2 = σ⊤
ywΣ−1

wwσyw/σ2 is the multiple correlation coefficient of reward and its auxiliary feedback.142

However, Σww and σyw can be unknown in practice and need to be estimated to get the best estimate143

for β⋆ to achieve maximum variance reduction. In our following result, we drive the best linear144

unbiased estimator of β (i.e., β̂t) using t observations of rewards and their auxiliary feedback.145

Lemma 1. Let t > q + 2 ∈ N and ft be the estimate of function f which uses all information
available at the end of round t, i.e., {xs, ys,ws}ts=1. Then, the best linear unbiased estimator of β⋆

is
β̂t

.
= (W⊤

t Wt)
−1W⊤

t Yt,

where Wt is a t× q matrix whose sth row is (ws − gs) and Yt = (y1 − ft(x1), . . . , yt − ft(xt)).146

The proof follows after doing some manipulations in Eq. (2) and then using results from linear147

regression theory. The detailed proof of Lemma 1 and all other missing proofs are given in the148

supplementary material. After having a new observation of reward and its auxiliary feedback, the best149

linear unbiased estimator of β⋆ is re-estimated. If Σww or σyw are known, we can directly use them150

to estimate β⋆ by replacing W⊤
t Wt with Σww and W⊤

t Yt with σyw in Lemma 1. The following151

result describes the properties of the hybrid reward when β⋆ is replaced by β̂t in Eq. (2).152

Theorem 1. Let t > q + 2 ∈ N. If β̂t as defined in Lemma 1 is used to compute hybrid reward zs,q153

for any s ≤ t ∈ N, then E [zs,q] = f(xs) and V (zs,q) =
(
1 + q

t−q−2

)
(1− ρ2)σ2.154

The key takeaways from Theorem 1 are as follows. First, the hybrid reward using β̂t is an unbiased155

estimator of reward function and hence, we can still use it to estimate the reward function f . Second,156

there is a less reduction in variance (i.e., by a factor (t− 2)/(t− q − 2) of maximum possible157

variance reduction) when β̂t is used for constructing hybrid reward in Eq. (2).158

Remark 1. As shown in Theorem 1, the variance of the hybrid reward increases with the number of159

auxiliary feedback when β̂t is used. Hence, keeping the number of auxiliary feedback used for hybrid160

reward small is important. A straightforward method for selecting a subset of auxiliary feedback161

(Lavenberg et al., 1982) works as follows: select the auxiliary feedback whose sample correlation162

coefficient with reward is the largest. Then, select the next auxiliary feedback whose sample partial163

correlation coefficient with reward was the largest given the first auxiliary feedback selected. Keep164

repeating the process until there is a variance reduction using additional auxiliary feedback.165

3.3 Linear bandits with known auxiliary feedback functions166

To highlight the main ideas, we restrict to the linear bandit setting in which the reward and auxiliary167

feedback functions are linear. In this setting, a learner selects an action xt and observes a reward168

yt = x⊤
t θ

⋆ + εt, where θ⋆ ∈ Rd (d ≥ 1) is unknown and εt is the zero-mean Gaussian noise with169

known variance σ2. The learner also observes q auxiliary feedback, where i-th auxiliary feedback is170

denoted by wt,i = x⊤
t θ

⋆
w,i + εwt,i. Here, θ⋆w,i ∈ Rd is known and εwt,i is the zero-mean Gaussian noise171

with unknown variance σ2
w,i. Our goal is to learn a policy that minimizes regret as defined in Eq. (1).172

We later extend our method for non-linear reward and auxiliary feedback functions in Section 4.3.173

Let I be the d × d identity matrix, Vt
.
=
∑t−1

s=1 xsx
⊤
s , and V t

.
= Vt + λI , where λ > 0 is the174

regularization parameter that ensures matrix V t is a positive definite matrix. The notation ∥x∥A175

denotes the weighted l2-norm of vector x ∈ Rd with respect to a positive definite matrix A ∈ Rd×d.176
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As shown in Theorem 1, the hybrid rewards is an unbiased reward estimator with a smaller variance177

than observed rewards. Thus, hybrid rewards lead to tighter confidence bounds for parameter θ⋆ than178

observed rewards. We propose a simple but effective method to exploit correlated auxiliary feedback,179

i.e., using hybrid rewards to estimate reward function instead of observed rewards.180

Using this method, we adapt the well-known linear bandit algorithm OFUL (Abbasi-Yadkori et al.,181

2011) to our setting and named this algorithm OFUL-AF. This algorithm works as follows. It takes182

λ > 0 as input and then initializes V 1 = λI and sets θ̂z1 = 0Rd as initial estimate of parameter θ⋆.183

The superscript ‘z’ in θ̂z1 implies that hybrid rewards are used for estimating θ⋆. At the beginning184

of round t, the algorithm selects an action xt that maximizes the upper confidence bound of the185

action’s reward, which is a sum of the estimated reward for the action (x⊤θ̂zt ) and a confidence bonus186

ασ
t ∥x∥V −1

t
. In the confidence bonus, the first term (ασ

t ) is a slowly increasing function in t whose187

value is given in Theorem 2, and the second term (∥x∥
V

−1
t

) decreases to zero as t increases.188

OFUL-AF Algorithm for Linear Bandits with Auxiliary Feedback

1: Input: λ > 0

2: Initialization: V 1 = λI and θ̂z1 = 0Rd

3: for t = 1, 2, . . . do
4: Select action xt = argmaxx∈X

(
x⊤θ̂zt + σαt ∥x∥V −1

t

)
5: Observe reward yt and its auxiliary feedback {wt,i}qi=1

6: If t > q+2, compute upper bound of hybrid reward’s sample variance (ν̄z,t) or else ν̄z,t = σ2

7: If t ≤ q + 2 or ν̄z,t ≥ σ2, set β̂t = 0 or else compute β̂t using Lemma 1
8: ∀s ≤ t ∈ N : compute zs,q using β̂t in Eq. (2)
9: Set V t+1 = V t + xtx

⊤
t , θ̂zt+1 = V

−1

t+1

∑t
s=1 xszs,q

10: end for

After selecting an action xt, the algorithm observes the reward yt with its associated auxiliary189

feedback {wt,i}qi=1. It computes the upper bound on sample variance of hybrid reward (denoted190

by ν̄z,t
1) if t > q + 2 or else it is set to σ2 and then checks two conditions. The first condition191

(i.e., t ≤ q + 2) guarantees the sample variance is well-defined. Whereas the second condition (i.e.,192

ν̄z,t > σ2) ensures the algorithm at least be as good as OFUL because ν̄z,t can be larger than σ2 due to193

the overestimation in initial rounds. If both conditions t ≤ q+2 and ν̄z,t ≥ σ2 fail, the value of β̂t is194

re-computed.The updated β̂t is then used to update all hybrid rewards, i.e., zs,q, ∀s ≤ t ∈ N. Finally,195

the values of V t+1 and θ̂t+1 are updated as V t+1 = V t + xtx
⊤
t and θ̂zt+1 = V

−1

t+1

∑t
s=1 xszs,q,196

which are then used to select the action in the following round. When β̂t = 0 for all hybrid rewards,197

hybrid rewards are the same as the observed rewards, and hence OFUL-AF is the same as OFUL.198

The regret analysis of any bandit algorithm hinges on bounding the instantaneous regret for each199

action. The following result gives an upper bound on the instantaneous regret of OFUL-AF.200

Theorem 2. With a probability of at least 1− 2δ, the instantaneous regret of OFUL-AF in round t is

rt(OFUL-AF) ≤ 2
(
ασ
t + λ1/2S

)
∥xt∥V −1

t
,

where ασ
t =

√
min (σ2, ν̄z,t−1) αt, ∥θ⋆∥2 ≤ S, and αt =

√
d log

(
1+tL2/λ

δ

)
. For t > q + 2 and201

ν̄z,t < σ2, E [rt(OFUL-AF)] ≤ Õ

((
(t−3)(1−ρ2)

t−q−3

) 1
2

rt(OFUL)
)
. Here, Õ hides constant terms.202

The proof follows by bounding the estimation error of the parameter θ⋆ when the estimation method203

uses auxiliary feedback. This result shows that auxiliary feedback leads to a better instantaneous204

regret upper bound and a better regret (as defined in Eq. (1)) than the vanilla OFUL algorithm. Since205

the improvement in instantaneous regret increase with t, having a single constant to compare with206

regret of OFUL may lead to weaker regret upper bound than the sum of all instantaneous regret.207

1Let ν̂z,t be the sample variance estimate of hybrid rewards (details in Appendix A.2). Then, ν̄z,t =
(t−2)ν̂z,t
χ2
1−δ,t

,

where χ2
1−δ,t denotes 100(1−δ)th percentile value of the chi-squared distribution with t−2 degrees of freedom.
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4 Estimated auxiliary feedback functions208

Auxiliary feedback functions may be unknown in many real-life problems. However, the learner can209

construct an unbiased estimator for the auxiliary feedback function using historical data or acquiring210

more samples of auxiliary feedback. But these estimated functions offer a lower variance reduction211

than known auxiliary functions. To study the effect of using the estimated auxiliary feedback functions212

on the performance of bandit algorithms, we borrow some techniques from approximate control213

variate theory (Gorodetsky et al., 2020; Pham and Gorodetsky, 2022) as we discussed next.214

4.1 Approximate control variates215

Let y be an unbiased estimator of an unknown variable µ and a random variable w with a known216

estimated mean (ωe) be a control variate of y. As long as the known estimated mean is an unbiased217

estimator of w, one can use it to reduce the variance of y as follows. For any choice of a coefficient218

βe, define a new random variable as ze
.
= y − βew̄, where w̄ = w − ωe. Since ωe is an unbiased219

estimator of w, it is straightforward to show that ze is also an unbiased estimator of y.220

By using properties of variance and covariance, the variance of ze is given by
Var(ze) = Var(y) + β2

eCov(w̄, w̄)− 2βeCov(y, w̄).
The variance of ze is minimized by setting βe to β⋆

e = Cov(w̄, w̄)−1Cov(y, w̄) and the minimum221

value of Var(ze) is (1− ρ2e)Var(y), where ρe = Cov(y, w̄)
(
Cov(w̄, w̄)−1/Var(y)

)
Cov(y, w̄).222

4.2 Auxiliary feedback with unknown functions as approximate control variates223

We now introduce a new definition of hybrid reward that uses estimated auxiliary feedback functions.224

Let wt,i be the ith auxiliary feedback and ge,i be the unbiased estimator of function gi. Then, the225

hybrid reward with q estimated auxiliary feedback functions is defined by226

ze,t,q = yt −
q∑

i=1

βe,i(wt,i − ge,i(xt)) = yt − (wt − ge,t)βe. (3)

where wt = (wt,1, . . . , wt,q), ge,t = (ge,1(xt), . . . , ge,q(xt)), and βe = (βe,1, . . . , βe,q)
⊤. Let227

Σw̄w̄ ∈ Rq×q denote the covariance matrix among centered auxiliary feedback (i.e., w̄t = wt−ge,t),228

and σyw̄ ∈ Rq×1 denote the vector of covariance between reward and its centered auxiliary feedback.229

Then, the variance of ze,t,q is minimized by setting the βe to β⋆
e = Σ−1

w̄w̄σyw̄, and the minimum230

value of Var(ze,t,q) is (1− ρ2e)σ
2, where ρ2e = σ⊤

yw̄Σ−1
w̄w̄σyw̄/σ2.231

The definition of hybrid reward given in Eq. (3) is very flexible and allows different estimators232

to estimate auxiliary feedback functions. The only difference among these estimators is how they233

partition the available samples of auxiliary feedback to estimate auxiliary function gi. As no optimal234

partitioning strategy is known, we adopt the Independent Samples (IS) and Multi-Fidelity (MF)235

sampling strategy for our setting where finite samples of auxiliary feedback are available. Both236

strategies are proven to be asymptotically optimal (Gorodetsky et al., 2020), implying the variance237

reduction is asymptotically the same as if auxiliary feedback functions are known.238

IS and MF sampling strategy: Let s and si ⊃ s be the sample sets used for estimating functions
f and gi, respectively. Then, for the IS sampling strategy, (si \ s) ∩ (sj \ s) = ∅ for i ̸= j, i.e.,
the extra samples used for estimating the function gi are unique. Whereas, for the MF sampling
strategy, si = s∪i

j=1 s
′
j and s′i∩ s′j = ∅ for i ̸= j, i.e., the estimation of function gi uses the samples

that were used for estimating function gi−1 with some additional samples. Refer to Fig. 1 for the
visual representation of both sampling strategies. After adopting Theorem 3 and Theorem 4 from
Gorodetsky et al. (2020) to our setting, we can further simplify Σw̄w̄ and σyw̄ when IS and MF
sampling strategies (denoted by e) are used for estimating auxiliary feedback functions as follows:

Σw̄w̄ = Σww ◦ Fe and σyw̄ = diag (Fe) ◦ σyw,

where diag(A) denotes a vector whose elements are the diagonal of the matrix A and ◦ denotes an239

element-wise product. The ij-th element of matrix Fe ∈ Rq×q is240

fe,ij =

{
((ri − 1)(rj − 1))/(rirj) if i ̸= j and e = IS
(min(ri, rj)− 1)/min(ri, rj) if i ̸= j and e = MF
(ri − 1)/ri otherwise,
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Figure 1: Left two figures: Visualization of IS and MF sampling strategies. Each column represents
samples used for estimating function (written at the top), and the same color is used to show shared
samples among auxiliary function estimation. Right two figures: Interaction between AFC bandit
algorithm and environment. AFC bandit algorithm that only uses observed rewards (second from
right), and AFC bandit algorithm that also uses auxiliary feedback as hybrid rewards (rightmost).

where ri ∈ R+ is the ratio between the total number of samples used for estimating function gi by241

sampling strategy e and the total number of samples used for estimating f .242

Since Σw̄w̄ and σyw̄ may be unknown, they must be estimated to get the best estimate for β⋆. Our243

following result gives the best linear unbiased estimator of βe (i.e., β̂e,t) that uses t observations of244

rewards and their auxiliary feedback with estimated auxiliary feedback functions.245

Lemma 2. Let t > q + 2 ∈ N, e is the sampling strategy, and ft be the estimate of function f at the
end of round t which uses {xs, ys,ws}ts=1. Then, the best linear unbiased estimator of β⋆

e is

β̂e,t = (W⊤
t Wt ◦ Fe)

−1
(
diag (Fe) ◦W⊤

t Yt

)
,

where Wt is a t× q matrix whose sth row is ws − ge,s and Yt = (y1 − ft(x1), . . . , yt − ft(xt)).246

After adopting matrix manipulation tricks from Pham and Gorodetsky (2022) to our setting, the proof247

follows similar steps as the proof of Lemma 1. We now characterize the properties of the hybrid248

reward that uses either IS or MF sampling strategy for estimating auxiliary feedback functions.249

Theorem 3. Let t > q + 2 ∈ N and e is the sampling strategy. If β̂e,t as defined in Lemma 2 is250

used to compute hybrid reward ze,s,q for any s ≤ t ∈ N, then E [ze,s,q] = f(xs) and V (ze,s,q) =251 (
1 + a(e)q

t−q−2

)
(1− ρ2e)σ

2, where a(IS) = 1, a(MF) = r−1
r if ri = r, ∀i ∈ {1, 2, . . . , q} when using252

MF sampling strategy for estimating auxiliary feedback functions.253

The key takeaways from Theorem 3 are as follows. First, the hybrid reward with estimated auxiliary254

feedback is still an unbiased estimator, so one can use it to estimate the reward function f . Second,255

there is a potential loss in variance reduction as it has an extra multiplicative factor a(e) and ρ2e ≤ ρ2.256

Remark 2. As samples for estimating auxiliary functions increase compared to the reward function,257

the variance reduction from IS and MF sampling strategy converges to the reduction achieved using258

known auxiliary functions. As ∀i : ri → ∞, then Fe → 1q×q. It is now straightforward to see that259

Σw̄w̄ will become Σww, σyw̄ will become σyw, and hence ρ2e = ρ2 as ∀i : ri → ∞.260

4.3 Parameterized bandits with estimated auxiliary feedback functions261

We now consider the parameterized bandit setting described in Section 2, where the reward and262

auxiliary feedback function can be non-linear. To exploit the available auxiliary feedback in linear263

bandits, we propose a method in Section 3.3 that uses hybrid reward in place of rewards to get tight264

upper confidence bound for the estimator of an unknown reward function and hence smaller regret as265

compared to the vanilla OFUL due to the smaller variance of the hybrid rewards. We generalize this266

observation and introduce the notion of Auxiliary Feedback Compatible (AFC) bandit algorithm.267

Definition 1 (AFC Bandit Algorithm). Any bandit algorithm A is Auxiliary Feedback Compatible
if: (i) A can use correlated reward samples to construct upper confidence bound for reward function
and (ii) with probability 1− δ, its estimated reward function fA

t has the following property:

|fA
t (x)− f(x)| ≤ σh(x,Ot) + l(x,Ot),

where x ∈ X , σ2 is the variance of Gaussian noise in observed reward, and Ot denotes the268

observations of actions and their rewards with the parameters of A at the beginning of round t.269
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As the estimated coefficient vector uses all past samples, the resultant hybrid rewards become270

correlated due to using this estimated coefficient vector. Bandit algorithms like UCB1 (Auer et al.,271

2002) and kl-UCB (Cappé et al., 2013) are not AFC as they need independent reward samples to272

construct upper confidence bounds. In contrast, bandit algorithms like OFUL (Abbasi-Yadkori et al.,273

2011), Lin-UCB (Chu et al., 2011), UCB-GLM (Li et al., 2017), IGP-UCB, and GP-TS (Chowdhury274

and Gopalan, 2017) are AFC as they all use techniques proposed in Abbasi-Yadkori et al. (2011) for275

building the upper confidence bound, which does not need reward samples to be independent.276

As AFC bandit algorithms use the noise variance of observed reward for constructing the confidence277

upper bound, they can also exploit available auxiliary feedback by replacing reward with its respective278

hybrid reward as shown in Fig. 1 (rightmost figure). We next give an upper bound on the instantaneous279

regret for any AFC bandit algorithm that uses hybrid rewards instead of observed rewards.280

Theorem 4. Let A be an AFC bandit algorithm with |fA
t (x)− f(x)| ≤ σh(x,Ot) + l(x,Ot) and

ν̄e,z,t be the upper bound on sample variance of hybrid reward, whose value is set to σ2 for t ≤ q+2.
Then, with a probability of at least 1− 2δ, the instantaneous regret of A after using hybrid rewards
(named A-AF) for reward function estimation in round t is

rt(A-AF) ≤ 2min(σ, (ν̄e,z,t)
1
2 )h(x,Ot) + l(x,Ot),

where e = {IS, MF, KF}, and KF denotes the case where auxiliary functions are known. For t > q+2281

and ν̄e,z,t < σ2, E [rt(A-AF)] ≤ Õ

(((
t−(1−a(e))q−3

t−q−3

)
(1− ρ2e)

) 1
2

rt(A)

)
, where a(KF) = 1.282

After using Theorem 1 and Theorem 3 to replace the variance of hybrid reward, the proof follows283

similar steps as the proof of Theorem 2. We have given more details about the values of h(x,Ot) and284

l(x,Ot) for different AFC bandit algorithms in Table 1 of the supplementary material.285

5 Experiments286

To validate our theoretical results, we empirically demonstrate the performance gain due to auxiliary287

feedback in different settings of parameterized bandits. We repeat all our experiments 50 times and288

show the regret as defined in Eq. (1) with a 95% confidence interval (vertical line on each curve289

shows the confidence interval). Due to space constraints, the details of used problem instances are290

given in Appendix A.5 of the supplementary material.291

Comparing regret with benchmark bandit algorithms: We considered three bandit settings:292

linear bandits, linear contextual bandits, and non-linear contextual bandits. The formal setting of293

a contextual bandit with auxiliary feedback is given in the supplementary material. We used the294

following existing bandit algorithms for these settings: OFUL (Abbasi-Yadkori et al., 2011) for linear295

bandits, Lin-UCB (Chu et al., 2011) for linear contextual bandits, and Lin-UCB with the polynomial296

kernel (which we named NLin-UCB) for non-linear contextual bandits. We compare the performance297

of these benchmark bandit algorithms with four different variants of our algorithms. The first variant298

assumes the auxiliary feedback functions are known (highlighted by adding ‘-AF’ to the benchmark299

algorithms). When auxiliary feedback functions are unknown, we use IS and MF sampling strategy300

while maintaining r = 2 (i.e., getting one extra sample of auxiliary feedback in each round). The301

IS and MF sampling strategies are the same when only one auxiliary feedback exists. Since we302

only use one auxiliary feedback in our experiments, we highlight this variant by adding ‘-IS/MF’303

to the benchmark algorithms. When IS and MF sampling strategies are used, one needs to update304

the auxiliary feedback functions in each round to get better estimators. However, it leads to the305

re-computation of all variables that are needed for updating the hybrid rewards, which is not needed306

when auxiliary feedback functions are fixed. Therefore, we consider two more computationally307

efficient variants for the unknown auxiliary functions setting. One variant assumes the knowledge308

of biased auxiliary feedback, i.e., gi(x) + εg is available instead of gi(x) (highlighted by adding309

‘-BE’ to the benchmark algorithms). Another variant assumes that some initial samples of auxiliary310

feedback are available, which are used to get the auxiliary feedback function estimator. We highlight311

this variant by adding ‘-EH’ to the benchmark algorithms. All variants with given parameters312

perform better than benchmark bandit algorithms (see Fig. 2a, Fig. 2b, and Fig. 2c). We observe the313

expected performance among these variants as the variant with a known auxiliary feedback function314

outperforms all other variants. At the same time, IS/MF sampling strategy-based variant outperforms315

the other two heuristic variants for the setting of unknown auxiliary feedback function.316
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(a) Linear Bandit (b) Linear Contextual Bandits (c) Non-linear Contextual Bandits

(d) Biased Estimator (e) Estimator from historical data (f) Influence of correlation

Figure 2: Top row: Comparing regret of different variants with their benchmark bandit algorithms in
different settings. Bottom row: Regret vs. different biases in Lin-UCB-BE (left figure), regret vs.
number of historical samples of auxiliary feedback in Lin-UCB-EH (middle figure), and regret of
Lin-UCB-AF vs. varying correlation coefficients of reward and its auxiliary feedback (right figure).

Regret vs. different biased estimator: To know the effect of bias in auxiliary feedback (i.e., εg) in317

the mean value of auxiliary feedback, we run an experiment with the same linear contextual bandits318

experiment setup mentioned above. To see the variation in regret, we set εg = {1, 0.2, 0.1, 0.07, 0.05}.319

As shown in Fig. 2d, the regret increases with an increase in bias and even starts performing poorly320

than Lin-UCB. This experiment demonstrates that as long as the bias in auxiliary feedback is within321

a limit, there will be an advantage to using this computationally efficient variant.322

Regret vs. number of historical samples of auxiliary feedback : Increasing the number of historical323

samples of auxiliary feedback for estimating the auxiliary feedback function reduces the error in its324

estimation, leading to better performance. To observe this, we use estimators using different numbers325

of auxiliary feedback samples, i.e., nh = {5, 7, 10, 15, 20} in linear contextual bandits setting. As326

expected, the regret decreases with an increase in auxiliary feedback samples, but using an estimator327

with a few samples even performs poorly than Lin-UCB, as shown in Fig. 2e.328

Regret vs. correlation coefficient: As theoretical results imply that the regret decreases when the329

correlation between reward and auxiliary feedback increases. To validate this, we used problem330

instances with different correlation coefficients in linear contextual bandits setting. As expected, we331

observe that the regret decreases as the correlation coefficient increases, as shown in Fig. 2f.332

6 Conclusion333

This paper studies a novel parameterized bandit problem in which a learner observes auxiliary334

feedback correlated with the observed reward. We first introduce the notion of ‘hybrid reward,’ which335

combines the reward and its auxiliary feedback. To get the maximum benefit from hybrid reward,336

we treat auxiliary feedback as a control variate and then extend control variate theory to a setting337

where a function can parameterize control variates. Equipped with these results, we show that the338

variance of hybrid rewards is smaller than observed rewards. We then use these hybrid rewards to339

estimate the reward function, leading to tight confidence bounds and hence smaller regret. We have340

proved that the expected instantaneous regret of any AFC bandit algorithm after using hybrid rewards341

is improved by a factor of O((1 − ρ2)
1
2 ), where ρ is the correlation coefficient of the reward and342

its auxiliary feedback. Our experiments also validate our theoretical results. An interesting future343

direction is to extend these results to bandit settings with heteroscedastic and non-Gaussian noise.344
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A Supplementary material430

A.1 Missing proofs related to auxiliary feedback431

Results from linear regression432

We first state results for linear regression that we will use in the subsequent proofs. Consider the433

following regression problem with t samples and q features:434

zs = x⊤
s θ + εs, i ∈ {1, 2, . . . , t}

where zs ∈ R is the sth target variable, xs = (xs1, . . . , xsq) ∈ Rq is the sth feature vector, θ ∈ Rq is435

the unknown regression parameters, and εs is a normally distributed noise with mean 0 and constant436

variance σ2. The values of noise εs form an IID sequence and are independent of xs. Let437

Zt =

z1
...
zt

 , Xt =

x11 . . . x1q

... · · ·
...

Xt1 . . . xtq

 , and εt =

ε1
...
εt

 .

Then, the best linear unbiased estimator of θ is θ̂t = (X⊤
t Xt)

−1X⊤
t Zt, which has the following438

finite sample properties.439

Fact 1. The following are the finite sample properties of the least square estimator θ̂t:440

1. E
[
θ̂t|Xt

]
= θ, (unbiased estimator)

2. Var(θ̂t|Xt) = σ2(X⊤
t Xt)

−1, and (expression for the variance)

3. Var(θ̂ti|Xt) = σ2(X⊤
t Xt)

−1
ii , (element-wise variance)

where (X⊤
t X)−1

ii is the ii−element of the matrix (X⊤
t X)−1.441

In the above result, the first two properties are from Proposition 1.1 of Hayashi (2000), whereas the442

third property is from Van De Geer (2005). The following result gives the finite sample properties of443

the estimator of noise variance σ2.444

Fact 2. (Hayashi, 2000, Proposition 1.2) Let σ̂2
t = 1

t−q

∑t
s=1(zs − x⊤

s θ̂t)
2 be estimator of σ2 and445

t > q (so that σ̂2
t is well defined). Then, σ̂2

t is an unbiased estimator of σ2, i.e., E
[
σ̂2
t |Xt

]
= σ2.446

Using the Schur complement, we have the following results about the inverse of the block matrix.447

Fact 3. Let G =

(
t B
C D

)
be a block matrix, where t ∈ R \ {0}, B, C, D are respectively 1 × q,448

q × 1, and q × q matrices of real numbers. Then, G−1
11 = t−1 + t−1B(tD − CB)−1C.449

Control variates theory450

Let y be the random variable of interest with unknown mean µ. There are q control variates correlated
with y, where ith control variate has mean ωi and its sth observation is denoted by ws,i. For any
s ∈ {1, . . . , t}, we define a variable zs using sth observation of ys and its control variates as follows:

zs = ys − (ws − ω)β,

where ws = (ws,1, . . . , ws,q) and ω = (ω1, . . . , ωq). The above equation can be re-written as:

ys = zs + (ws − ω)β.

Under the assumption of zs being a unbiased estimator of µ, we can write ys as follows:

ys = µ+ (ws − ω)β + εz,s.

where εz,1, . . . , εz,t are IID and have zero mean Gaussian noise with variance (1− ρ2)σ2. Let

Y t =

y1
...
yt

 , W t =

1 w1 − ω
...

...
1 wt − ω

 , γ =

(
µ
β

)
, and εz,t =

εz,1
...

εz,t

 .
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The best linear unbiased estimator of γ is γ̂ = (W
⊤
t W t)

−1W
⊤
t Y t. To get µ̂z,t and β̂⋆, we expand451

γ̂ as follows:452

γ̂ =


1 w1 − ω

...
...

1 wt − ω


⊤1 w1 − ω

...
...

1 wt − ω




−11 w1 − ω
...

...
1 wt − ω


⊤y1

...
yt



=

( 1 . . . 1
w1 − ω . . . wt − ω

)1 w1 − ω
...

...
1 wt − ω




−1(
1 . . . 1

w1 − ω . . . wt − ω

)y1
...
yt


=

(
t

∑t
s=1(ws − ω)∑t

s=1(ws − ω)
∑t

s=1(ws − ω)⊤(ws − ω)

)−1( ∑t
s=1 ys∑t

s=1(ws − ω)ys

)

After taking first matrix from RHS to LHS and using γ̂ =

(
µ̂z,t

β̂t

)
, we have453 (

t
∑t

s=1(ws − ω)∑t
s=1(ws − ω)

∑t
s=1(ws − ω)⊤(ws − ω)

)(
µ̂z,t

β̂t

)
=

( ∑t
s=1 ys∑t

s=1(ws − ω)ys

)
. (4)

From above, we get the following equation:454

tµ̂z,t +

(
t∑

s=1

(ws − ω)

)
β̂t =

t∑
s=1

ys

=⇒ µ̂z,t =
1

t

t∑
s=1

ys −

(
1

t

t∑
s=1

(ws − ω)

)
β̂t.

Using µ̂y,t =
1
t

∑t
s=1 ys and ω̂t =

1
t

∑t
s=1 ws, we get455

µ̂z,t = µ̂y,t − (ω̂t − ω)β̂t. (5)

Similarly, we have another equation as follows:456

µ̂z,t

t∑
s=1

(ws − ω) +

(
t∑

s=1

(ws − ω)⊤(ws − ω))

)
β̂t =

t∑
s=1

(ws − ω)ys

=⇒ β̂t =

(
t∑

s=1

(ws − ω)⊤(ws − ω))

)−1( t∑
s=1

(ws − ω)(ys − µ̂z,t)

)
.

Using W t =

w1 − ω
...

wt − ω

 and Yt =

y1 − µ̂z,t

...
yt − µ̂z,t.

, we have457

=⇒ β̂t = (W⊤
t Wt)

−1W⊤
t Yt. (6)

In the following, we first state the fundamental results from the control variates theory.458

Fact 4. (Nelson, 1990, Theorem 1) Let Os = (Ys,Ws,1, . . . ,Ws,q)
⊤ follow a (q+1)−variate normal459

distribution with mean vector (µ,ω) and {O1, . . . , Ot} be a IID sequence. Assume µ̂z,t =
∑t

s=1 zs,460

where zs = ys − (ws − ω)β̂t and β̂t used here is given by Eq. (6), then461

E [µ̂z,t] = µ and

V (µ̂z,t) =

(
1 +

q

t− q − 2

)
(1− ρ2)V (µ̂y,t) ,

where σYWΣ−1
WW σ⊤

YW /σ2 is the square of the multiple correlation coefficient, σ2 = V (Y ), and462

σYW = (Cov(Y,W1), . . . ,Cov(Y,Wq)) (we have dropped the subscript s as observations are IID).463
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Auxiliary feedback as control variates464

Lemma 1. Let t > q + 2 ∈ N and ft be the estimate of function f which uses all information
available at the end of round t, i.e., {xs, ys,ws}ts=1. Then, the best linear unbiased estimator of β⋆

is
β̂t

.
= (W⊤

t Wt)
−1W⊤

t Yt,

where Wt is a t× q matrix whose sth row is (ws − gs) and Yt = (y1 − ft(x1), . . . , yt − ft(xt)).465

Proof. Recall Eq. (2) for sth hybrid reward with known auxiliary functions, i.e., zs,q = ys − (ws −
gs)β, which can be re-written as ys = zs,q + (ws − gs)β. By definition, zs,q = f(xs) + εzs
for optimal β, where εz,s is zero-mean Gaussian noise with variance (1 − ρ2)σ2. Then, ys =
f(xs) + (ws − gs)β + εz,s. Let φ be an unknown function that maps every x to a space where
f(x) = φ(x)⊤f holds. Then we can re-write the above equation as follows:

ys = f⊤φ(xs) + (ws − gs)β + εz,s.

Adapting Eq. (4) to our setting, we have466 ( ∑t
s=1 φ(xs)

⊤φ(xs)
∑t

s=1 φ(xs)
⊤(ws − gs)∑t

s=1(ws − gs)
⊤φ(xs)

∑t
s=1(ws − gs)

⊤(ws − gs)

)(
ft
β̂t

)
=

( ∑t
s=1 φ(xs)ys∑t

s=1(ws − gs)ys

)
.

Let ft is the estimated f using available information, i.e., {xs, ys,ws}ts=1. To get best linear unbiased467

estimator for β⋆, we use the following equation from above matrix,468 (
t∑

s=1

(ws − gs)
⊤φ(xs)

)
ft +

(
t∑

s=1

(ws − gs)
⊤(ws − gs)

)
β̂t =

t∑
s=1

(ws − gs)ys

=⇒

(
t∑

s=1

(ws − gs)
⊤(ws − gs)

)
β̂t =

t∑
s=1

(ws − gs)ys −
t∑

s=1

(ws − gs)
⊤ (φ(xs)

⊤ft
)

=⇒ β̂t =

(
t∑

s=1

(ws − gs)
⊤(ws − gs)

)−1 t∑
s=1

(ws − gs)
(
ys − φ(xs)

⊤ft
)

=⇒ β̂t =

(
t∑

s=1

(ws − gs)
⊤(ws − gs)

)−1 t∑
s=1

(ws − gs) (ys − ft(xs))

Using definition ft(xs) = φ(xs)
⊤ft, Wt =

w1 − gs
...

wt − gs

, and Yt =

y1 − ft(x1)
...

yt − ft(xt).

, we get469

=⇒ β̂t = (W⊤
t Wt)

−1W⊤
t Yt.

Since the reward and its auxiliary feedback observations are functions of the selected action, we can
not directly use the control variate theory due to parameterized mean values of the reward and its
auxiliary feedback. To overcome this challenge, we centered the observations by its function value
and defined new centered variables as follows:

ycs = ys − f(xs), wc
s = ws − gs, and zcs,q = zs,q − f(xs).

In our setting, these centered variables (ycs,w
c
s, and zcs,) follow zero mean Gaussian distributions470

with variance σ2, σ2
w = (σ2

w,1, . . . , σ
2
w,q), and (1− ρ2)σ2, respectively.471

Theorem 1. Let t > q + 2 ∈ N. If β̂t as defined in Lemma 1 is used to compute hybrid reward zs,q472

for any s ≤ t ∈ N, then E [zs,q] = f(xs) and V (zs,q) =
(
1 + q

t−q−2

)
(1− ρ2)σ2.473

Proof. The sequence (ycs,w
c
s)

t
s=1 is an IID sequence and follows a Gaussian distribution with

mean 0. We now define zcs,q = ycs − wc
sβ = ycs − (ws − gs)β, which can be re-written as

ycs,q = zcs + (ws − gs)β. Let ft be the estimated f using available information, i.e., {xs, ys,ws}ts=1
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and hence we can write estimated zs,q as ẑs,q = ft(xs) and hence ẑcs,q = ft(xs) − f(xs). Now,
adapting Eq. (6) to our setting and replacing estimated mean in Yt by ẑcs,q, sth value of Yt is
ycs − ẑcs,q = ys − f(xs)− (ft(xs)− f(xs)) = ys − ft(xs). With these manipulations, we get the
following best linear unbiased estimator for β⋆:

β̂t = (W⊤
t Wt)

−1W⊤
t Yt,

which is the same as defined in Lemma 1.474

By adapting Fact 4 for a single sample (i.e., zs,q) while using β̂t to define hybrid reward, we have475

E
[
zcs,q
]
= 0 and

V
(
zcs,q
)
=

(
1 +

q

t− q − 2

)
(1− ρ2)V (ycs) ,

By extending the definition of E
[
zcs,q
]

we have,

E [zs,q − f(xs)] = 0 =⇒ E [zs,q]− f(xs) = 0 =⇒ E [zs,q] = f(xs)

This proofs the hybrid reward is an unbiased estimator of reward.476

Since variance is invariant to constant change, we have477

V (zs,q) = V (zs,q − f(xs))

= V
(
zcs,q
)

=

(
1 +

q

t− q − 2

)
(1− ρ2)V (ycs)

=

(
1 +

q

t− q − 2

)
(1− ρ2)V (ys − f(xs))

=

(
1 +

q

t− q − 2

)
(1− ρ2)V (ys) .

Since V (ys) = σ2, we have V (zs,q) =
(
1 + q

t−q−2

)
(1− ρ2)σ2.478

Lemma 2. Let t > q + 2 ∈ N, e is the sampling strategy, and ft be the estimate of function f at the
end of round t which uses {xs, ys,ws}ts=1. Then, the best linear unbiased estimator of β⋆

e is

β̂e,t = (W⊤
t Wt ◦ Fe)

−1
(
diag (Fe) ◦W⊤

t Yt

)
,

where Wt is a t× q matrix whose sth row is ws − ge,s and Yt = (y1 − ft(x1), . . . , yt − ft(xt)).479

Proof. Recall the sth hybrid reward defined in Eq. (3) using sampling strategy e as zee,s,q = ys −480

(ws − ge,s)βe, which can be re-written as ys = zee,s,q + (ws − ge,s)βe. Following similar steps as481

of Lemma 1, we can re-write the above equation as ys = f⊤φ(xs) + (ws − ge,s)βe + εz,s.482

Using We,t =

w1 − ge,s
...

wt − ge,s

, and Yt =

y1 − ft(x1)
...

yt − ft(xt).

, we get β̂e,t = (W⊤
e,tWe,t)

−1W⊤
e,tYt.483

From Appendix D and E of Gorodetsky et al. (2020), we have W⊤
e,tWe,t = W⊤

t Wt ◦ Fe and484

W⊤
e,tYt = diag (Fe) ◦W⊤

t Yt. Using these two equality, we have485

β̂e,t = (W⊤
t Wt ◦ Fe)

−1(diag (Fe) ◦W⊤
t Yt).

Theorem 3. Let t > q + 2 ∈ N and e is the sampling strategy. If β̂e,t as defined in Lemma 2 is486

used to compute hybrid reward ze,s,q for any s ≤ t ∈ N, then E [ze,s,q] = f(xs) and V (ze,s,q) =487 (
1 + a(e)q

t−q−2

)
(1− ρ2e)σ

2, where a(IS) = 1, a(MF) = r−1
r if ri = r, ∀i ∈ {1, 2, . . . , q} when using488

MF sampling strategy for estimating auxiliary feedback functions.489

Proof. The proof follows the similar steps as Theorem 1 except we adapt the part (b.) of Theorem490

4 from Pham and Gorodetsky (2022) instead of using Fact 4 to show the variance reduction when491

sampling strategy (IS or MF) is used for estimating auxiliary feedback functions.492
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A.2 Unbiased estimate of variance493

Consider the following regression problem with target variable ys, which is defined as follows:

ys = µ+ (ws − ω)β + εz,s.

where εz,1, . . . , εz,t are IID and have zero mean Gaussian noise with variance (1− ρ2)σ2. Let

Y t =

y1
...
yt

 , W t =

1 w1 − ω
...

...
1 wt − ω

 , γ =

(
µ
β

)
, and εz,t =

εz,1
...

εz,t

 .

Now, using Fact 1, we have V (µ̂z,t) = σ2(W
⊤
t W t)

−1
11 , where (Y ⊤Y )−1

11 is the upper left most
element of matrix (Y ⊤Y )−1 (Schmeiser, 1982). Then after t observations, the unbiased variance
estimator of V (µ̂z,t) is given by

ν̂z,t = σ̂2
z,t(W

⊤
t W t)

−1
11 ,

where σ̂2
z,t =

1
t−q−1

∑t
s=1(ys − µ̂z,t)

2 (Nelson, 1990), which is also an unbiased variance estimator494

of σ2 (from Fact 2). Further, ν̂z,t is also an unbiased estimator of V (µ̂z,t), i.e., E [ν̂z,t] = V (µ̂z,t)495

(Nelson, 1990, Theorem 1). We can adapt this approach to our setting. However when noise variance496

(σ) is unknown, computing (W
⊤
t W t)

−1
11 may not be possible to general function f as φ function497

may not be known. Though the setting in which (W
⊤
t W t)

−1
11 can be computed, we have to use the498

upper bound of variance to construct the confidence bound for reward function f as random sample499

variance estimate can be small and leads to invalid confidence bounds. Given t observations, the500

upper bound of the sample variance is given by ν̄z,t =
(t−2)ν̂z,t

χ2
1−δ,t

, where χ2
1−δ,t denotes 100(1− δ)th501

percentile value of the chi-squared distribution with t− 2 degrees of freedom.502

A.3 Missing proofs related to regret analysis503

Theorem 2. With a probability of at least 1− 2δ, the instantaneous regret of OFUL-AF in round t is

rt(OFUL-AF) ≤ 2
(
ασ
t + λ1/2S

)
∥xt∥V −1

t
,

where ασ
t =

√
min (σ2, ν̄z,t−1) αt, ∥θ⋆∥2 ≤ S, and αt =

√
d log

(
1+tL2/λ

δ

)
. For t > q + 2 and504

ν̄z,t < σ2, E [rt(OFUL-AF)] ≤ Õ

((
(t−3)(1−ρ2)

t−q−3

) 1
2

rt(OFUL)
)
. Here, Õ hides constant terms.505

Proof. When only observed rewards are used for estimating underlying unknown parameters in the506

linear bandit setting, i.e., θ̂t = V
−1

t

∑t
s=1 xsys, then with probability 1− δ, the confidence bound507

(Abbasi-Yadkori et al., 2011, Theorem 1) is508 ∥∥∥θ̂t − θ⋆
∥∥∥
V̄t

≤ σ

√
d log

(
1 + tL2/λ

δ

)
+ λ1/2S, (7)

where σ2 is the variance of observed rewards given action (since the noise variance is σ2). To509

ensure the performance of OFUL-AF is as good as OFUL, we only used hybrid reward samples510

for estimation when the upper bound on the variance of hybrid rewards is smaller than the variance511

of rewards, i.e., ν̄z,t−1 < σ2. At the beginning of round t, the variance upper bound of hybrid512

rewards is computed using t− 1 observations and given by ν̄z,t−1 =
(t−2)ν̂z,t−1

χ2
1−δ,t

, where ν̂z,t−1 is an513

unbiased sample variance estimate of hybrid rewards using t− 1 observations and χ2
1−δ,t (implying514

the variance upper bound holds with at least probability of 1− δ) denotes 100(1− δ)th percentile515

value of the chi-squared distribution with t − 2 degrees of freedom. When ν̄z,t < σ2, we replace516

rewards {ys}ts=1 with its respective hybrid rewards, i.e., {zs,q}ts=1 to estimate underlying parameter517

and use it for next round. After using hybrid rewards to estimate the unknown parameter, we replace518
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σ2 in Eq. (7) with the variance upper bound of hybrid rewards. Then we get the following upper519

bound which holds with a probability of 1− 2δ.520 ∥∥∥θ̂t − θ⋆
∥∥∥
V̄t

≤
√
min (σ2, ν̄z,t−1)

√
d log

(
1 + tL2/λ

δ

)
+ λ1/2S

=
√
min (σ2, ν̄z,t−1)αt + λ1/2S

=⇒
∥∥∥θ̂t − θ⋆

∥∥∥
V̄t

= ασ
t + λ1/2S,

where ασ
t =

√
min (σ2, ν̄z,t−1)αt and αt =

√
d log

(
1+tL2/λ

δ

)
.521

Let action xt be selected in the round t. Then, the instantaneous regret is given as follows:522

rt = max
x∈X

x⊤θ⋆ − x⊤
t θ

⋆

= x⋆⊤θ⋆ − x⊤
t θ

⋆ (as x⋆ = max
x∈X

x⊤θ⋆)

= (x⋆ − xt)
⊤θ⋆

= (x⋆ − xt)
⊤θ⋆ + (x⋆ − xt)

⊤θ̂t − (x⋆ − xt)
⊤θ̂t

= (x⋆ − xt)
⊤θ̂t − (x⋆ − xt)

⊤(θ̂t − θ⋆).

A sub-optimal action is only selected when its upper confidence bound is larger than the optimal
action. Then, if

∥∥∥θ̂t − θ⋆
∥∥∥
V t

= ασ
t + λ1/2S, then we have523

rt ≤ αt ∥xt∥V −1
t

− αt ∥x⋆∥
V

−1
t

− (x⋆ − xt)
⊤(θ̂t − θ⋆)

≤ αt ∥xt∥V −1
t

− αt ∥x⋆∥
V

−1
t

− ∥x⋆ − xt∥V −1
t

∥∥∥θ̂t − θ⋆
∥∥∥
V t

≤ αt ∥xt∥V −1
t

− αt ∥x⋆∥
V

−1
t

+ αt ∥x⋆ − xt∥V −1
t

= αt(∥xt∥V −1
t

− ∥x⋆∥
V

−1
t

+ ∥x⋆ − xt∥V −1
t
)

≤ αt(∥xt∥V −1
t

− ∥x⋆∥
V

−1
t

+
∥∥Xt,a⋆

t

∥∥
V

−1
t

+ ∥xt∥V −1
t
)

= 2αt ∥xt∥V −1
t

=⇒ rt ≤ 2(ασ
t + λ1/2S) ∥xt∥V −1

t
.

Let Xt = {xs}ts=1. For t > q + 2 and ν̄z,t < σ2, the expected instantaneous regret of OFUL-AF is524

E [rt(OFUL-AF)] ≤ E
[
2(ασ

t + λ1/2S) ∥xt∥V −1
t

]
= E

[
2(
√
ν̄z,tαt + λ1/2S) ∥xt∥V −1

t

]
= 2E

[
E
[
(
√

ν̄z,tαt + λ1/2S) ∥xt∥V −1
t

|Xt

]]
= 2E

[
αt ∥xt∥V −1

t
E
[√

ν̄z,t|Xt

]
+ λ1/2S ∥xt∥V −1

t

]
≤ 2αt ∥xt∥V −1

t
E

[
E

[√
(t− 2)ν̂z,t−1

χ2
1−δ,t

|Xt

]]
+ 2λ1/2S ∥xt∥V −1

t

= 2αt ∥xt∥V −1
t

√
(t− 2)

χ2
1−δ,t

E
[√

ν̂z,t−1

]
+ 2λ1/2S ∥xt∥V −1

t
.

Since ν̂z,t−1 is an unbiased estimator of the sample variance of hybrid rewards, E [ν̂z,t−1] = V (zs,q)525

for s ∈ {1, . . . , t}. Using Theorem 1, we have V (zs,q) =
(
1 + q

t−q−3

)
(1 − ρ2)σ2 =526

17



(
(t−3)(1−ρ2)

t−q−3

)
σ2 as tth observation is not available at the beginning of the round t. With increasing527

t, Ct =

√
(t−2)
χ2
1−δ,t

tends to 1. With all these observations, we have528

E [rt(OFUL-AF)] ≤ 2Ct

(
(t− 3)(1− ρ2)

t− q − 3

) 1
2

σαt ∥xt∥V −1
t

+ 2λ1/2S ∥xt∥V −1
t

= 2

(
Ct

(
(t− 3)(1− ρ2)

t− q − 3

) 1
2

σαt + λ1/2S

)
∥xt∥V −1

t

Let rt(OFUL) be the upper bound on instantaneous regret for OFUL algorithm, i.e., rt(OFUL) =529

2
(
σαt + λ1/2S

)
∥xt∥V −1

t
. Then, we have530

E [rt(OFUL-AF)] ≤ 2Ct

(
(t− 3)(1− ρ2)

t− q − 3

) 1
2 (

σαt + λ1/2S
)
∥xt∥V −1

t

+ 2

(
1− Ct

(
(t− 3)(1− ρ2)

t− q − 3

) 1
2

)
λ1/2S ∥xt∥V −1

t

≤ Ct

(
(t− 3)(1− ρ2)

t− q − 3

) 1
2

rt(OFUL)

+ 2

(
1− Ct

(
(t− 3)(1− ρ2)

t− q − 3

) 1
2

)
λ1/2S ∥xt∥V −1

t
.

531

=⇒ E [rt(OFUL-AF)] ≤ Õ

((
(t− 3)(1− ρ2)

t− q − 3

) 1
2

rt(OFUL)

)
.

Theorem 4. Let A be an AFC bandit algorithm with |fA
t (x)− f(x)| ≤ σh(x,Ot) + l(x,Ot) and

ν̄e,z,t be the upper bound on sample variance of hybrid reward, whose value is set to σ2 for t ≤ q+2.
Then, with a probability of at least 1− 2δ, the instantaneous regret of A after using hybrid rewards
(named A-AF) for reward function estimation in round t is

rt(A-AF) ≤ 2min(σ, (ν̄e,z,t)
1
2 )h(x,Ot) + l(x,Ot),

where e = {IS, MF, KF}, and KF denotes the case where auxiliary functions are known. For t > q+2532

and ν̄e,z,t < σ2, E [rt(A-AF)] ≤ Õ

(((
t−(1−a(e))q−3

t−q−3

)
(1− ρ2e)

) 1
2

rt(A)

)
, where a(KF) = 1.533

Proof. Let A be an AFC bandit algorithm with |fA
t (x)− f(x)| ≤ σh(x,Ot) + l(x,Ot) and ν̄e,z,t534

be the upper bound on sample variance of hybrid reward. After A uses hybrid rewards for estimating535

function f , then, with probability at least 1− 2δ,536

|fA
t (x)− f(x)| ≤ min(σ, (ν̄e,z,t)

1
2 )h(x,Ot) + l(x,Ot) (8)

The proof follows similar steps as the first part of the proof of Theorem 2. The only key difference is537

the upper bound of variance of hybrid rewards, which depends on the underlying sampling strategy538

based on whether auxiliary functions are known or unknown. The upper bound on sample variance539

is given by ν̄e,z,t =
(t−2)ν̂e,z,t−1

χ2
1−δ,t

, where ν̂e,z,t−1 is an unbiased sample variance estimate of hybrid540

rewards using t− 1 observations with sampling strategy e and χ2
1−δ,t (implying the variance upper541

bound holds with at least probability of 1−δ) denotes 100(1−δ)th percentile value of the chi-squared542

distribution with t− 2 degrees of freedom.543

Let action xt be selected in the round t. Then, the instantaneous regret is given as follows:544

rt = max
x∈X

f(x)− f(xt) = f(x⋆)− f(xt) (as x⋆ = max
x∈X

f(x))

18



≤
∣∣∣fA

t (x⋆) + min(σ, (ν̄e,z,t)
1
2 )h(x⋆,Ot) + l(x⋆,Ot)− f(xt)

∣∣∣
≤
∣∣∣fA

t (xt) + min(σ, (ν̄e,z,t)
1
2 )h(xt,Ot) + l(xt,Ot)− f(xt)

∣∣∣
≤
∣∣fA

t (xt)− f(xt)
∣∣+min(σ, (ν̄e,z,t)

1
2 )h(xt,Ot) + l(xt,Ot)

≤ 2min(σ, (ν̄e,z,t)
1
2 )h(xt,Ot) + l(xt,Ot),

in which the first and last inequalities have used the upper bound given in Eq. (8), and the second545

inequality follows because actions are selected using the upper confidence bounds. The remaining546

proof will follow the similar steps as the second part of Theorem 2 except using Theorem 3 instead547

of Theorem 1 for quantifying the variance reduction due to hybrid rewards when IS or MF sampling548

strategy is used for estimating auxiliary feedback function.549

Table 1: Values of h(x,Ot) and l(x,Ot) for different AFC bandit algorithms

AFC bandit algorithm h(x,Ot) l(x,Ot)

OFUL (Abbasi-Yadkori et al., 2011)
√
d log

(
1+tL2/λ

δ

)
∥x∥

V
−1
t

λ
1
2S ∥x∥

V
−1
t

Lin-UCB (OFUL for contextual setting)
√
d log

(
1+tL2/λ

δ

)
∥x∥

V
−1
t

λ
1
2S ∥x∥

V
−1
t

GLM-UCB (Li et al., 2017)
√

d
2 log(1 + 2t/d) + log(1/δ)

∥x∥
V

−1
t

κ 0

IGP-UCB (Chowdhury and Gopalan, 2017)
√

2(γt−1 + 1 + log(1/δ))σt−1(x) Bσt−1(x)

A.4 Auxiliary feedback in contextual bandits550

Many real-life applications have some additional information readily available for the learner before551

selecting an action, e.g., users’ profile information is known to the online platform before making any552

recommendations. Such information is treated as contextual information in bandit literature, and the553

bandit problem having contextual information is refereed as contextual bandits (Li et al., 2010). Since554

the value of the reward function also depends on the context, the learner’s goal is to use contextual555

information to select a better action.556

We extend our results for the contextual bandits problem. In this setting, we assume that a learner557

has been given an action set denoted by A. In round t, the environment generates a vector558 (
xt,a, yt,a, {wt,a,i}qi=1

)
for each action a ∈ A. Here, xt,a is the context-action d-dimensional559

feature vector of observed context in round t and action a, yt,a is the stochastic reward received560

for context-action pair xt,a, and wt,a,i is the ith auxiliary feedback associated with the reward561

yt,a. We assume that the reward is a function of the context-action pair xt,a, which is given as562

yt,a = f(xt,a) + εt, where f : Rd → R is an unknown function and εt is a zero-mean Gaussian563

noise with variance σ2. The auxiliary feedback is also assumed to be a function of the context-action564

pair xt,a, given as Wt,a,i = gi(xt,a) + εwt,i, where gi : Rd → R and εwt,i is a zero-mean Gaussian565

noise with variance σ2
w. The correlation coefficient between reward and associated auxiliary feedback566

is denoted by ρ.567

We denote the optimal action for a context observed in the round t as a⋆t = argmaxa∈A f(xt,a). The568

interaction between a learner and its environment is given as follows. At the beginning of round569

t, the environment generates a context, and then the learner selects an action at from action set A570

for that context using past information of context-actions feature vector, observed rewards and its571

associated auxiliary feedback until round t − 1. After selecting action at, the learner receives a572

reward (yt,at
) with its associated auxiliary feedback and incurs a penalty (or instantaneous regret) rt,573

where rt = f(xt,a⋆
t
)− f(xt,at

). We aim to learn a sequential policy that selects actions to minimize574

the total penalty and evaluate the performance of such policy through regret, which is the sum of the575

penalty incurred by the learner. Formally, for T contexts, the regret of a policy π that selects action576

at for a context observed in round t is given by577

RT (π) =

T∑
t=1

(
f(xt,a⋆

t
)− f(xt,at

)
)
. (9)
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A policy π is a good policy when it has sub-linear regret. This implies that the policy will eventually578

learn to recommend the best action for every context. Similar to the parameterized bandit problem579

case, we can use the existing contextual bandit algorithms, which are AFC bandit algorithms.580

Depending on the problem, an appropriate AFC contextual bandit algorithm is selected that uses581

hybrid rewards to estimate reward function. The smaller variance of hybrid rewards leads to tighter582

upper confidence bound of the unknown reward function and hence smaller regret.583

A.5 More details about experiments584

To demonstrate the performance gain from using auxiliary feedback, we have considered three585

different bandit settings: linear bandits, linear contextual bandits, and non-linear contextual bandits.586

The details of the problem instance used in our experiments are as follows.587

Linear bandits: We use a 5-dimensional space in which each sample is represented by x =588

(x1, . . . , x5), where the value of xj is restricted in (−3, 3). We randomly select a 5-dimensional589

vector θ⋆ with a unit norm whose each value is restricted in (0, 1). In all linear bandits experiments,590

we use λ = 0.01, L = 2.236, S = 1, and δ = 0.05. In round t, the reward for selected action xt is591

yt = vt + wt,

where vt = x⊤
t θ

⋆
v+εvt and wt = x⊤

t θ
⋆
w+εwt . We set θ⋆v = (0, θ⋆2 , 0, θ

⋆
4 , 0) and θ⋆w = (θ⋆1 , 0, θ

⋆
3 , 0, θ

⋆
5).592

As we treat wt as auxiliary feedback, θ⋆w may be assumed to be known in some experiments. The593

random noise εvt is zero-mean Gaussian noise with variance σ2
v . Whereas εwt is also zero-mean594

Gaussian noise, but the variance is σ2
w. We assumed that σ2 = σ2

v + σ2
w is known, but not the σ2

v595

and σ2
w. The default value of σ2

v = 0.01 and σ2
w = 0.01. It can be easily shown that the correlation596

coefficient of yt and wt is ρ =
√
σ2
w/(σ

2
v + σ2

w). We run each experiment for 5000 rounds.597

Linear contextual bandits: We first generate a 2-dimensional synthetic dataset with 5000598

data samples. Each sample is represented by x = (x1, x2), where the value of599

xj is drawn uniformly at random from (−1, 1). Our action set A has four actions:600

{(x1, x2), (x1,−x2), (−x1, x2), (−x1,−x2)}. We uniformly generate a θ⋆ such that its norm is601

1. In all experiments, the data samples are treated as contexts, and we use λ = 0.01, L = 1.41,602

S = 1, and δ = 0.05. The observed reward for a context-action feature vector has two components.603

We treated one of the components as auxiliary feedback. In round t, the reward context-action feature604

vector xt,a is given as follows:605

yt,at
= vt,at

+ wt,at
,

where vt,at
= x⊤

t,aθ
⋆
v+εvt and wt,at

= x⊤
t,aθ

⋆
w+εwt . We set θ⋆v = (0, θ⋆2 , 0, θ

⋆
4) and θ⋆w = (θ⋆1 , 0, θ

⋆
3 , 0).606

As we treat wt,at
as auxiliary feedback, θ⋆w is known for some experiments. The random noise εvt is607

zero-mean Gaussian noise with variance σ2
v . Whereas εwt is also zero-mean Gaussian noise, but the608

variance is σ2
w. We assumed that σ2 = σ2

v + σ2
w is known, but not the σ2

v and σ2
w. The default value609

of σ2
v = 0.01 and σ2

w = 0.01. It can be easily shown that the correlation coefficient of yt,a and wt,a610

is ρ =
√
σ2
w/(σ

2
v + σ2

w).611

Non-linear contextual bandits: This problem instance is adapted from the linear contextual612

bandits problem instance. We first generate a 2-dimensional synthetic dataset with 5000 data samples.613

Each sample is represented by x = (x1, x2), where the value of xj is drawn uniformly at random614

from (−1, 1). We then use a polynomial kernel with degree 2 to have a non-linear transformation615

of samples. We removed (i.e., bias) the first (i.e., 1) and last value (i.e., x2
2) from the transformed616

samples, which reduced the dimensional of each transformed sample to 4 and represented as617

(x1, x2, x
2
1, x1x2), which is used as context. For this setting, the action set A has six actions:618

{(x1, x2,−x2
1,−x1x2), (x1,−x2, x

2
1,−x1x2), (−x1, x2, x

2
1,−x1x2), (x1,−x2,−x2

1, x1x2),619

(−x1, x2,−x2
1, x1x2), (−x1,−x2, x

2
1, x1x2), }. We uniformly generate a θ⋆ such that its norm is620

1. In all experiments, we use λ = 0.01, L = 2, S = 1, and δ = 0.05. The observed reward for a621

context-action feature vector has two components. We treated one of the components as auxiliary622

feedback. In round t, the reward context-action feature vector xt,a is given as follows:623

yt,at
= vt,at

+ wt,at
,

where vt,at = x⊤
t,aθ

⋆
v + εvt and wt,at = x⊤

t,aθ
⋆
w + εwt . We set θ⋆v = (0, θ⋆2 , 0, θ

⋆
4 , 0, θ

⋆
6 , 0, θ

⋆
8) and624

θ⋆w = (θ⋆1 , 0, θ
⋆
3 , 0, θ

⋆
5 , 0, θ

⋆
7 , 0). As we treat wt,at

as auxiliary feedback, θ⋆w is known for some625
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(a) Biased Estimator (b) Estimator from historical data (c) Influence of correlation

(d) Biased Estimator (e) Estimator from historical data (f) Influence of correlation

Figure 3: Top row: Experiment using linear bandits problem instance. Bottom row: Experiment
using non-linear contextual bandits problem instance. Left to right:: Regret vs. different biases (left
figure), regret vs. number of historical samples of auxiliary feedback (middle figure), and regret vs.
varying correlation coefficients of reward and its auxiliary feedback (right figure).

(a) Linear Bandit (b) Linear Contextual Bandits (c) Non-linear Contextual Bandits

Figure 4: Comparing regret vs. the number of historical samples of auxiliary feedback in different
settings. In this experiment, historical samples for each run are randomly generated as compared to
Fig. 2e, Fig. 3b, and Fig. 3e where history is kept fixed across the runs.

experiments. The random noise εvt is zero-mean Gaussian noise with variance σ2
v . Whereas εwt is626

also zero-mean Gaussian noise, but the variance is σ2
w. We assumed that σ2 = σ2

v + σ2
w is known,627

but not the σ2
v and σ2

w. The default value of σ2
v = 0.01 and σ2

w = 0.01. It can be easily shown that628

the correlation coefficient of yt,a and wt,a is ρ =
√

σ2
w/(σ

2
v + σ2

w).629

Regret with varying correlation coefficient: As the correlation coefficient of reward and auxiliary630

feedback is ρ =
√
σ2
w/(σ

2
v + σ2

w), we varied σv over the values {0.3, 0.2, 0.1528, 0.1, 0.0655} to631

obtain problem instances with different correlation coefficient for all problem instances.632

Variance estimation: Since the value of σ2 is know in all our experiments, we directly estimate the633

correlation coefficient (ρ) as ρ̂ = Cov(y, w)/(
√
V (w)σ). Then, use it to set ν̄e,z,t) = (1− ρ̂2)σ2.634
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