
Published as a conference paper at ICLR 2025

DEEP WEIGHT FACTORIZATION: SPARSE LEARNING
THROUGH THE LENS OF ARTIFICIAL SYMMETRIES

Chris Kolb, Tobias Weber, Bernd Bischl, & David Rügamer
Department of Statistics, LMU Munich, Munich
Munich Center for Machine Learning (MCML), Munich
{chris.kolb,tobias.weber,bernd.bischl,david}@stat.uni-muenchen.de

ABSTRACT

Sparse regularization techniques are well-established in machine learning, yet
their application in neural networks remains challenging due to the non-
differentiability of penalties like the L1 norm, which is incompatible with stochas-
tic gradient descent. A promising alternative is shallow weight factorization,
where weights are decomposed into two factors, allowing for smooth optimiza-
tion of L1-penalized neural networks by adding differentiable L2 regularization
to the factors. In this work, we introduce deep weight factorization, extending
previous shallow approaches to more than two factors. We theoretically estab-
lish equivalence of our deep factorization with non-convex sparse regularization
and analyze its impact on training dynamics and optimization. Due to the limi-
tations posed by standard training practices, we propose a tailored initialization
scheme and identify important learning rate requirements necessary for training
factorized networks. We demonstrate the effectiveness of our deep weight fac-
torization through experiments on various architectures and datasets, consistently
outperforming its shallow counterpart and widely used pruning methods.

1 INTRODUCTION

Making models sparse is a contemporary challenge in deep learning, currently attracting a lot
of attention. Among the more prominent methods to achieve sparsity are model pruning meth-
ods (Gale et al., 2019; Blalock et al., 2020) and regularization approaches sparsifying the model
during training (Hoefler et al., 2021). While in statistics and machine learning, sparse regular-
ization approaches are well-established (see, e.g., Tian & Zhang, 2022), the non-smoothness of
sparsity penalties such as the L1 norm impedes the optimization of neural networks when using
classical stochastic gradient descent (SGD) optimization. A possible solution that allows SGD-
based optimization while inducing L1 regularization is weight factorization. Originally proposed
in statistics for linear models (Hoff, 2017), the idea of factorizing the weights w = ω1 ⊙ ω2

to obtain a differentiable L1 penalty on the product ω1 ⊙ ω2 has recently been adopted also
in deep learning (see, e.g., Ziyin & Wang, 2023). This simple trick allows the integration of

100 101 102 103 104

Compression ratio (1
1 sparsity)

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Inherent sparsity (F-MNIST)

SGD+L1
(|w| < machine)
Differentiable L1
(depth=2)
Differentiable L2/3
(depth=3)

102 103 104

Compression ratio (1
1 sparsity)

0.2

0.4

0.6

0.8

1.0 Additional post-hoc pruning

Figure 1: Sparsity-accuracy tradeoff using a vanilla L1 penaliza-
tion with SGD (blue) compared to (deep) weight factorization.
Means and std. deviations over 3 random seeds are shown.

convex L1-based sparsity into neural
network training while promising di-
rect applicability of familiar SGD. As
shown in Fig. 1, the obtained spar-
sity of differentiable L1 is superior to
vanilla L1 regularization. This holds
even after applying additional post-hoc
pruning, demonstrating that the infe-
rior sparsity performance of vanilla L1

is not just due to a suboptimal threshold
but also the incompatibility of SGD
and non-smooth penalties.

Given the success of (shallow) weight factorization, we study deep weight factorization in this work,
i.e., factorizing w = ω1 ⊙ · · · ⊙ ωD, D ≥ 2 (cf. Fig. 2). We investigate whether theoretical
guarantees support the use of a depth-D factorization, whether it is beneficial for sparsity, what
implications its usage has on training dynamics, and analyze other practices such as initialization.

1

Published as a conference paper at ICLR 2025

Vanilla Factorized

L(w) + λ∥w∥2/D2/D L(ω1 ⊙ . . .⊙ ωD) +
λ

D

∑D
d=1 ∥ωd∥22

SGD ✗ // SGD ✓

1 Deep Weight Factorization

w = ω1 ⊙ . . .⊙ ωD

5 Collapse factors

ω̂1 ⊙ . . .⊙ ω̂D = ŵ

Theorem 1

2 Initialize factors

3 Train with L2

4 Obtain ω̂1, . . . , ω̂D

Figure 2: Overview of the proposed method (cf. Algorithm 2). Our approach proceeds by factorizing the neural
network weights and running SGD on the factors ωd with weight decay. Post-training, the factors are collapsed
again, with the resulting sparse solutions being minimizers of the non-smooth L2/D-regularized objective.

Our contributions In this work, we address the aforementioned challenges and close an important
gap in the current literature. We first theoretically show the equivalence of factorized neural net-
works with sparse regularized optimization problems for depth D ≥ 2, allowing for differentiable
non-convex sparsity regularization in any neural network. We then discuss optimization strategies
for these factorized networks including their initialization and appropriate learning rate schedules.
We also analyze the training dynamics of such networks, showing a particularly interesting connec-
tion between the evolution of weight norms, compression, accuracy, and generalization. Conducting
experiments on a range of architectures and datasets, we further substantiate our theoretical findings
and demonstrate that our proposed factorized networks usually outperform the recently proposed
shallow factorization and yield competitive results to commonly used pruning methods.

2 BACKGROUND AND RELATED LITERATURE

2.1 NOTATION

Let {(xi, yi)}ni=1 be the training data of independent samples (xi, yi) ∈ X ×Rc, and n, c ∈ N. Let
f(w,x) : X → Rc denote a network realization for any w ∈ Rp. In general, we are interested in
minimizing ℓ(·, ·) : Rc×Rc → R+

0 denoting a continuous per-sample loss. The Lq norm of a vector
w ∈ Rp is defined as ∥w∥q = (

∑p
i=1 |wi|q)

1/q for q > 0. Note that Lq regularizers are defined
differently as ∥w∥qq and that for q < 1, only a non-convex quasi-norm is defined. For two vectors
ω1,ω2 ∈ Rp, we use ⊙ to denote their element-wise multiplication. For an optimization problem
minw L(w), we denote ŵ := argminw L(w). Finally, the compression ratio (CR) is defined as the
ratio of original to sparse model parameters.

2.2 DIFFERENTIABLE L1 REGULARIZATION

Weight factorizations were previously mostly studied for regularized linear models or as toy models
for deep learning theory. We briefly illustrate this using the idea of a differentiable lasso.

Differentiable lasso The original lasso objective is defined as

min
w∈Rp

Lw,λ(w) :=

n∑
i=1

(
yi − x⊤

i w
)2

+ λ∥w∥1, (1)

where λ > 0 promotes sparsity via the L1 norm (Tibshirani, 1996). By factorizing w into ω1 and
ω2 such that w = ω1 ⊙ ω2, and replacing the non-differentiable L1 penalty with an L2 penalty on
ω = (ω1,ω2), we can obtain a differentiable formulation of the lasso (Hoff, 2017):

min
ω1,ω2∈Rp

Lω,λ(ω) :=

n∑
i=1

(
yi − x⊤

i (ω1 ⊙ ω2)
)2

+
λ

2

(
∥ω1∥22 + ∥ω2∥22

)
, (2)

2

Published as a conference paper at ICLR 2025

The formulation Eq. (2) is equivalent to Eq. (1) in the sense that all minima of the non-convex
objective in Eq. (2) are global and related to the unique lasso solution of Eq. (1) as ω̂1 ⊙ ω̂2 = ŵ.
Hoff (2017) proposes solving Eq. (2) via alternating ridge regression. However, this relies on the
biconvexity of the problem and cannot be easily extended beyond linear models.

Differentiable L1 regularization in general neural networks Recently, Ziyin & Wang (2023)
proposed applying a shallow factorization to arbitrary weights of a neural network. Coupled with
weight decay, this allows obtaining a differentiable formulation of the sparsity-inducing L1 penalty
that can be optimized with simple SGD. Specifically, by factorizing the weights w of any neural
network fw(w,x) as w = ω1 ⊙ ω2, and applying L2 regularization to the factors, the resulting
optimization problem has the same minima as the L1 regularized vanilla network. The key insight
for the equivalence with L1 regularization is that the factorization w = ω1 ⊙ ω2 introduces a
rescaling symmetry in the (unregularized) loss Lω,0.
Definition 1 (Rescaling Symmetry). Let the parameters of a loss function Lθ(θ) be partitioned as
θ = (ω1,ω2,θ0), with θ0 denoting the remaining parameters. Then Lθ(θ) possesses a rescaling
symmetry w.r.t. arbitrary parameters ω1,ω2 belonging to θ = (ω1,ω2,θ0) if for any c ̸= 0:

Lθ(ω1,ω2,θ0) = Lθ(c · ω1, c
−1 · ω2,θ0) ∀θ.

0.75 0.00 0.75
1

0.75

0.00

0.75

2

Rescaling symmetry
w = 1 2

0.25
0
min-norm

Figure 3: Scalar rescal-
ing symmetry and min-
norm factorizations.

While previous works mainly studied rescaling symmetries naturally aris-
ing in, e.g., homogeneous activation functions (Neyshabur et al., 2015;
Parhi & Nowak, 2023), weight factorization constitutes an artificial sym-
metry that is independent ofL, and by extension also of ℓ(·, ·) and fw(·,x).
This applicability to any parametric problem designates artificial symme-
tries as a powerful tool for constrained learning (Ziyin, 2023; Chen et al.,
2024). Intuitively, the additional L2 regularization enforces preference for
min-norm factorizations (ω∗

1 ,ω
∗
2) among all feasible factorizations of a

given w (Fig. 3). At such a min-norm factorization of w, the L2 penalty in
Eq. (2) reduces to ∥ω∗

1 ⊙ ω∗
2∥1 = ∥w∥1, effectively inducing L1 regular-

ization on the collapsed parameter. This approach allows for implementing
L1 regularization in general networks using GD without requiring special-
ized algorithms to handle non-differentiable regularization.

We refer to Appendix A for additional related methods and discussion. Appendix B provides some
intuition why weight factorization with L2 regularization promotes sparse solutions based on Fig. 3.

3 THEORETICAL RESULTS

Based on a given network specification of f(w,x), we study its depth-D factorization with D ≥ 2,
which we call Deep Weight Factorization (DWF) and is defined as follows:
Definition 2 (Deep Weight Factorization). A depth-D factorization with D ∈ N≥2 of an arbitrary
neural network fw(w,x), w ∈ Rp, is given by fw(ω1 ⊙ . . . ⊙ ωD,x) with ω = (ω1, . . . ,ωD)
and factors ωd = (ω1,d, . . . , ωp,d) ∈ Rp, d ∈ [D]. The original and factorized parameters are
related through w = ω1 ⊙ . . . ⊙ ωD =: ϖ, where ϖ denotes the collapsed parameter. Further, a
factorization depth is called shallow for D = 2 and otherwise deep.

In this work, we focus on unstructured sparsity. This means all weights and biases in fw are factor-
ized using DWF. In principle, however, the factorization can also be selectively applied to arbitrary
subsets of the parameters w. Importantly, while DWF does not alter the expressive capacity of the
underlying network fw, it drastically alters the optimization dynamics and enables sparse learning
in conjunction with L2 regularization or weight decay. Therefore, our focus lies on examining the
effects of L2 regularization and the behavior of SGD optimization in factorized networks.

The regularized training loss with DWF and regularization strength λ > 0 is defined to be

Lω,λ(ω) =
1

n

n∑
i=1

ℓ (yi, fw (ω1 ⊙ . . .⊙ ωD,xi)) +
λ

D

D∑
d=1

∥ωd∥22. (3)

For a given w, applying DWF to the training objective introduces an infinite set of feasible factoriza-
tions {(ω1, . . . ,ωD) : ϖ = w} that leave the network output fw(w,x) and loss invariant. Those

3

Published as a conference paper at ICLR 2025

factorizations, however, differ in their respective norms. While the norm of individual factors can
grow arbitrarily large, there exist factorizations that minimize the Euclidean norm, or equivalently,
the factor L2 penalty. L2 regularization thus biases the optimization toward min-norm factoriza-
tions. This regularization ensures that the parameter representation strives to be evenly distributed
across factors. The following result formalizes the necessary optimality conditions for the factorized
objective, identifying solution candidates as those that achieve minimal norm configuration.
Lemma 1 (Necessary condition for solution and minimum L2 penalty). Let ω = (ω1, . . . ,ωD) ∈
RDp be a local minimizer of Lω,λ(ω). Then i) |ωj,1| = . . . = |ωj,D| for all j ∈ [p], and ii) the
factor L2 penalty reduces to D−1

∑D
d=1 ∥ωd∥22 = ∥ϖ∥2/D2/D.

Using the result of Lemma 1, we introduce the concept of factor misalignment to quantify the
distance from balanced factorizations required for solutions. Specifically, the factor misalignment is
defined as M(ω) = D−1

∑D
d=1 ∥ωd∥22 − ∥ϖ∥

2/D
2/D and captures the difference between the factor

L2 penalty and that of a balanced minimum-norm factorization of the same collapsed ϖ. The
misalignment satisfies M(ω) ≥ 0, with equality if and only if the factorization is balanced. This
allows us to restrict the search for potential solutions to balanced factorizations M(ω) = 0, as
required by Lemma 1. Lemma 4 in Appendix C.4 describes the remarkable implications of reaching
zero misalignment for SGD dynamics, collapsing the dynamics to a constrained symmetry-induced
subspace in which the parameters remain for all future iterations (cf. Fig. 19 for dynamics of M(ω)).

The results from Lemmas 1 and 4 highlight the significance of factor misalignment for both the
landscape of loss functions under DWF and the trajectories of SGD optimization. For balanced
factorizations, the usual smooth L2 penalty remarkably takes the equivalent form of a sparsity-
inducing regularizer, with SGD dynamics being restricted to simpler symmetry-induced subspaces.
Notably, both L2 regularization and SGD noise naturally drive the dynamics towards balance (Chen
et al., 2024). These observations motivate the following key result:
Theorem 1 (Equivalence of optimization problems). The optimization problems

minw∈Rp Lw,λ(w) := 1
n

∑n
i=1 ℓ (yi, fw (w,xi)) + λ∥w∥2/D2/D (4)

minω∈RDp Lω,λ(ω) := 1
n

∑n
i=1 ℓ (yi, fw (ω1 ⊙ . . .⊙ ωD,xi)) +

λ
D

∑D
d=1 ∥ωd∥22 (5)

have the same global and local minima with the respective minimizers related as ŵ = ω̂1⊙. . .⊙ω̂D.

Practically speaking, instead of attempting to optimize the non-smooth problem in Eq. (4), we can
alternatively optimize the smooth problem in Eq. (5) as every local or global solution of the DWF
model will yield a corresponding local or global solution in the original model space. Hence, this
allows inducing sparsity in typical deep learning applications with SGD-optimization by a simple L2

regularization using Eq. (5). In contrast, the non-differentiability in (4) will cause the optimization
to oscillate and not provide the desired sparsity (see Section 5.1 and Fig. 1). The L2/D penalty in
Eq. (4) becomes non-convex and increasingly closer to the L0 penalty for D > 2, permitting a more
aggressive penalization of small weights than L1 regularization (Frank & Friedman, 1993).

While the theoretical equivalence derived in Theorem 1 establishes correspondence of all minimizers
and suggests a simple way to induce sparsity in arbitrary neural networks, the optimization of a DWF
model is not straightforward and little is known about the learning dynamics of such a model. We
will hence study these two aspects in the following section.

4 OPTIMIZATION AND DYNAMICS OF DEEP FACTORIZED NETWORKS

Two crucial aspects of successfully training DWF models are their initialization and the learning
rate when optimizing with SGD.

4.1 INITIALIZATION

Applying DWF to a neural network factorizes each parameter into a product of D factors. However,
initializations for factorized neural networks are not straightforward since the product distribution
of random variables often drastically differs from the factor distribution, leading to pathological be-
havior, especially for deep factorizations. To retain the properties of standard initializations, defined

4

Published as a conference paper at ICLR 2025

1.0 0.5 0.0 0.5 1.0
Factor

0

2

4

6

De
ns

ity

Factor initialization (depth=4)
Kaiming (factor)
VarMatch
DWF Init
(ours)

0.50 0.25 0.00 0.25 0.50
Product

0

2

4

6

8

10 Product initialization (depth=4)
Est. Kurtosis ()
Kaiming (factor) 76
VarMatch 78
DWF Init 6
(ours)

Kaiming
(product)

100 101 102 103 104

Compression ratio

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

LeNet-300-100 (F-MNIST)

Kaiming
VarMatch
DWF Init (ours)
Depth 2
Depth 3
Depth 4

Figure 4: DWF initialization strategies. Left: factor densities with variance matching and truncation. Middle:
product densities for D = 4 illustrating kurtosis explosion without truncation. Right: sparsity-accuracy curves
for different initializations and D, showing the failure of standard initialization.

in Appendix C, adjustments to the factor initializations need to be implemented.
Our exposition focuses on the simplest case w

(l)
j ∼ N (0, 1/n

(l)
in), where n

(l)
in is the number of input

units to the l-th layer (LeCun et al., 2002), but similar arguments can be made for other approaches.
While Ziyin & Wang (2023) use standard initialization for shallow factorizations with good re-
sults, this consistently fails for D > 2 in our experiments and only works in few cases for D = 2
(cf. Figs. 4 and 12b). The following result shows that initializing a factorized neural network using
a standard scheme leads to deteriorating initialization quality and vanishing activation variance:

Lemma 2 (Standard initializations in factorized networks). Consider a factorized neural network
with L layers and factorization depth D ≥ 2, where w(l) = ω

(l)
1 ⊙ . . .⊙ω

(l)
D and the scalar factors

ω
(l)
j,d are initialized using a standard scheme. Then i) the collapsed weights ϖ(l)

j =
∏D

d=1 ω
(l)
j,d

p−→ 0
as D grows, and ii) for any D ≥ 2, the variance of the activations vanishes in both nin and L.

Rectifying the failure of standard initializations in DWF Given a standard initialization w ∼
P(w) with variance σ2

w, the first step is to correct the variance of the product ϖ by initializing
the factors ωd so that the variance of their product matches that of P(w). This variance match-
ing of ϖ and w is achieved by setting Var(ωd) = Var(w)1/D and named VarMatch initialization
here. However, only considering the variance overlooks the importance of higher-order moments
for initialization in deep learning. For example, given a factor initialization ωd ∼ N (0, σ2), we
have E

[
(ϖ)2

]
= σ2D, E

[
(ϖ)4

]
= 3Dσ4D, implying the kurtosis of ϖ grows exponentially as

κϖ = 3D regardless of variance matching (cf. Fig. 4). In DWF with plain variance matching, we
observe a performance decline and the undesirable emergence of inactive weights (cf. Fig. 5a).1

Since variance matching alone does not yield satisfactory results for D > 2, we additionally propose
a tailored interval truncation of the factor initialization outside of a certain absolute value range and
name this approach DWF initialization (see also Algorithm 1). This redistributes the accumulating
probability mass away from 0 and prevents catastrophic initialization of dead weights. The trun-
cation thresholds control the smallest and largest possible absolute values ϖmin and ϖmax of ϖ,
defining the support of the product distribution. Setting the upper truncation threshold to (2σw)1/D

to address large outliers and the lower threshold to ε1/D, for some ε > 0, successfully removes
pathological product initializations in our experiments.

Together, the crucial ingredients for DWF initialization are corrections for both the vanishing variance
of the product distribution and its concentration around zero.

Remark 1. The factorized bias parameters should not be initialized to all zeros, as this corresponds
to a saddle point from which gradient descent cannot escape by symmetry (see Lemma 4).

4.2 LEARNING RATE

Another challenge in optimizing a depth-factorized model is the choice of learning rate (LR). As
shown in Fig. 5b, if the LR is chosen too small, the model cannot learn a sparse representation
despite achieving the same generalization as a 99.4% sparse model trained with large LR. This
closely follows previous analyses of large LRs in neural network training dynamics: Nacson et al.

1Inactive or dead weights are collapsed weights ϖ consisting of factors ωd with vanishingly small initial-
ization values, resulting in ϖ not changing during training.

5

Published as a conference paper at ICLR 2025

0.00

0.05

0.10

0.15

0.20

Sp
ar

sit
y

Init failure w/o truncation (CIFAR10, =0)

0 20 40 60 80 100 120 140
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train acc.
Val. acc.
Sparsity

w/o trunc.
w/ trunc.

(a) Acc. degradation and dead weights w/o truncation
despite λ = 0 for ResNet-18 and D = 10.

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ar

sit
y

LR failure w/o large LR (MNIST, =1e-3)

15 30 45 60 75
Epoch

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Train acc.
Val. acc.
Sparsity
Small LR (0.05)
96.6% test acc.
0% sparse
Large LR (0.15)
96.5% test acc.
99.4% sparse

Small LR (0.05)
96.6% test acc.
0% sparse
Large LR (0.15)
96.5% test acc.
99.4% sparse

(b) Sparsity only emerges with sufficiently large LR
for LeNet-300-100 and D = 4.

Figure 5: Failure modes when optimizing factorized neural networks.

(2022) show that large LRs help transition to a sparsity-inducing regime in diagonal linear net-
works. In more realistic scenarios, Andriushchenko et al. (2023) observe that a piece-wise constant
(step decay) LR schedule with large initial LR induces phased learning dynamics including a short
initial learning phase, followed by a period of sparse feature learning and loss stabilization, and sud-
den generalization upon reduction of the LR. Particular to symmetries and SGD, Chen et al. (2024)
demonstrate how large LRs help generalization by causing SGD to be attracted to symmetry-induced
structures through stochastic collapse. We conjecture that in DWF, the introduction of D-fold ar-
tificial symmetries (cf. Definition 1) accelerates this phenomenon and thus additionally aids sparse
learning. The first row of Fig. 6 shows the training dynamics of deep factorized ResNets and demon-
strates the requirement of large and small LR phases for DWF training. These training dynamics are
further discussed in the following section. Additionally, Appendix E includes an ablation study on
different LRs and factorization depths D, suggesting optimal sparsity-accuracy tradeoffs for initial
LRs slightly below a critical threshold where training becomes unstable (Fig. 11).

0 50 100 150
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

, S
pa

rs
ity

cosine LR

0 50 100 150
Epoch

constant LR

0 50 100 150
Epoch

step decay LR

0 50 100 150 200 250
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

, S
pa

rs
ity

low sparsity

0 50 100 150 200 250
Epoch

medium sparsity

0 50 100 150 200 250
Epoch

high sparsity

0
20
40
60
80
100

L2
 N

or
m

0

50

100

150

200

L2
 N

or
m

Train acc. Val. acc. Sparsity L2 Norm

Figure 6: Factorized ResNet-18 on CIFAR10 with D = 4. Dashed lines indicate phase transitions. Top:
Different LR schedules with same initial LR and λ. Left: cosine LR learns sparse and generalizing solutions.
Mid: a const. large LR causes sparsification but no generalization. Right: step-decay LR displays sharply
distinct sparsification and generalization phases in large and small LR phases. Bottom: For cosine LR, the
three distinct learning phases occur at all sparsity levels, with sharper contracted dynamics for high sparsity.

4.3 LEARNING DYNAMICS AND DELAYED GENERALIZATION

The learning dynamics of DWF with cosine annealing exhibit three distinct phases, characterized
by changes in accuracy, sparsity, and L2 norm of the collapsed weights (Fig. 6, second row): In an
initial phase, SGD learns easy-to-fit patterns without overfitting while the L2 norm decreases. The
reorganization phase is characterized by temporary drops in accuracy and an increase in weight
norm, hinting at a period of representational restructuring to accommodate sparsity constraints.
Sparsity emerges during or at the end of this phase. The final mixed sparsification and gener-
alization phase shows improvements in training and validation accuracy as sparsification continues
at a decreasing rate. The mixed nature of the final phase, contrasting sharply separated sparsification

6

Published as a conference paper at ICLR 2025

and generalization with step decay, is owed to the gradual reduction in cosine annealing. Notably,
with increasing regularization λ, the dynamics contract, and the phases occur in closer succession.
This phased behavior shows that the more contracted the reorganization phase is, the higher com-
pression and the more severe delayed generalization will be. This is reminiscent of the “grokking”
phenomenon (Power et al., 2022) shown to be tightly linked to L2 regularization (Liu et al., 2023).

4.4 IMPACT OF REGULARIZATION AND EVOLUTION OF LAYER-WISE METRICS

To investigate dynamics in more detail, we analyze the effect of D and λ on the sparsity and training
trajectories (Fig. 7). Similar results for different architectures/datasets are included in Appendix F.

100

101

102

103

104

Co
m

pr
es

sio
n

ra
tio

ResNet-18 (CIFAR10, depth=2)
Train
Val
 = 0
 = 5e-05
 = 7e-05
 = 2e-04
 = 4e-04

100

101

102

103

104
ResNet-18 (CIFAR10, depth=3)

100

101

102

103

104
ResNet-18 (CIFAR10, depth=4)

0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
/ V

al
. a

cc
.

0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Impact of regularization λ on compression (top), training, and validation accuracy (bottom) for
factorized ResNet-18 and D ∈ {2, 3, 4}. For large λ severely delayed generalization and extreme compression
emerges simultaneously. Colors indicate the same λ in both rows.

As expected, increasing λ leads to higher compression ratios across all depths. Moreover, greater D
enables higher compression ratios for the same λ. During the initial phase, the regularized training
curves coincide with the unregularized trajectory until their departure at the onset of the reorgani-
zation phase. This departure occurs earlier the stronger the regularization. For greater factorization
depths, the same λ values induce higher sparsity at the cost of reduced generalization performance,
indicating a stronger regularizing effect2. The relationship between sparsity, λ, and the collapsed
weight norm is further discussed in Appendix E.3. Appendix F.3 presents the layer-wise evolution
of sparsity and weight norms, providing more detailed insights into the effects of DWF across the
network topology for different architectures (e.g., Fig. 17a). Two key observations can be made:
the first and last layers exhibit less sparsity, owed to their increased importance for the prediction.
For the intermediate layers, there is a general trend toward higher compression for later layers. Sec-
ondly, the non-monotonic dynamics of the collapsed weight norm seem to be almost entirely driven
by the first few and the last layers, while the intermediate layers behave homogeneously. Finally, the
evolution of factor misalignment and its relation to the onset of sparsity is discussed in Appendix F.4.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of DWF. In Appendices F and G, we provide further
results and details on the experimental setup, including hyperparameters and training protocols.

5.1 FAILURE OF VANILLA L1 OPTIMIZATION WITH SGD

The failure of SGD with vanilla L1 regularization to achieve inherent sparsity has been previously
observed by Ziyin & Wang (2023); Kolb et al. (2023). It is natural to ask whether this limitation is
merely a benign optimization artifact or if it degrades the prunability of the regularized models. We,
therefore, train a LeNet-300-100 on Fashion-MNIST with vanilla L1 regularization as well as with
DWF and D = 2, 3, inducing differentiable L1 and non-convex L2/3 regularization.

2Note that this does not imply worse performance in general, but a different optimal λ for different D.

7

Published as a conference paper at ICLR 2025

Results The left plot in Fig. 1 (page 1) shows the tradeoff between performance and inherent spar-
sity (before pruning) for 100 logarithmically spaced λ values, confirming prior findings on the limi-
tations of vanilla L1 optimization. In contrast, differentiable L1 regularization using DWF achieves
a compression ratio of about 350 at 80% test accuracy. In addition, our DWF network with D = 3
is up to four times sparser than D = 2 at the same accuracy, underscoring the advantages of deeper
factorizations. In the right plot of Fig. 1, we subsequently apply post-hoc magnitude pruning to each
of the models at increasing compression ratios (without fine-tuning) until reaching random chance
performance and use the best-performing pruned model at each fixed compression ratio to obtain the
pruning curves. Results indicate that differentiable sparse training with factorized networks provides
better tradeoffs than vanilla L1, even after accounting for the issues producing sparsity when using
SGD with vanilla L1. At 80% test accuracy, vanilla L1 plus pruning requires twice as many param-
eters as its DWF counterpart, and three times as many as DWF (D = 3). This suggests SGD with
L1 struggles to find similarly well-prunable structures, while DWF yields much sparser models.

5.2 RUN TIMES

The perceptive reader might be concerned about the computational overhead induced by training
deep factorized networks. Our experiments show this concern to be unwarranted, as the effect of the
factorization depth is rather unimportant compared to batch size for both time per sample and mem-
ory cost. Appendix I.2 illustrates this for WRN-16-8 (Zagoruyko & Komodakis, 2016) and VGG-19
(Simonyan & Zisserman, 2014). For both models, the impact of factorization depth on computa-
tion time and memory usage becomes negligible as batch size increases. These findings suggest
that practitioners can leverage deeper factorized networks without incurring substantial additional
computational costs, particularly at typical batch sizes used in modern deep learning.

5.3 COMPRESSION BENCHMARK

We now evaluate DWF for factorization depths D ∈ {2, 3, 4} against various pruning methods con-
cerning test accuracy vs. compression, as well as the layer-wise allocation of the remaining weights.
Architectures and datasets: Our experiments cover commonly used computer vision benchmarks:
LeNet-300-100 and LeNet-5 (LeCun et al., 1998) on MNIST, Fashion-MNIST, and Kuzushiji-
MNIST, VGG-16 and VGG-19 (Simonyan & Zisserman, 2014) on CIFAR10 and CIFAR100, and
ResNet-18 (He et al., 2016) on CIFAR10 and Tiny ImageNet.
Methods: We compare our method against Global magnitude pruning (GMP) after training (Han
et al., 2015), a simple pruning method that removes the smallest weights across all layers and is sur-
prisingly competitive, especially at low sparsities (Gale et al., 2019; Frankle et al., 2020); Single-shot
Network Pruning (SNIP) (Lee et al., 2019), a pruning-at-initialization technique, showing competi-
tive performance against other recent pruning methods (Wang et al., 2020); SynFlow (Tanaka et al.,
2020), considered a state-of-the-art method for high sparsity regimes; Random pruning, serving as
a naive baseline that removes weights uniformly at random; a shallow factorized network (D = 2)
which is our variant of the spred algorithm (Ziyin & Wang, 2023) with our tailored initialization.
Tuning: For comparison methods, we use the established training configurations in Lee et al. (2019);
Wang et al. (2020); Frankle et al. (2020) when available, and otherwise ensure comparability by us-
ing the same configuration for all methods. All models are trained with SGD and cosine learning
rate annealing (Loshchilov & Hutter, 2022). For our method, no post-hoc pruning or fine-tuning is
required and all layers are regularized equally. Further details are given in Appendix G.

Results Fig. 8 shows results for the fully-connected and convolutional LeNet-300-100 and LeNet-
5 architectures on MNIST, F-MNIST, and K-MNIST. Across all datasets and models, our proposed
DWF consistently outperforms existing pruning techniques, particularly at higher compression ra-
tios. For LeNet-300-100 on MNIST, DWF with D = 3, 4 remains within 5% of the dense perfor-
mance even above a compression ratio of 500, significantly surpassing other methods. On F-MNIST
and K-MNIST, a similar performance gain is observed. LeNet-5 exhibits similar trends, with DWF
maintaining high accuracy at compression ratios where other techniques, especially random pruning
and SNIP, have collapsed. Notably, DWF sustains performance up to a compression ratio of 100
on K-MNIST, while competitors rapidly decline. SynFlow and GMP generally outperform random
pruning and SNIP, but still fall short of DWF. When comparing shallow and deep factorizations,
we see that D > 2 retains performance and delays model collapse much longer than D = 2. The

8

Published as a conference paper at ICLR 2025

101 102 103 104

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

LeNet-300-100 (MNIST)

101 102 103 104

0.2

0.4

0.6

0.8

1.0 LeNet-300-100 (F-MNIST)

101 102 103 104

0.2

0.4

0.6

0.8

1.0 LeNet-300-100 (K-MNIST)

101 102 103 104

Compression ratio

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

LeNet-5 (MNIST)

101 102 103 104

Compression ratio

0.2

0.4

0.6

0.8

1.0 LeNet-5 (F-MNIST)

101 102 103 104

Compression ratio

0.2

0.4

0.6

0.8

1.0 LeNet-5 (K-MNIST)

Depth 2 Depth 3 Depth 4 Random GMP SNIP Synflow Dense

Figure 8: Accuracy vs. sparsity tradeoffs for LeNet architectures on MNIST and replacements of varying
difficulty. Lines depict median test accuracies and shaded areas the minimum over three random initializations.

results demonstrate that DWF offers substantial gains in compression capability. Further, the clear
separation between DWF and other methods in the high-sparsity regime indicates that our approach
captures aspects of the model’s representational power that are missed by the other techniques.
These findings underscore the potential of DWF, particularly under severe parameter constraints.

For larger architectures and more complex datasets (Fig. 9), DWF continues to demonstrate superior
performance, albeit less pronounced. We observe that the D = 2 factorization excels in the medium
sparsity regime below a compression ratio of 100, while D > 2 shows enhanced resilience to
performance degradation and delayed model collapse at more extreme sparsity levels.

101 102 103 104 105

0.2
0.4
0.6
0.8

Te
st

 a
cc

ur
ac

y

ResNet-18 (CIFAR10)

101 102 103 104 105

0.2
0.4
0.6
0.8

VGG-16 (CIFAR10)

101 102 103 104 105
Compression ratio

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

VGG-19 (CIFAR100)

101 102 103 104 105
Compression ratio

0.2

0.4

0.6
ResNet-18 (Tiny Imagenet)

Depth 2
Depth 3
Depth 4
Random

GMP
SNIP
Synflow
Dense

Figure 9: Accuracy vs. sparsity for larger ResNet and VGG architectures on CIFAR and Tiny ImageNet.

Table 1 showcases the sparsest models achieved by each method while maintaining performance
within 5% or 10% of the dense model accuracy. These tolerance levels are suitable for testing
the medium to high sparsity regimes we focus on. Other levels can be read from Fig. 9. Of the 10
presented scenarios, DWF with D = 3, 4 achieves the highest compression in 9 cases, demonstrating
the robustness of DWF in preserving model performance under extreme sparsity requirements. The
best-ranked DWF model achieves 2 to 5 times the compression ratio of the best pruning method,
and surpasses shallow factorization in all but one setting, albeit with smaller improvements ranging
from 8% to 298%. For example, DWF with D = 3 reaches a compression ratio of 1014 (1456) for
VGG-19 on CIFAR100 (ResNet-18 on CIFAR10) at 10% tolerance, improving by 8% (25%) over
D = 2 and by 381% (102%) over the best pruning method SynFlow.

Allocation of layer-wise sparsity Finally, we investigate the reasons for model collapse in SNIP
and GMP in the high sparsity regime by plotting the layer-wise remaining ratio (1/CR) for ResNet-
18 and VGG-16 on CIFAR10 in the medium and extreme compression regimes, as shown in Fig. 10.
At high compression, for both ResNet-18 and VGG-16, we observe that GMP and SNIP catastroph-
ically prune entire layers. In contrast, SynFlow and DWF automatically learn adaptive layer-wise
sparsity budgets which helps in avoiding such issues. While SynFlow does prune some layers en-
tirely in ResNet-18, these correspond to skip connections that can be removed without interrupting

9

Published as a conference paper at ICLR 2025

Table 1: Compression ratios (sparsities) of sparsest model within εacc percentage points of the dense model
test accuracy. Random pruning is left out for clarity.

CR (↑) εacc LeNet-300-100 LeNet-5 ResNet-18 VGG-19 ResNet-18
F-MNIST K-MNIST CIFAR10 CIFAR100 Tiny ImageNet

Depth 2 5% 141 (99.29%) 52 (98.08%) 466 (99.79%) 484 (99.79%) 60 (98.34%)
10% 362 (99.72%) 78 (98.71%) 1169 (99.91%) 939 (99.89%) 99 (98.99%)

Depth 3 5% 506 (99.80%) 75 (98.67%) 573 (99.83%) 440 (99.77%) 67 (98.51%)
10% 1422 (99.93%) 134 (99.25%) 1456 (99.93%) 1014 (99.90%) 161 (99.38%)

Depth 4 5% 486 (99.79%) 75 (98.67%) 445 (99.78%) 215 (99.53%) 13 (92.39%)
10% 1442 (99.93%) 139 (99.28%) 1161 (99.91%) 675 (99.85%) 113 (99.12%)

GMP 5% 156 (99.36%) 22 (95.37%) 211 (99.53%) 37 (97.27%) 60 (98.33%)
10% 235 (99.58%) 32 (96.84%) 484 (99.79%) 68 (98.52%) 133 (99.25%)

SNIP 5% 76 (98.69%) 17 (94.10%) 140 (99.29%) 28 (96.47%) 18 (94.34%)
10% 146 (99.32%) 24 (95.91%) 339 (99.70%) 42 (97.59%) 41 (97.56%)

Synflow 5% 141 (99.29%) 21 (95.23%) 210 (99.52%) 46 (97.81%) 24 (95.84%)
10% 302 (99.67%) 37 (97.30%) 721 (99.86%) 218 (99.54%) 71 (98.60%)

the synaptic flow. Comparing SynFlow and DWF, we observe that DWF produces higher sparsity
in the first and last layers across all settings. This is a particularly desirable property, as it leads to
greater computational savings for a given overall sparsity level. Moreover, as opposed to remov-
ing the skip connections, DWF allocates less sparsity to these structures, suggesting a qualitatively
distinct underlying structure optimization mechanism.

1 3 5 7 9 11 13 15 17 19 2110 3

10 2

10 1

100

Re
m

ai
ni

ng
 ra

tio
 (1

/c
r)

ResNet-18, cr 50

1 3 5 7 9 11 13 15 17 19 2110 6

10 5

10 4

10 3

10 2

10 1

100 ResNet-18, cr 1000

1 3 5 7 9 11 13 15
Layer

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
m

ai
ni

ng
 ra

tio
 (1

/c
r)

VGG-16, cr 50

Depth 3
Depth 4
Random
GMP
SNIP
Synflow

1 3 5 7 9 11 13 15
Layer

10 6

10 5

10 4

10 3

10 2

10 1

100 VGG-16, cr 1000

Figure 10: Allocation of layer-wise sparsity for different methods. SNIP and GMP show catastrophic pruning
of whole layers (collapse) for high sparsities, whereas DWF, like SynFlow, finds adaptive sparsity allocations.

6 CONCLUSION

This paper introduces deep weight factorization (DWF), an extension of a previously proposed dif-
ferentiable L1 regularization to induce sparsity in general neural networks. By factorizing weights
not only into two, but D ≥ 3 parts, our method provably induces differentiable L2/D regularization
that can be incorporated in any neural network. We identify practical training obstacles and propose
tailored optimization strategies such as a depth-specific initialization and a sparsity-promoting learn-
ing rate scheme. We also characterize three distinct phases that describe the learning dynamics and
(delayed) generalization behavior of DWF. Experiments demonstrate that DWF is usually superior
to shallow factorization and outperforms dominant pruning techniques.

Limitations and future work In this work, we primarily focused on D ∈ {2, 3, 4}. While not
incurring significant computational overhead (cf. Fig. 26), we found that increasing the factoriza-
tion depth beyond four did not yield further sparsity improvements and introduced optimization
challenges (cf. Fig. 14). Additionally, a limitation of our work is that we exclusively focused on
DWF approaches resulting in unstructured sparsity regularization. Hence, an interesting potential
direction for future research is to extend our factorization to structured sparsity problems.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

DR’s research is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) – 548823575.

REFERENCES

Maksym Andriushchenko, Aditya Vardhan Varre, Loucas Pillaud-Vivien, and Nicolas Flammarion.
Sgd with large step sizes learns sparse features. In International Conference on Machine Learn-
ing, pp. 903–925. PMLR, 2023.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019.

Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, et al. Optimization with
sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4(1):1–106, 2012.

Kartikeya Bhardwaj, Milos Milosavljevic, Liam O’Neil, Dibakar Gope, Ramon Matas, Alex Chalfin,
Naveen Suda, Lingchuan Meng, and Danny Loh. Collapsible linear blocks for super-efficient
super resolution. Proceedings of Machine Learning and Systems, 4:529–547, 2022.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

Kevin Bui, Fredrick Park, Shuai Zhang, Yingyong Qi, and Jack Xin. Improving network slimming
with nonconvex regularization. IEEE Access, 9:115292–115314, 2021.

Feng Chen, Daniel Kunin, Atsushi Yamamura, and Surya Ganguli. Stochastic collapse: How gra-
dient noise attracts sgd dynamics towards simpler subnetworks. Advances in Neural Information
Processing Systems, 36, 2024.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Zhen Dai, Mina Karzand, and Nathan Srebro. Representation costs of linear neural networks: Anal-
ysis and design. Advances in Neural Information Processing Systems, 34, 2021.

Tristan Deleu and Yoshua Bengio. Structured sparsity inducing adaptive optimizers for deep learn-
ing. arXiv preprint arXiv:2102.03869, 2021.

Rayen Dhahri, Alexander Immer, Bertrand Charpentier, Stephan Günnemann, and Vincent For-
tuin. Shaving weights with occam’s razor: Bayesian sparsification for neural networks using the
marginal likelihood. In Sixth Symposium on Advances in Approximate Bayesian Inference-Non
Archival Track, 2024.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International conference on machine learning, pp. 2943–2952.
PMLR, 2020.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96(456):1348–1360, 2001.

L. E. Frank and Jerome H Friedman. A statistical view of some chemometrics regression tools.
Technometrics, 35(2):109–135, 1993.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Pruning neural net-
works at initialization: Why are we missing the mark? In International Conference on Learning
Representations, 2020.

11

Published as a conference paper at ICLR 2025

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1):1, 2010.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Daniel Gissin, Shai Shalev-Shwartz, and Amit Daniely. The implicit bias of depth: How incremental
learning drives generalization. In International Conference on Learning Representations, 2019.

Patrick Glandorf, Timo Kaiser, and Bodo Rosenhahn. Hypersparse neural networks: Shifting ex-
ploration to exploitation through adaptive regularization. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 1234–1243, 2023.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Yves Grandvalet. Least absolute shrinkage is equivalent to quadratic penalization. In ICANN 98:
Proceedings of the 8th International Conference on Artificial Neural Networks, Skövde, Sweden,
2–4 September 1998 8, pp. 201–206. Springer, 1998.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent
on linear convolutional networks. Advances in Neural Information Processing Systems, 31, 2018.

Shuxuan Guo, Jose M Alvarez, and Mathieu Salzmann. Expandnets: Linear over-parameterization
to train compact convolutional networks. Advances in Neural Information Processing Systems,
33:1298–1310, 2020.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Trevor Hastie, Rahul Mazumder, Jason D Lee, and Reza Zadeh. Matrix completion and low-rank svd
via fast alternating least squares. The Journal of Machine Learning Research, 16(1):3367–3402,
2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE transactions on pattern analysis and machine intelligence, 2023.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397,
2017.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Peter D Hoff. Lasso, fractional norm and structured sparse estimation using a hadamard product
parametrization. Computational Statistics & Data Analysis, 115:186–198, 2017.

Yaohua Hu, Chong Li, Kaiwen Meng, Jing Qin, and Xiaoqi Yang. Group sparse optimization via
ℓp,q regularization. The Journal of Machine Learning Research, 18(1):960–1011, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456.
pmlr, 2015.

12

Published as a conference paper at ICLR 2025

Arthur Jacot. Implicit bias of large depth networks: a notion of rank for nonlinear functions. In The
Eleventh International Conference on Learning Representations, 2023.

Li Jing, Jure Zbontar, et al. Implicit rank-minimizing autoencoder. Advances in Neural Information
Processing Systems, 33:14736–14746, 2020.

LIU Junjie, XU Zhe, SHI Runbin, Ray CC CHEUNG, and KH Hayden. Dynamic sparse training:
Find efficient sparse network from scratch with trainable masked layers. In 8th International Con-
ference on Learning Representations (ICLR 2020). International Conference on Learning Repre-
sentations, ICLR, 2020.

Chris Kolb, Christian L Müller, Bernd Bischl, and David Rügamer. Smoothing the edges: a general
framework for smooth optimization in sparse regularization using hadamard overparametrization.
arXiv preprint arXiv:2307.03571, 2023.

Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel LK Yamins, and Hidenori Tanaka.
Neural mechanics: Symmetry and broken conservation laws in deep learning dynamics. In Inter-
national Conference on Learning Representations, 2020.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
International Conference on Machine Learning, pp. 5544–5555. PMLR, 2020.

Thien Le and Stefanie Jegelka. Training invariances and the low-rank phenomenon: beyond linear
networks. In International Conference on Learning Representations, 2022.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–50. Springer, 2002.

N Lee, T Ajanthan, and P Torr. Snip: single-shot network pruning based on connection sensitivity.
In International Conference on Learning Representations. Open Review, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2022.

Jiangyuan Li, Thanh Nguyen, Chinmay Hegde, and Ka Wai Wong. Implicit sparse regularization:
The impact of depth and early stopping. Advances in Neural Information Processing Systems, 34,
2021.

Yicheng Li and Qian Lin. Improving adaptivity via over-parameterization in sequence models. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Zhiyuan Li, Kaifeng Lyu, and Sanjeev Arora. Reconciling modern deep learning with traditional
optimization analyses: The intrinsic learning rate. Advances in Neural Information Processing
Systems, 33:14544–14555, 2020.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736–2744, 2017.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data. In
The Eleventh International Conference on Learning Representations, 2023.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations, 2022.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through
l0 regularization. In International Conference on Learning Representations, 2018.

13

Published as a conference paper at ICLR 2025

Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for learn-
ing large incomplete matrices. The Journal of Machine Learning Research, 11:2287–2322, 2010.

Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection with the
lasso. The Annals of Statistics, 34(3):1436–1462, 2006.

Mor Shpigel Nacson, Kavya Ravichandran, Nathan Srebro, and Daniel Soudry. Implicit bias of the
step size in linear diagonal neural networks. In International Conference on Machine Learning,
pp. 16270–16295. PMLR, 2022.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. In ICLR (Workshop), 2015.

Nadav Joseph Outmezguine and Noam Levi. Decoupled weight decay for any p norm. arXiv preprint
arXiv:2404.10824, 2024.

Wenqing Ouyang, Yuncheng Liu, Ting Kei Pong, and Hao Wang. Kurdyka–łojasiewicz exponent
via hadamard parametrization. SIAM Journal on Optimization, 35(1):62–91, 2025.

Rahul Parhi and Robert D Nowak. Deep learning meets sparse regularization: A signal processing
perspective. IEEE Signal Processing Magazine, 40(6):63–74, 2023.

Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of sgd for diagonal
linear networks: a provable benefit of stochasticity. Advances in Neural Information Processing
Systems, 34:29218–29230, 2021.

Iosif Pinelis. The exp-normal distribution is infinitely divisible. arXiv preprint arXiv:1803.09838,
2018.

Clarice Poon and Gabriel Peyré. Smooth bilevel programming for sparse regularization. Advances
in Neural Information Processing Systems, 34, 2021.

Clarice Poon and Gabriel Peyré. Smooth over-parameterized solvers for non-smooth structured
optimization. Mathematical Programming, pp. 1–56, 2023.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Pedro Savarese, Hugo Silva, and Michael Maire. Winning the lottery with continuous sparsification.
Advances in neural information processing systems, 33:11380–11390, 2020.

Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse regu-
larization for deep neural networks. Neurocomputing, 241:81–89, 2017.

Jonathan Schwarz, Siddhant Jayakumar, Razvan Pascanu, Peter Latham, and Yee Teh. Powerpropa-
gation: A sparsity inducing weight reparameterisation. Advances in Neural Information Process-
ing Systems, 34, 2021.

Fanhua Shang, Yuanyuan Liu, Fanjie Shang, Hongying Liu, Lin Kong, and Licheng Jiao. A unified
scalable equivalent formulation for schatten quasi-norms. Mathematics, 8(8):1325, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Berfin Simsek, François Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram Gerst-
ner, and Johanni Brea. Geometry of the loss landscape in overparameterized neural networks:
Symmetries and invariances. In International Conference on Machine Learning, pp. 9722–9732.
PMLR, 2021.

Nathan Srebro, Jason D. M. Rennie, and Tommi S. Jaakkola. Maximum-margin matrix factorization.
In Proceedings of the 17th International Conference on Neural Information Processing Systems,
NIPS’04, pp. 1329–1336, Cambridge, MA, USA, 2004. MIT Press.

14

Published as a conference paper at ICLR 2025

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in neural information pro-
cessing systems, 33:6377–6389, 2020.

Yingjie Tian and Yuqi Zhang. A comprehensive survey on regularization strategies in machine
learning. Information Fusion, 80:146–166, 2022.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

Ryan Tibshirani. Equivalences between sparse models and neural networks. Working Notes, 2021.

Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for optimal
sparse recovery. Advances in Neural Information Processing Systems, 32, 2019.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

Huan Wang, Can Qin, Yue Bai, and Yun Fu. Why is the state of neural network pruning so con-
fusing? on the fairness, comparison setup, and trainability in network pruning. arXiv preprint
arXiv:2301.05219, 2023.

Sifan Wang, Hanwen Wang, Jacob H Seidman, and Paris Perdikaris. Random weight factorization
improves the training of continuous neural representations. arXiv preprint arXiv:2210.01274,
2022.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, volume 29, 2016.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pp. 3635–3673. PMLR, 2020.

Zongben Xu, Hai Zhang, Yao Wang, XiangYu Chang, and Yong Liang. L1/2 regularization. Science
China Information Sciences, 53(6):1159–1169, 2010.

Yang Yang, Yaxiong Yuan, Avraam Chatzimichailidis, Ruud JG van Sloun, Lei Lei, and Symeon
Chatzinotas. Proxsgd: Training structured neural networks under regularization and constraints.
In International Conference on Learning Representations (ICLR) 2020, 2020.

Sergey Zagoruyko. 92.45% on cifar-10 in torch. https://torch.ch/blog/2015/07/30/
cifar.html, 2015. Torch Blog.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference 2016. British Machine Vision Association, 2016.

Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of
Statistics, 38(2):894–942, 2010.

Cun-Hui Zhang and Jian Huang. The sparsity and bias of the lasso selection in high-dimensional
linear regression. The Annals of Statistics, 36(4):1567–1594, 2008.

Qiaozhe Zhang, Ruijie ZHANG, Jun Sun, and Yingzhuang Liu. How sparse can we prune a deep
network: A fundamental limit perspective. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Peng Zhao, Yun Yang, and Qiao-Chu He. High-dimensional linear regression via implicit regular-
ization. Biometrika, 2022.

Xiao Zhou, Weizhong Zhang, Hang Xu, and Tong Zhang. Effective sparsification of neural networks
with global sparsity constraint. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3599–3608, 2021.

Liu Ziyin. Symmetry induces structure and constraint of learning. In Forty-first International Con-
ference on Machine Learning, 2023.

15

https://torch.ch/blog/2015/07/30/cifar.html
https://torch.ch/blog/2015/07/30/cifar.html

Published as a conference paper at ICLR 2025

Liu Ziyin and Zihao Wang. spred: Solving l1 penalty with sgd. In International Conference on
Machine Learning, pp. 43407–43422. PMLR, 2023.

Liu Ziyin, Botao Li, Tomer Galanti, and Masahito Ueda. The probabilistic stability of stochastic
gradient descent. arXiv preprint arXiv:2303.13093, 2023.

16

Published as a conference paper at ICLR 2025

Appendices

A Further related literature 18

B Intuition for sparsity via L2 regularized weight factorization 19

C Further results and missing proofs 21

C.1 Proof of Lemma 1 . 21

C.2 Proof of Lemma 2 . 21

C.3 Proof of Theorem 1 . 22

C.4 Balanced factors and absorbing states in SGD optimization (Lemma 4) 23

D Algorithms 25

D.1 DWF initialization . 25

D.2 DWF training . 25

E Details on optimization 26

E.1 Learning rates in factorized networks . 26

E.2 Ablation study on initializations . 27

E.3 Relationship between sparsity, regularization and weight norms 27

F Additional results and ablation studies 28

F.1 Ablation study on the factorization depth D . 28

F.2 Combined training and validation accuracy . 28

F.3 Evolution of layer-wise compression and weight norms 28

F.4 Evolution of misalignment and onset of sparsity 30

F.5 Post-hoc pruning and fine-tuning . 32

F.6 Additional sparsity-accuracy tradeoffs . 32

F.7 Additional benchmark results . 32

G Experimental details 34

G.1 Description of comparison methods . 34

G.2 Details on architectures, datasets, and training hyperparameters 34

H Other approaches to factor initialization 36

H.1 Root initialization and results . 36

H.2 Exact Gaussian Factor Representation . 36

I Computational environment and runtime analysis 40

I.1 Computational environment . 40

I.2 Runtime analysis . 40

17

Published as a conference paper at ICLR 2025

A FURTHER RELATED LITERATURE

Convex and Non-convex sparse regularization Convex and non-convex regularization for
sparsity-inducing effects has a long history as it is well-understood with strong theoretical un-
derpinnings. Notable works in this direction include Tibshirani (1996); Fan & Li (2001); Mein-
shausen & Bühlmann (2006); Zhang & Huang (2008) for convex norm-based sparse regularization
and Friedman et al. (2010); Fan & Li (2001); Zhang (2010); Xu et al. (2010) studying its non-
convex extensions. While mathematically rigorous, they see limited application in deep learning
due to their non-differentiability exactly where sparsity is achieved, requiring the implementation of
non-smooth optimization routines that are often inflexible and do not scale well. While some works
exist on proximal-type optimization routines in deep learning (Yang et al., 2020; Deleu & Bengio,
2021), their popularity remains far behind pruning and other approaches, with these methods being
rarely applied, used as comparisons, or given much attention in surveys (Hoefler et al., 2021; Gale
et al., 2019). Nevertheless, the use of L1 or structured L2,1 regularization is ubiquitous in sparse
deep learning (Han et al., 2015; He et al., 2017; Liu et al., 2017; Li et al., 2022). These sparsity
regularization pruning methods (Cheng et al., 2024) use sparse regularization to shrink weights be-
fore applying a subsequent pruning step for actual sparsity. However, the conceptual framework
underlying these heuristic-based methods remains poorly understood.

Weight factorization without and with explicit regularization Weight factorizations, also stud-
ied under the names diagonal linear networks (Woodworth et al., 2020), redundant parameterization
(Ziyin & Wang, 2023), or Hadamard product parameterization (Hoff, 2017; Tibshirani, 2021; Kolb
et al., 2023) in various contexts, can be traced back to Grandvalet (1998) and was rediscovered both
in statistics (Hoff, 2017) and machine learning Neyshabur et al. (2015). Later, Tibshirani (2021);
Kolb et al. (2023) and Ziyin & Wang (2023) used this approach to induce sparsity via L2 regulariza-
tion. Further works using weight factorization from the field of optimization include Poon & Peyré
(2021; 2023). Ouyang et al. (2025) show that the Kurdyka-Łojasiewicz exponent at a second-order
stationary point of a factorized and L2 regularized objective can be inferred from its correspond-
ing L1 penalized counterpart. These works are closest to ours in spirit, namely, factorizing the
weights of existing problems to achieve sparsity in the original weight space under L2 regulariza-
tion. None of these works, however, studied deeper factorizations of neural network parameters.
A closely related approach to incorporate the induced non-convex Lq regularization (q < 1) into
DNN training was recently proposed by Outmezguine & Levi (2024), who base their method on the
η-trick (Bach et al., 2012) instead of the L2 regularized weight factorization we study. This method
re-parametrizes the regularization function instead of factorizing the network parameters, utilizing a
different variational formulation of the Lq quasi-norm. Despite having the same effective Lq regular-
ization, DWF incorporates additional symmetry-induced sparsity-promoting effects through weight
factorization and the stochastic collapse phenomenon (Ziyin, 2023; Chen et al., 2024). Another
branch of literature studies the representation cost of DNN architectures fw for a specific function
f , defined as R(f) = minw:fw=f ∥w∥22, showing that the L2 cost of representing a linear function
using a diagonal linear network yields the L2/D quasi-norm (Dai et al., 2021; Jacot, 2023).

Apart from the previous works using explicit regularization, the implicit regularization effect of
weight factorization was studied by various researchers, both in statistics and deep learning, includ-
ing Neyshabur et al. (2015); Gunasekar et al. (2018); Gissin et al. (2019); Vaskevicius et al. (2019);
Woodworth et al. (2020); Pesme et al. (2021); Zhao et al. (2022); Li et al. (2021). However, such
approaches are usually impractical for real applications, requiring vanishing initializations or spe-
cific loss functions. For example, the implicit bias of deep weight factorizations does not extend to
non-convex regularizers under the squared loss (Nacson et al., 2022). Powerpropagation (Schwarz
et al., 2021) is a different sparsity-inducing weight transformation with implicit regularization ef-
fects, proposed as a modular tool designed for use in practical applications.

Various papers have also studied the factorization of weights without explicit regularization in the
context of implicit acceleration caused by the factors acting as adaptive learning rates. Notable
examples include Arora et al. (2019); Wang et al. (2022); Li & Lin (2024).

Pruning in neural networks The landscape of pruning and sparse training methods is confusing
due to the plethora of complex sparsification pipelines, incorporating numerous techniques at the
same time, and an enormous amount of hyperparameters like pruning schedules or learning rates at

18

Published as a conference paper at ICLR 2025

different stages. A fair comparison is further complicated by the lack of established, streamlined
evaluation processes and opposing objectives in some methods. Pruning, arguably the most popular
and widespread method, can be used in innumerable ways to sparsify neural networks, which makes
comparisons among these particularly difficult (Wang et al., 2023). Existing pruning techniques use
pruning at initialization (Lee et al., 2019; Wang et al., 2020; Tanaka et al., 2020), pruning after train-
ing by, e.g., magnitude pruning (Han et al., 2015; Gale et al., 2019), pruning during training, iterative
pruning (Frankle et al., 2020), or pruning and re-growth (Evci et al., 2020). Recent surveys can be
found in Blalock et al. (2020); Hoefler et al. (2021); Cheng et al. (2024). Prominent examples in-
clude the lottery ticket hypothesis (Frankle & Carbin, 2019), proposing that many networks contain
equally performant, but much smaller subnetworks that can be found at initialization. A Bayesian
pruning version is suggested in Dhahri et al. (2024). Another approach related to pruning is soft
thresholding reparameterization (Kusupati et al., 2020), a sparse training method incorporating a
soft-thresholding step into its network. Despite its success, however, it was shown to be outper-
formed by the differentiable L1 approach, i.e., DWF with D = 2 (Ziyin & Wang, 2023). Recently,
Zhang et al. (2024) established theoretical bounds on network prunability using convex geometry,
showing that the fundamental one-shot pruning limit without sacrificing performance is determined
by weight magnitudes and the sharpness of the loss landscape, providing a unified framework to help
explain the effectiveness of magnitude-based pruning. They empirically show that L1 regularized
post-hoc magnitude pruning approximately matches the derived pruning limit before performance
degrades significantly.

Sparsity-inducing regularization in neural networks Apart from pruning, the application of
norm-based regularizers is also common in deep learning (Scardapane et al., 2017; Wen et al., 2016;
Han et al., 2015; Bui et al., 2021). This includes L0-type reguarlization methods (Louizos et al.,
2018; Zhou et al., 2021; Savarese et al., 2020). However, some of these, such as Louizos et al.
(2018), were found to not work well due to the stochastic sampling in their training procedure. Other
approaches include adaptive regularization (Glandorf et al., 2023) or dynamic masking (Junjie et al.,
2020).

Sparsity based on structural constraints While we focus on unstructured sparsity in this paper,
various approaches for structured pruning were proposed, including Wen et al. (2016); Li et al.
(2022); Bui et al. (2021); Liu et al. (2017). For a recent survey, see He & Xiao (2023). A link
also made in our paper is the connection between sparsity and symmetries. Using structures of
symmetries can guide the sparsification of neural networks. Papers studying this link include the
works of Kunin et al. (2020); Simsek et al. (2021); Le & Jegelka (2022), but also some various
recent work such Ziyin (2023); Ziyin et al. (2023); Chen et al. (2024).

Matrix factorization related induced regularization In Srebro et al. (2004); Mazumder et al.
(2010); Shang et al. (2020); Hastie et al. (2015) different matrix factorization regularization schemes
are proposed to, e.g., learn incomplete matrices (Mazumder et al., 2010; Hastie et al., 2015) or for
better generalization (Srebro et al., 2004). There are also neural architectures implementing flavors
of matrix factorization to achieve better performance or acceleration (Guo et al., 2020; Jing et al.,
2020; Bhardwaj et al., 2022). Although not directly related to our factorization, we will briefly
explain their idea to contrast it with our approach. For example, Guo et al. (2020) note a beneficial
effect of applying L2 regularization on the (matrix) factors in the form of ∥W1∥22 + ∥W2∥22 as
opposed to the L2 regularizer ∥W1W2∥22 proposed in Arora et al. (2019). This observation can
be explained by the low-rank bias induced on the product matrix, whereas the second approach is
simple L2 regularization on the product.

B INTUITION FOR SPARSITY VIA L2 REGULARIZED WEIGHT FACTORIZATION

Deep Weight Factorization introduces overparameterization by decomposing each original weight w
multiplicatively into D ≥ 2 factors ω1, . . . , ωD. Without additional L2 regularization, this induces
artificial rescaling symmetries (Definition 1), resulting in infinitely many possible factorizations for
each weight, all producing the same collapsed network and thus leaving the loss function unchanged.
However, when L2 regularization is applied, it influences the choice among these factorizations by
preferring those with minimal Euclidean norm. With L2 regularization, only minimum-norm (bal-

19

Published as a conference paper at ICLR 2025

anced) factorizations can be optimal, as otherwise, we could always decrease the L2 penalty by pick-
ing a more balanced factorization while leaving the unregularized loss unchanged (cf. Lemma 1).

To provide some geometric intuition using a more concrete example, consider the simplest case
of factorizing a scalar weight w ∈ R into two factors, w = ω1 · ω2, as illustrated in Fig. 3 for
w ∈ {0, 0.25}. The set of all possible factorizations {(ω1, ω2) ∈ R2 : ω1ω2 = w} is given by
the points on the coordinate axes for w = 0 and forms a rectangular hyperbola in the (ω1, ω2)
plane for non-zero w (cf. Fig. 3). Among these, the factorizations with minimal L2 norm (i.e.,
minimal distance to the origin) are located at the vertices of the hyperbola. These minimum-norm
factorizations are balanced, meaning the factors are equal in magnitude, as the vertices of a rect-
angular hyperbola always lie either on the diagonal ω2 = ω1 or ω2 = −ω1. Specifically, the two
vertices of the resulting hyperbola are given by (

√
|w|,

√
|w|) and (−

√
|w|,−

√
|w|) for positive

w, and (
√
|w|,−

√
|w|) and (−

√
|w|,

√
|w|) for negative w. Combined with the case w = 0, the

minimum-norm factorizations (ω∗
1 , ω

∗
2) for any w are obtained as

(ω∗
1 , ω

∗
2) =

(√
|w|,

√
|w|
)

or
(
−
√
|w|,−

√
|w|
)

, w > 0

(0, 0) , w = 0(√
|w|,−

√
|w|
)

or
(
−
√
|w|,

√
|w|
)

, w < 0.

(6)

At these points, the L2 penalty evaluates to 2|w|, effectively turning into an L1 penalty on the
collapsed weight w scaled by a factor of 2.

For deeper factorizations involving more than two factors the same line of reasoning applies, but
visualizing the set of possible factorizations as in Fig. 3 for D = 2 becomes challenging. The
minimum L2 penalty at balanced factorizations reduces to a non-convex sparsity-inducing L2/D

penalty on the collapsed weight. This serves as a lower bound of the L2 penalty for every fixed value
of w. Once the factors reach this balanced state, which is an ”absorbing state” under (S)GD, the
optimization process locks in this configuration for all future iterations by symmetry (cf. Lemma 4).
Thus, the combination of DWF and L2 regularization induces sparsity in the collapsed weights by
promoting balanced factorizations, at which the L2 penalty reduces to a lower-degree quasi-norm
penalty on w.

20

Published as a conference paper at ICLR 2025

C FURTHER RESULTS AND MISSING PROOFS

C.1 PROOF OF LEMMA 1

Proof. Let ω = (ω1, . . . ,ωD) ∈ RDp be a local minimizer of Lω,λ(ω). As the factorization
is applied independently to each parameter, it suffices to treat the scalar case: We will prove that
|ωj,1| = . . . = |ωj,D| for all j ∈ [p].

The rescaling symmetries of DWF ensures that Lω,0 (the factorized loss without regularization) is
constant over all possible factorizations of a collapsed parameter ϖ. However, the L2 regularization
term λD−1

∑D
d=1 ∥ωd∥22 enforces a preference for min-norm factorization. For each scalar weight

indexed by j ∈ [p], consider its factors ωj,1, . . . , ωj,D. Applying the AM-GM inequality to the L2

penalty of the DWF loss yields

D−1∑D
d=1 ω

2
j,d ≥

(∏D
d=1(ωj,d)

2
)1/D

= |ωj,1 · · ·ωj,D|2/D = |ϖj |2/D ∀ j ∈ [p] (7)

This shows the balancedness requirement for the minimizers of Lω,λ(ω), as the AM-GM inequality
holds tight if and only if all terms are equal, i.e., |ωj,1| = . . . = |ωj,D|.

Summing over the factorizations of all weights yields the non-convex L2/D regularizer ∥ϖ∥2/D2/D as
the minimum L2 penalty for a given collapsed weight ϖ ∈ Rp.

C.2 PROOF OF LEMMA 2

Definition 3 (Standard Weight Initialization). A standard weight initialization scheme for a neural
network layer with nin input units and nout output units is a probability distribution with mean 0
and variance σ2, where σ2 = cg2

nmode
. Here, g is a gain factor depending on the activation function,

c is a constant, and nmode is either nin, nout or their sum. Common examples include the Kaiming
(σ2 = 2

nin
) (He et al., 2015), Glorot (σ2 = 2

nin+nout
) (Glorot & Bengio, 2010), or LeCun initialization

(σ2 = 1
nin

) (LeCun et al., 2002).

Proof. Recall that using a standard initialization (cf. Definition 3), each factor is initialized as ω(l)
j,d ∼

N (0, σ2
l), where σ2

l = 1/n
(l)
in < 1 in the case of LeCun initialization (LeCun et al., 2002). For

clarity, we assume the width n
(l)
in to be constant across layers l ∈ [L].

To prove the first statement, we note that E[ϖ(l)
j] = 0 and Var

(
ϖ

(l)
j

)
=
∏D

d=1 Var
(
ω
(l)
j,d

)
= σ2D.

Applying Chebyshev’s inequality, we get for any ε > 0

P
(∣∣ϖ(l)

j − E
[
ϖ

(l)
j

]∣∣ ≥ ε
)
= P(|ϖ(l)

j | ≥ ε) ≤
Var
(
ϖ

(l)
j

)
ε2

=
σ2D

ε2
. (8)

Finally, we have 0 ≤ limD→∞ P(|ϖ(l)
j | ≥ ε) ≤ limD→∞

σ2D

ε2 = 0, and thus, by the squeeze

theorem: limD→∞ P(|ϖ(l)
j | ≥ ε) = 0. This shows that ϖ(l)

j

p−→ 0 as D →∞.

For the second point, we denote the pre-activation of neuron k in layer l as

y
(l)
k =

nin∑
i=1

w
(l)
ki
ϕ
(
y
(l−1)
i

)
=

nin∑
i=1

(
D∏

d=1

ω
(l)
ki,d

)
ϕ
(
y
(l−1)
i

)
, (9)

where ω
(l)
ki,d

is the d-th scalar factor of the weight w(l)
ki

associated with input i of neuron k in layer

l. The activation ϕ
(
y
(l−1)
i

)
is the activation function ϕ applied to the pre-activations from layer

l − 1. To simplify calculations, we assume that the activation function is approximately linear

21

Published as a conference paper at ICLR 2025

around the origin, implying Var
(
ϕ
(
y
(l−1)
i

))
≈ Var

(
y
(l−1)
i

)
and allowing us to ignore the gain

factor, as valid for, e.g., tanh activation. Using that the factors ω(l)
ki,d

and activations ϕ
(
y
(l−1)
i

)
are

independent and identically distributed, respectively, the variance of y(l)k is given by:

Var
(
y
(l)
k

)
=

nin∑
i=1

Var

(
D∏

d=1

ω
(l)
ki,d
· ϕ
(
y
(l−1)
i

))
=

nin∑
i=1

Var
(
ϕ
(
y
(l−1)
i

))
·

D∏
d=1

Var
(
ω
(l)
ki,d

)
. (10)

Since the factors are initialized with Var
(
ω
(l)
ki,d

)
= σ2

l = 1
nin

, the variance of y(l)k is:

Var
(
y
(l)
k

)
=

nin∑
i=1

Var
(
y
(l−1)
i

)(1

nin

)D

= nin ·
Var
(
y(l−1)

)
nD

in
=

Var
(
y(l−1)

)
nD−1

in

(11)

In non-factorized layers, the nin in Eq. (11) cancel out, resulting in equal activation variances across
layers. In contrast, standard initializations in factorized layers do not account for the exponent D
appearing in the variance of the collapsed weight ϖ(l)

ki
, and thus result in a variance reduction in

each subsequent layer as a function of input units and factorization depth D. Applying the above
relationship recursively, we see that the variance at layer L is

Var(y(L)
k) = Var(y(1)) ·

(
1

nin

)(D−1)(L−1)

(12)

To avoid reducing or amplifying the magnitudes of input signals exponentially, a proper initialization
requires Var(y(L)

k) to equal some constant, typically set to unity (He et al., 2015). In factorized
networks with D ≥ 2, however, standard initialization causes strong dependence on nin, D, and L.

C.3 PROOF OF THEOREM 1

Before proving the theorem, we introduce some required notation. We define the inverse fac-
torization function as K : RDp → Rp, ω 7→ ω1 ⊙ . . . ⊙ ωD = ϖ, and remark that it is a
smooth surjection. Using K, we can relate both objectives using the factor misalignment M(ω) =

D−1
∑D

d=1 ∥ωd∥22 − ∥ϖ∥
2/D
2/D. Using Lemma 1, the DWF objective Lω,λ(ω) can be expressed as

Lω,λ(ω) = Lw,λ(K(ω)) + λM(ω), where the misalignment M(ω) ≥ 0 attains zero if and only if
ω represents a balanced factorization. Further, let B(w, ε) denote an open ball with radius ε around
w ∈ Rp and recall that K is continuous at ω if ∀ ε > 0 ∃ δ > 0 : K(B(ω, δ)) ⊆ B(K(ω), ε).

Proof. First, we show that if ŵ ∈ argminw∈Rp Lw,λ(w), then ∃ ω̂ ∈ argminω∈RDp Lω,λ(ω) such
that K(ω̂) = ŵ and Lw,λ(ŵ) = Lω,λ(ω̂).
Since ŵ is a local minimizer of Lw,λ(w), ∃ ε0 > 0 : ∀w′ ∈ B(ŵ, ε0) : Lw,λ(ŵ) ≤ Lw,λ(w

′).
By surjectivity and the multiplicative structure of K, we can pick a balanced factorization ω̂ of ŵ so
thatK(ω̂) = ŵ and M(ω̂) = 0. Balanced factorizations are unique up to sign flip permutations that
leave the product sign invariant. Therefore Lw,λ(ŵ) = Lw,λ(K(ω̂)) = Lω,λ(ω̂). By continuity
of K, ∃ δ0 : K(B(ω̂, δ0)) ⊆ B(K(ω̂), ε0) = B(ŵ, ε0), i.e., all ω′ ∈ B(ω̂, δ0) map to some
w′ ∈ B(ŵ, ε0). Then we obtain the following chain of inequalities

∀ω′ ∈ B(ω̂, δ0) : Lω,λ(ω̂) = Lw,λ(ŵ) ≤ Lw,λ(K(ω′)︸ ︷︷ ︸
w′

) ≤ Lw,λ(K(ω′)) +M(ω′)︸ ︷︷ ︸
≥0

= Lω,λ(ω
′),

where the first equality holds because M(ω̂) = 0 and the subsequent inequality because ŵ is a local
minimizer of Lw,λ(w). This shows that ω̂ ∈ argminω∈RDp Lω,λ(ω) with Lw,λ(ŵ) = Lω,λ(ω̂).

22

Published as a conference paper at ICLR 2025

For the other direction, assume that ω̂ ∈ argminω∈RDp Lω,λ(ω), i.e., ∃ ε0 > 0 : ∀ω′ ∈ B(ω̂, ε0) :
Lω,λ(ω̂) ≤ Lω,λ(ω

′). By Lemma 1, M(ω̂) = 0 and therefore Lω,λ(ω̂) = Lw,λ(K(ω̂))+M(ω̂) =
Lw,λ(ŵ). We prove that ŵ = K(ω̂) is a local minimizer of Lw,λ(w) by contradiction. Assume ŵ
is not a local minimizer of Lw,λ(w), then ∀ δ > 0 : ∃w′ ∈ B(ŵ, δ) : Lw,λ(w

′) < Lw,λ(ŵ). How-
ever, if ω̂ is a balanced factorization of ŵ, the following auxiliary result shows that for a perturbed
w′ around ŵ, there must also be a balanced factorization ω′ of w′ close to ω̂:

Lemma 3. Let ω̂ ∈ RDp so that M(ω̂) = 0 and let K(ω̂) = ŵ. Then ∀ ε > 0∃δ > 0 : w′ ∈
B(ŵ, δ) =⇒ ∃ω′ ∈ B(ω̂, ε) : K(ω′) = w′ and M(ω′) = 0.

Proof. We first consider the scalar case of a balanced factorization ω̂j = (ω̂j,1, . . . , ω̂j,D) mapping
to ŵj ∈ R, i.e., M(ω̂j) = 0 and Kj(ω̂j) = ŵj . By Lemma 1, the magnitudes of the factors are
equal: |ω̂j,d| = |ŵj |1/D for all d ∈ [D]. We now construct factors ω′

j for any w′
j close to ŵj such

that Kj(ω
′
j) = w′

j , M(ω′
j) = 0, and ∥ω′

j − ω̂j∥2 < ε/
√
p.

Let ε > 0 be arbitrary. Since wj 7→ |wj |1/D is continuous at ŵj , there exists δj > 0 such that
|w′

j − ŵj | < δj implies
∣∣|w′

j |1/D − |ŵj |1/D
∣∣ < ε/(

√
Dp). The factors ω′

j are defined as follows:

ω′
j,d =

sign(ω̂j,d) · |w′

j |1/D, if ŵj ̸= 0, ∀d ∈ [D],

sign(w′
j) · |w′

j |1/D, if ŵj = 0, d = 1,

|w′
j |1/D, if ŵj = 0, d = 2, . . . , D.

This ensures the magnitudes are equal, so M(ω′
j) = 0, and that the product of the factors satisfies

Kj(ω
′
j) = w′

j . For ŵj ̸= 0, we can apply the sign pattern of ω̂j to the ω′
j,d by choosing δj small

enough. The resulting distance between ω′
j and ω̂j is then:

∥ω′
j − ω̂j∥2 =

√
D ·

∣∣∣|w′
j |1/D − |ŵj |1/D

∣∣∣ < ε
√
p
,

since
∣∣|w′

j |1/D − |ŵj |1/D
∣∣ < ε/(

√
Dp). Extending to the vector case, let δ = minj{δj}. For any

w′ ∈ B(ŵ, δ), each component w′
j satisfies |w′

j − ŵj | < δj . Applying the scalar construction to
each w′

j , we obtain ω′ such that K(ω′) = w′ and M(ω′) = 0. Together, we get

∥ω′ − ω̂∥2 =
(p∑

j=1

∥ω′
j − ω̂j∥22

)1/2
< ε.

Therefore, for any ε > 0, there exists δ > 0 such that w′ ∈ B(ŵ, δ) implies the existence of
ω′ ∈ B(ω̂, ε) with K(ω′) = w′ and M(ω′) = 0.

Choosing ε = ε0, then ∃δ0 > 0 : ∀ w̃ ∈ B(ŵ, δ0)∃ω̃ ∈ B(ω̂, ε0) : K(ω̃) = w̃ and M(ω̃) = 0.
By assumption ŵ is not a minimizer of Lw,λ(w), hence ∃w′ ∈ B(ŵ, δ0) : Lw,λ(w

′) < Lw,λ(ŵ).
Let ω′ ∈ B(ω̂, ε0) be the corresponding balanced factorization of w′ constructed using Lemma 3,
with the properties K(ω′) = w′, M(ω′) = 0 and thus Lω,λ(ω

′) = Lw,λ(w
′). But then

∃ω′ ∈ B(ω̂, ε0) : Lω,λ(ω
′) = Lw,λ(w

′) < Lw,λ(ŵ) = Lω,λ(ω̂), (13)

contradicting ω̂ ∈ argminω∈RDp Lω,λ(ω). Therefore, if ω̂ is a local minimizer of Lω,λ(ω), then
ŵ = K(ω̂) is a local minimizer of Lw,λ(w) with Lω,λ(ω̂) = Lw,λ(ŵ). This finishes the proof.

C.4 BALANCED FACTORS AND ABSORBING STATES IN SGD OPTIMIZATION (LEMMA 4)

Lemma 4 (Balanced factors are absorbing states in SGD). Consider the SGD iterates of a depth-D
factorized network with parameters ω(t) = (ω

(t)
1 , . . . ,ω

(t)
D) at iteration t ∈ N, where the j-th entry

of the collapsed weight vector ϖ(t) is ϖ(t)
j = ω

(t)
j,1 ·. . .·ω

(t)
j,D. Then, i) if ϖ(t)

j = 0 and M
(
ω

(t)
j

)
= 0,

then ω
(t′)
j,d = 0 for all d ∈ [D] and t′ > t. Further, ii) M

(
ω

(t)
j

)
= 0 implies M

(
ω

(t′)
j

)
= 0 for all

t′ > t.

23

Published as a conference paper at ICLR 2025

In other words, a balanced factorization at 0 causes the SGD dynamics to “collapse” and the factors
remain zero for all subsequent iterations, effectively reducing the expressiveness of the model.

Proof. Consider the SGD updates for the factors ωd ∈ Rp, d ∈ [D], in a factorized network with L2

regularization. Let Lω,0(ω) denote the part of the loss function without regularization and assume
a batch size of n without loss of generality:

ω
(t+1)
d = ω

(t)
d − η(t)

(
∇ωd
Lω,0(ω

(t)) + 2D−1λω
(t)
d

)
(14)

Using the chain rule, the SGD updates are given by:

ω
(t+1)
d = ω

(t)
d − η(t)

(
∇ϖLω,0(ω

(t))⊙
(⊙

k ̸=d ω
(t)
k

)
+ 2D−1λω

(t)
d

)
(15)

To show the collapse in the dynamics for a balanced zero factorization, consider the scalar case
ϖ

(t)
j = 0 with factorization ω

(t)
j = {ω(t)

j,d}Dd=1 such that M
(
ω

(t)
j

)
= 0. Then ω

(t)
j,d = 0 for all

d ∈ [D], and the update becomes:

ω
(t+1)
j,d = 0− η(t)

(
[∇ϖLω,0(ω

(t))]j · 0 + 2D−1λ · 0
)
= 0 (16)

This holds for all subsequent iterations, proving ω
(t′)
j,d = 0 for all d ∈ [D] and t′ > t. Next we

show the more general case of SGD dynamics conserving balancedness, i.e., M
(
ω

(t)
j

)
= 0, or

equivalently, |ω(t)
j,1| = · · · = |ω

(t)
j,D| := m

(t)
j . Let ωj,d := s

(t)
j,dm

(t)
j , where s

(t)
j,d = sign

(
ω
(t)
j,d

)
and

s
(t)
ϖj = sign(

∏D
d=1 s

(t)
j,d). We investigate the scalar updates:

ω
(t+1)
j,d = s

(t)
j,dm

(t)
j − η(t)

(
[∇ϖLω,0(ω

(t))]j · (m(t)
j)D−1 ·

s
(t)
ϖj

s
(t)
j,d

+ 2D−1λs
(t)
j,dm

(t)
j

)
(17)

Because 1/s
(t)
j,d = s

(t)
j,d, we can factor out s(t)j,d from all terms in the update. Hence, the resulting

magnitude at iteration t+ 1 is:

|ω(t+1)
j,d | =

∣∣m(t)
j − η(t)

(
[∇ϖLω,0(ω

(t))]j · (m(t)
j)D−1 · s(t)ϖj

+ 2D−1λm
(t)
j

)∣∣ (18)

Since the magnitude is constant over d, it is shown that M
(
ω

(t′)
j

)
= 0 for all t′ > t.

This “stochastic collapse” (Chen et al., 2024) in the gradient dynamics is a recently investigated
phenomenon where the noise in SGD dynamics drives iterates toward simpler invariant sets of the
weight space that remain unchanged under SGD. The previous result (Lemma 4) about zero mis-
alignment being an absorbing state in DWF with SGD optimization exemplifies this collapse. How-
ever, the dynamics that govern the collapse are poorly understood, including how it is determined
when and to which simpler structure the model collapses, with unclear implications for generaliza-
tion in broad settings. The attractivity of these simpler structures is associated with symmetries and
high gradient noise levels and closely related to the recently studied Type-II saddle points (Ziyin
et al., 2023), potentially helping to explain the benefits of large initial LRs, adaptively regularizing
overly expressive networks to constrained substructures via stochastic collapse. While potentially
positive effects on generalization were shown, the research community is not yet certain about the
broader consequences of this phenomenon.

24

Published as a conference paper at ICLR 2025

D ALGORITHMS

In the following, we provide the algorithms for the proposed initialization (Section 4.1) of DWF
networks in Appendix D.1 and how to train these networks in Appendix D.2.

D.1 DWF INITIALIZATION

Algorithm 1 DWF Initialization with Variance-Matching and Absolute Value Truncation

1: Input:
2: Number L and parameter size nl of layers, factorization depth D, minimum absolute value ε

3: Standard initializations {P(w(l)
j) ∼ N (0, σ2

w,l)}Ll=1

4: for l = 1 to L do
5: σl ← (σw,l)

1/D

6: ω
(l)
min ← ε1/D

7: ω
(l)
max ← min

{
1, (2σw,l)

1/D
}

8: for each weight w(l)
j in nl do

9: for d = 1 to D do
10: repeat
11: ω

(l)
j,d ∼ N (0, σ2

l)

12: until ω(l)
min < |ω(l)

j,d| < ω
(l)
max

13: end for
14: end for
15: end for
16: Output:
17: Initialized factors {ω(l)

j,d}
D
d=1 for all weights j ∈ [nl] per layer and all layers l ∈ [L].

D.2 DWF TRAINING

Algorithm 2 Training Factorized Neural Networks

1: Input:
2: Dataset D = {(xi, yi)}ni=1, network architecture A with L layers and weights w ∈ Rp

3: Factorization depth D ≥ 2,
4: Factor initialization method {DWF-Init, base initialization P, ε}, (Alg. 1)
5: Training hyperparameters {T, |B|,LRSchedule {η(t)}Tt=1, λ}
6: εtiny (e.g., float32 machine epsilon ≈ 1.19× 10−7)
7: Deep Weight Factorization:
8: Factorize the weights w of A as:
9: w← ω1 ⊙ . . .⊙ ωD and obtain fω(ω) from fw(w)

10: Initialize weights ω of fω(ω):
11: ω ← DWF-Init(A, D, ε, standard initP)
12: for each training step t ∈ {0, . . . , T − 1} do
13: Sample mini-batch B(t) = {(xi, yi)}|B|

i=1 from D and compute gradient
14: Update ωd using SGD:
15: ω

(t+1)
d ← ω

(t)
d −

η(t)

|B| ∇ωd

(
Lω,0(ω

(t)) + λD−1 ∑D
d=1 ∥ω

(t)
d ∥

2
2

)
∀ d ∈ [D]

16: Update LR:
17: η(t+1) ← LRSchedule(t+ 1)
18: end for
19: Post-training factor collapse:
20: Collapse factors to obtain weights for A:
21: ϖ̂ = ω

(T)
1 ⊙ . . .⊙ ω

(T)
D

22: Apply numerical mach. epsilon threshold εtiny to remove approx. 0 weights:
23: ϖ̂j ← 0 if |ϖ̂j | < εtiny ∀ j ∈ [p]
24: Transfer sparse weights ϖ̂ back to A
25: Output:
26: Sparse collapsed network parameters ϖ̂ = ŵ

25

Published as a conference paper at ICLR 2025

E DETAILS ON OPTIMIZATION

E.1 LEARNING RATES IN FACTORIZED NETWORKS

Ablation study on overall learning rate Our goal is to determine suitable LR ranges for achieving
high sparsity with good generalization in factorized networks. Additionally, we investigate how
deeper factorization affects LR requirements. We train factorized LeNet-300-100 with D ∈ {2, 3, 4}
and our DWF initialization on MNIST, using initial LRs ranging from 10−3 to 2. All models are
trained using SGD with a cosine LR schedule. The results, displayed in Fig. 11, show excessively
high LRs lead to unstable results, especially at higher compression ratios. Similarly, too small LRs
result in poor or even no sparsification. Notably, models with greater D exhibit more robustness
to LR variations, maintaining performance over a wider range of compression ratios compared to
shallower factorizations. Across all depths, selecting a large initial LR slightly below the edge where
training becomes unstable yields the best overall results, balancing both effective training with high
compression ratios. and providing evidence for the importance of a large LR phase in DWF training.

100 101 102 103

Compression ratio
0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

LeNet-300-100 (MNIST, depth=2)

100 101 102 103

Compression ratio
0.6

0.7

0.8

0.9

1.0 LeNet-300-100 (MNIST, depth=3)

100 101 102 103

Compression ratio
0.6

0.7

0.8

0.9

1.0 LeNet-300-100 (MNIST, depth=4)

Initial LR
1.0e-03 1.0e-02 5.0e-02 1.0e-01 1.2e-01 1.5e-01 2.0e-01 3.0e-01 5.0e-01 7.0e-01 1.0e+00 2.0e+00

Figure 11: Sparsity-accuracy tradeoffs for a grid of learning rates, demonstrating the importance of appropri-
ately large LRs for DWF. Left to right shows factorization depths D ∈ {2, 3, 4}.

Ablation on the stability of optimal LRs across the sparsity range In another ablation study,
we investigate the impact of different sparsity requirements on the optimal initial LR. To do this, we
train a LeNet-300-100 on MNIST for D ∈ {2, 3, 4} on a large number of LR and λ combinations.
For each D, we train all combinations of the learning rate η and the regularization λ, comprising 8
different LRs between 10−3 and 1, and a grid of 20 λ values logarithmically spaced between 10−6

and 10−1. We obtain the Pareto frontier for each D by removing all runs that are dominated by other
runs in either test accuracy or compression ratio. Fig. 12a shows the corresponding tradeoffs, with
the color of the points indicating the optimal learning rate for the corresponding λ. Confirming the
importance of large LRs, the result further demonstrates that the range of optimal LRs remains at
a high level across sparsity requirements, except for a slight trend toward distinctly larger LRs for
models with little regularization. This can be explained by the intricate relationship between LR and
λ, together forming the intrinsic LR. When λ is reduced, this is compensated using a larger LR to
recover optimal performance (Li et al., 2020).

101 102 103

Compression Ratio

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Pareto frontier over {LR}x{ } grid

Depth
2
3
4

1e-03

5e-03
1e-02
2e-02

5e-02
1e-01
2e-01

5e-01
1e+00

In
iti

al
 L

R

(a) Ablation on optimal LRs at different amounts of
sparsity using LeNet-300-100 on MNIST. Note that
none of the smaller LRs are selected as optimal.

100 101 102 103

Compression ratio

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

LeNet-5 (F-MNIST)

Kaiming
VarMatch
DWF Init
(ours)
Depth 2
Depth 3
Depth 4

(b) Factor initializations and depths D. For D = 2,
standard initialization performs worse and becomes
untrainable for D > 2.

Figure 12: Experiments on optimal LRs at different amounts of sparsity and different initialization approaches.

26

Published as a conference paper at ICLR 2025

10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1

101

102

103

104

Co
m

pr
es

sio
n

ra
tio

LeNet-300-100 (MNIST)

10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1

101

102

103

104 LeNet-5 (K-MNIST)

10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1

101

102

103

104

105
ResNet-18 (CIFAR10)

10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 110 2

10 1

100

101

102

103

104

105

L2
 N

or
m

 (c
ol

la
ps

ed
)

10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 110 2

10 1

100

101

102

103

10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 110 2

10 1

100

101

102

103

104

105

101 102 103 104

Compression ratio
10 2

10 1

100

101

102

103

104

105

L2
 N

or
m

 (c
ol

la
ps

ed
)

101 102 103 104

Compression ratio
10 2

10 1

100

101

102

103

101 102 103 104 105

Compression ratio
10 2

10 1

100

101

102

103

104

105

Depth 2
Depth 3
Depth 4

Figure 13: Relationship between different regularization strengths and compression ratio (first row), regular-
ization strength and L2 norm (second row), as well as compression ratio and L2 norm (third row) for different
datasets (columns) and different factorization depths D (colors).

E.2 ABLATION STUDY ON INITIALIZATIONS

In Fig. 12b, we extend the experimental analysis of standard and corrected initialization schemes
on performance and sparsity in factorized networks, complementing the experiment on a fully-
connected architecture (right plot of Fig. 4) by a convolutional LeNet-5 architecture. Similar to
the results in Fig. 4, we observe a failure of standard initialization for D > 2. For D = 2, contrast-
ing the results for LeNet-300-100 in Fig. 4, standard initialization indeed achieves some sparsity
for LeNet-5 on F-MNIST. The attainable tradeoff, however, is vastly outperformed by using the two
corrections in the DWF initialization (Algorithm 1).

E.3 RELATIONSHIP BETWEEN SPARSITY, REGULARIZATION AND WEIGHT NORMS

In Fig. 13, we present results on the relationship between sparsity (measured via the CR), regulariza-
tion induced by different λ values, and the implicit L2 weight norms of the collapsed parameter ϖ.
From the first row, we see that increases in compression ratio for increasing λ values have a similar
trend for all depths, starting to induce sparsity at approximately the same regularization strengths.
For all datasets and regularization strengths, except for extremely large λ values on ResNet-18, the
D = 4 model always yields a higher compression than D = 3, which in turn is sparser than the
D = 2 model for given λ. In the second row and for the smaller models, we see a short increase in
the L2 norm with increasing λ, followed by a drop in L2 norm that finally goes to zero at the point
where the highest compression is achieved. Remarkably, the collapsed model L2 norm increases
with λ exactly up to the point where sparsity emerges. A slightly different behavior can be seen for
ResNet, where the collapsed norm seems to monotonically decrease for increasing λ values (i.e.,
norms do not increase first and then decrease). Finally, the third row indicates smaller L2 norms the
more compressed models become, again with deeper factorizations achieving higher compression
ratios at the same L2 norm just before model collapse.

27

Published as a conference paper at ICLR 2025

F ADDITIONAL RESULTS AND ABLATION STUDIES

F.1 ABLATION STUDY ON THE FACTORIZATION DEPTH D

In our experiments, we considered deeper factorizations up to a depth of D = 4. This cut-off is
not chosen arbitrarily but follows empirical observations that non-convex Lq regularization achieves
an optimal tradeoff between superior sparsity performance and difficulty of numerical optimization
roughly at q = 0.5 (Hu et al., 2017). In an ablation study, we investigate if this also holds for
the DWF approach. Fig. 14 displays the sparsity-accuracy curves attained by factorizations depths
up to D = 8 and three different LRs in the range that performed well for D = 4. We use the
same hyperparameter configuration as described in Appendix G. Results show that in all settings,
deeper factorizations beyond D = 4 offer no improvements in generalization or sparsity, while their
training becomes increasingly unstable.

100 101 102 103 104

Compression Ratio

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Initial LR = 0.1

Depth
2
3
4
6
8

100 101 102 103 104

Compression Ratio

0.7

0.8

0.9

1.0 Initial LR = 0.15

100 101 102 103 104

Compression Ratio

0.7

0.8

0.9

1.0 Initial LR = 0.2

Figure 14: Factorization depths D > 4 empirically do not improve performance but become unstable to train.
Sparsity-accuracy curves for LeNet-300-100 on MNIST with increasing LRs shown from left to right.

F.2 COMBINED TRAINING AND VALIDATION ACCURACY

Fig. 16 contains the deferred training and compression trajectories over a range of λ values, as shown
exemplarily for ResNet-18 on CIFAR10 in the main text (Fig. 7). For improved clarity, we display
the running mean of the validation accuracy over three iterations. In addition, Fig. 15 illustrates
the learning dynamics for a much finer grid of λ values in the top row to provide a clearer picture
of how the training trajectories are affected by different λ values. Validation accuracies without
moving average smoothing are displayed in the bottom row.

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
ac

cu
ra

cy

VGG-19 (CIFAR100, depth=2) VGG-19 (CIFAR100, depth=3) VGG-19 (CIFAR100, depth=4)

0 50 100 150 200 250
Epoch

0.2

0.4

0.6

0.8

Va
l.

ac
cu

ra
cy

 = 0
 = 1e-06
 = 2e-05
 = 1e-04
 = 2e-04
 = 3e-04
 = 4e-04

0 50 100 150 200 250
Epoch

0 50 100 150 200 250
Epoch

10 6

10 5

10 4

10 3

10 2

Figure 15: Impact of regularization λ on training (top) and validation accuracy (bottom) for VGG-19 on
CIFAR100 and D ∈ {2, 3, 4}. The top row shows the training curves for the whole grid of λ values. Bottom
row shows validation accuracies without running mean for selected λ.

F.3 EVOLUTION OF LAYER-WISE COMPRESSION AND WEIGHT NORMS

This section provides a detailed examination of the layer-wise dynamics regarding the evolution of
sparsity, complementing the analysis in Section 4.4. Figure 17 illustrates the layer-wise evolution
of sparsity (top) and collapsed weight norm (bottom) for different architectures and datasets, using
a factorization depth D = 3 and increasing regularization strength λ. The plots reveal broadly
consistent patterns across different architectures. For stronger regularization, we observe a more

28

Published as a conference paper at ICLR 2025

100

101

102

Co
m

pr
es

sio
n

ra
tio

LeNet-5 (K-MNIST, depth=2)
Train
Val
 = 0
 = 6e-04
 = 8e-04
 = 1e-03
 = 5e-03
 = 7e-03
 = 1e-02

100

101

102

LeNet-5 (K-MNIST, depth=3)

100

101

102

LeNet-5 (K-MNIST, depth=4)

0 20 40 60
Epoch

0.6

0.8

1.0

Tr
ai

n
/ V

al
. a

cc
.

0 20 40 60
Epoch

0.6

0.8

1.0

0 20 40 60
Epoch

0.6

0.8

1.0

(a) Convolutional LeNet-5 on K-MNIST

100

101

102

103

104

Co
m

pr
es

sio
n

ra
tio

VGG-16 (CIFAR10, depth=2)
Train
Val
 = 0
 = 1e-06
 = 2e-05
 = 5e-05
 = 7e-05
 = 2e-04
 = 3e-04

100

101

102

103

104

VGG-16 (CIFAR10, depth=3)

100

101

102

103

104

VGG-16 (CIFAR10, depth=4)

0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
/ V

al
. a

cc
.

0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

(b) VGG-16 on CIFAR10

100

101

102

103

Co
m

pr
es

sio
n

ra
tio

WRN-16-8 (CIFAR100, depth=2)
Train
Val
 = 0
 = 1e-06
 = 2e-05
 = 5e-05
 = 7e-05
 = 2e-04
 = 3e-04

100

101

102

103

WRN-16-8 (CIFAR100, depth=3)

100

101

102

103

WRN-16-8 (CIFAR100, depth=4)

0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
/ V

al
. a

cc
.

0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

(c) WRN-16-8 on CIFAR100

100

101

102

103

Co
m

pr
es

sio
n

ra
tio

ResNet-34 (Tiny Imagenet, depth=2)
Train
Val
 = 0
 = 1e-06
 = 2e-05
 = 5e-05
 = 7e-05
 = 2e-04
 = 3e-04

100

101

102

103

ResNet-34 (Tiny Imagenet, depth=3)

100

101

102

103

ResNet-34 (Tiny Imagenet, depth=4)

0 25 50 75 100 125 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
/ V

al
. a

cc
.

0 25 50 75 100 125 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100 125 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

(d) ResNet-34 on Tiny ImageNet
Figure 16: Impact of regularization λ on compression (top), training, and validation accuracy (bottom) for
various architectures and datasets, using D ∈ {2, 3, 4}.

rapid and pronounced onset of sparsity across all layers. Different layers exhibit varying rates of
sparsification, with deeper layers generally achieving higher compression ratios more quickly than
earlier layers. The layer-wise norm trajectories show a characteristic pattern of initial increase, for
the first layer, followed by a peak and gradual decrease. The deeper levels exhibit a simpler dynamic,
showing an initial short decline followed by a low plateau. Stronger regularization leads to earlier

29

Published as a conference paper at ICLR 2025

peaking and faster decay of weight norms, corresponding to faster sparsification. Notably, the first
layer exhibits distinct behavior (cf. Fig. 18), often showing the lowest compression ratio and the
highest peak in weight norm. These more complex dynamics indicate stronger feature learning in
earlier layers closer to the input. Combined, this analysis provides insights into how DWF affects
different parts of the network during training and how this process is mediated by regularization.

100

101

102

103

Co
m

pr
es

sio
n

ra
tio

ResNet-18 (CIFAR10, depth=3, =5e-5)
Layer index

1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21

ResNet-18 (CIFAR10, depth=3, =7e-5) ResNet-18 (CIFAR10, depth=3, =1e-4)

0 50 100 150 200 250
Epoch

0

20

40

L2
 N

or
m

 (c
ol

la
ps

ed
)

0 50 100 150 200 250
Epoch

0 50 100 150 200 250
Epoch

(a) ResNet-18 on CIFAR10

100

101

102

103

104

Co
m

pr
es

sio
n

ra
tio

VGG-16 (CIFAR10, depth=3, =5e-5)
Layer index

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

VGG-16 (CIFAR10, depth=3, =7e-5) VGG-16 (CIFAR10, depth=3, =1e-4)

0 50 100 150 200 250
Epoch

0

20

40

60

80

L2
 N

or
m

 (c
ol

la
ps

ed
)

0 50 100 150 200 250
Epoch

0 50 100 150 200 250
Epoch

(b) VGG-16 on CIFAR10

100

101

102

103

Co
m

pr
es

sio
n

ra
tio

VGG-19 (CIFAR100, depth=3, =5e-5)
Layer index

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

VGG-19 (CIFAR100, depth=3, =7e-5) VGG-19 (CIFAR100, depth=3, =1e-4)

0 50 100 150 200 250
Epoch

0

50

100

150

L2
 N

or
m

 (c
ol

la
ps

ed
)

0 50 100 150 200 250
Epoch

0 50 100 150 200 250
Epoch

(c) VGG-19 on CIFAR100
Figure 17: Layer-wise evolution of sparsity (top) and collapsed weight norm (bottom) using D = 3 and
increasing regularization λ (left to right) for different architectures and datasets.

F.4 EVOLUTION OF MISALIGNMENT AND ONSET OF SPARSITY

We investigate the empirical dynamics of the factor misalignment M(ω) and demonstrate that DWF
ensures balanced factorizations for sufficiently large λ. Our analysis reveals an interesting connec-
tion between the reduction of misalignment and the onset of sparsity in the learning dynamics, both
at the layer-wise and overall model levels.

30

Published as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

Sp
ar

sit
y

ResNet-18 (CIFAR10, depth=2, =4e-5)

0 10 20 30 40 50 60 70 80
Epoch

ResNet-18 (CIFAR10, depth=2, =7e-5)

0 10 20 30 40 50 60 70 80
Epoch

ResNet-18 (CIFAR10, depth=2, =1e-4)
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12
Layer 13
Layer 14
Layer 15
Layer 16
Layer 17
Layer 18
Layer 19
Layer 20
Layer 21

0.00

0.02

0.04

0.06

0.08

0.10

M
isa

lig
nm

en
t (

pe
r w

ei
gh

t)

(a) ResNet-18 on CIFAR10 (D = 2)

20 40 60 80 100
Epoch

0.00

0.02

0.04

0.06

0.08

0.10

Sp
ar

sit
y

VGG-16 (CIFAR10, depth=2, =2e-5)

5 10 15 20 25 30 35 40
Epoch

VGG-16 (CIFAR10, depth=2, =7e-5)

5 10 15 20 25 30
Epoch

VGG-16 (CIFAR10, depth=2, =1e-4)
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12
Layer 13
Layer 14
Layer 15

0.02

0.04

0.06

0.08

0.10

M
isa

lig
nm

en
t (

pe
r w

ei
gh

t)

(b) VGG-16 on CIFAR10 (D = 2)
Figure 18: Evolution of the average layer-wise factor misalignment (dashed) together with layer-wise sparsity
(solid) for ResNet-18 and VGG-16 on CIFAR10 and D = 2. Increasing values of λ shown from left to right.

Figures 18a and 18b illustrate the layer-wise evolution of sparsity and the average misalignment
per layer for depth-2 factorized ResNet-18 and VGG-16 trained on CIFAR10. The factor misalign-
ment M(ω) is calculated at the layer level and normalized by the number of weights in each layer,
providing a granular view of misalignment evolution across the network.

0 50 100 150 200 250
Epoch

0

50,000

100,000

150,000

M
isa

lig
nm

en
t

VGG-19 (CIFAR100, depth=2)

 = 0
 = 1e-06
 = 1e-05
 = 2e-05
 = 7e-05
 = 1e-04
 = 2e-04
 = 5e-04
 = 7e-04

0 50 100 150 200 250
Epoch

0

300,000

600,000

900,000

VGG-19 (CIFAR100, depth=3)

0 50 100 150 200 250
Epoch

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000
VGG-19 (CIFAR100, depth=4)

Figure 19: Evolution of factor misalignment M(ω) for VGG-19 on CIFAR100 with increasing λ and factor-
ization depths D ∈ {2, 3, 4} (left to right).

The results reveal a clear relationship between the elimination of misalignment and sparsity emer-
gence. The onset of sparsity coincides almost exactly with the elimination of average misalignment
per layer, providing empirical evidence for the theoretical connection discussed in Section 3. Larger
values of λ lead to faster reduction in misalignment and earlier onset of sparsity, demonstrating
stronger regularization favors more balanced factorizations.

Two important observations emerge from these results. First, earlier layers broadly exhibit higher
initial layer-wise misalignment but decrease at a higher rate than later layers. Surprisingly, a larger
initial misalignment coincides with the most rapid and pronounced onset of sparsity as the aver-
age misalignment approaches zero. Second, the final layer (yellow) displays distinctly decoupled
dynamics, with sparsity emerging within the first few epochs, as opposed to the approximately si-
multaneous onset for the remaining layers.

We also explore if the onset of sparsity relates to the dynamics of different components of the
regularized loss. Figure 20 shows the overall training loss Lω,λ(ω

(t)), the data fit part Lω,0(ω
(t)),

and the (non-collapsed) factor L2 penalty D−1λ∥ω(t)∥22. The L2 penalty is further decomposed into
its minimal penalty and the excess penalty or misalignment λ ·M(ω(t)), as described in Lemma 1.
Early in training, the L2 component strongly exceeds the data fit component. Since the data fit levels
out much earlier than the L2 penalty, they intersect at some point during training that both LR and λ
influence. Notably, this point where the loss components are balanced coincides precisely with the
onset of sparsity and the overall misalignment approaching zero.

31

Published as a conference paper at ICLR 2025

20 40 60 80 100
Epoch

0

1

2

3

4

Lo
ss

 c
om

po
ne

nt

Onset of sparsity (CIFAR10, depth=3)

Train loss (CE+L2)
Data fit (CE)

Factor L2 pen.
Min. pen.

Excess pen.
(misalignment)
Sparsity

Balanced
loss

0.2
0.4
0.6
0.8

Sp
ar

sit
y

Figure 20: Evolution of loss components and sparsity for ResNet-18 with depth D = 3 and λ = 9× 10−5.

F.5 POST-HOC PRUNING AND FINE-TUNING

Since DWF operates distinctly from most sparsification methods, this offers potential for integration
with other pruning techniques. To demonstrate this, we combined DWF with post-hoc pruning on
a ResNet-18 with D = 2 factorization trained on CIFAR10. The setup used an initial learning rate
of 0.27 and a batch size of 256. Each model was trained across a range of λ values to obtain a
raw sparsity-accuracy tradeoff curve. These models were then further pruned along a sequence of
compression ratios and fine-tuned for 50 epochs using SGD with an LR of 0.11. Fig. 21 presents
the results of this experiment. Combining DWF with post-hoc pruning led to increased sparsity at
certain accuracy levels up to three times while maintaining comparable accuracy. This demonstrates
the potential for integrating DWF with existing pruning techniques.

101 102 103 104

Compression ratio

0.75

0.80

0.85

0.90

0.95

Te
st

 a
cc

ur
ac

y

ResNet-18 (CIFAR10, depth=2) Raw sparsity
incl. Pruning+FT

=1.0e-04
=2.0e-04
=4.0e-04
=4.5e-04
=4.7e-04
=5.0e-04
=5.5e-04
=6.0e-04
=8.0e-04
=9.0e-04
=1.0e-03
=1.5e-03
=1.7e-03
=2.1e-03
=3.0e-03
=5.0e-03

Figure 21: Additional post-hoc pruning and fine-tuning. ResNet-18 ist first trained with DWF and D = 2. The
models are post-hoc magnitude pruned and re-trained for another 50 epochs.

F.6 ADDITIONAL SPARSITY-ACCURACY TRADEOFFS

Figure 22 presents sparsity-accuracy tradeoffs for WRN-16-8, ResNet-18, and ResNet-34 on CI-
FAR100 and Tiny ImageNet datasets, using factorization depths D ∈ {2, 3, 4}. Contrasting our
training protocol for section Section 5.3, we do not tune the LRs here and set them to fixed val-
ues across datasets and architectures. The results show that DWF consistently produces a range
of sparsity-accuracy tradeoffs across different architectures and datasets without incurring model
collapse. Deeper factorizations generally achieve higher accuracies at extreme sparsity levels.

F.7 ADDITIONAL BENCHMARK RESULTS

The following Table 2 shows test accuracies for different compression ratios on different LeNet
model specifications and different MNIST datasets. While GMP or SNIP sometimes perform best
for 90% or 95% sparsity, DWF models show the highest sparsity in all medium- and high-sparsity
cases. In total, Synflow and SNIP each work best in 1 case, GMP in 6 cases, D = 2 yields the
highest sparsity in 5 cases, D = 3 in 14 cases, and D = 4 in 21 cases.

32

Published as a conference paper at ICLR 2025

101 102 103 104 105

0.2

0.4

0.6

0.8
Te

st
 a

cc
ur

ac
y

ResNet-18 (CIFAR100)

101 102 103 104 105 106

0.2

0.4

0.6

0.8
WRN-16-8 (CIFAR100)

101 102 103 104 105 106

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

ResNet-34 (CIFAR100)

101 102 103 104 105

Compression ratio

0.2

0.4

0.6

Te
st

 a
cc

ur
ac

y

ResNet-18 (Tiny Imagenet)

101 102 103 104 105 106

Compression ratio

0.2

0.4

0.6

Te
st

 a
cc

ur
ac

y

ResNet-34 (Tiny Imagenet)

101 102 103 104 105 106

Compression ratio

0.2

0.4

0.6

WRN-16-8 (Tiny Imagenet)

Depth 2
Depth 3
Depth 4
Max.

Figure 22: Additional experiments applying DWF to WRN-16-8 and ResNet-18. For these experiments, the
LRs were not tuned for each setting but set to {0.2, 0.5, 0.7} for D ∈ {2, 3, 4} across models and datasets.

Table 2: Test accuracy (%) for different compression ratios (columns), models (rows), and datasets (table
sections).

Sparsity 90% 95% 98% 99% 99.5% 99.75% 99.875% 99.9%
LeNet-5

MNIST
Dense 99.26 ± 0.03
Depth 2 99.26 ± 0.04 99.27 ± 0.06 99.02 ± 0.06 98.23 ± 0.09 66.88 ± 40.23 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Depth 3 99.10 ± 0.06 99.09 ± 0.05 99.02 ± 0.01 98.79 ± 0.08 97.80 ± 0.10 81.22 ± 3.14 46.63 ± 26.19 40.52 ± 21.58
Depth 4 98.95 ± 0.04 98.94 ± 0.05 98.88 ± 0.02 98.66 ± 0.10 97.76 ± 0.12 85.57 ± 6.45 61.31 ± 4.48 25.35 ± 21.71
GMP 99.00 ± 0.07 98.75 ± 0.14 97.97 ± 0.10 83.69 ± 10.07 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00
SNIP 98.92 ± 0.21 98.63 ± 0.24 97.29 ± 0.38 64.85 ± 8.81 21.73 ± 11.19 14.34 ± 5.18 11.35 ± 0.00 11.35 ± 0.00
Synflow 99.00 ± 0.04 98.68 ± 0.09 98.18 ± 0.23 96.71 ± 0.63 91.97 ± 2.82 74.37 ± 7.80 56.60 ± 2.68 43.68 ± 2.34
Random 98.28 ± 0.13 97.29 ± 0.27 59.70 ± 7.65 22.61 ± 4.38 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00
F-MNIST
Dense 90.41 ± 0.20
Depth 2 91.30 ± 0.13 90.78 ± 0.26 89.78 ± 0.20 88.06 ± 0.18 34.68 ± 34.91 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Depth 3 90.82 ± 0.22 90.67 ± 0.16 90.10 ± 0.18 88.75 ± 0.26 85.84 ± 0.72 79.15 ± 0.74 64.87 ± 2.78 60.53 ± 3.17
Depth 4 90.65 ± 0.03 90.28 ± 0.25 90.00 ± 0.19 88.77 ± 0.11 85.21 ± 0.36 77.76 ± 1.41 62.90 ± 0.94 56.29 ± 2.23
GMP 90.24 ± 0.14 89.71 ± 0.16 84.61 ± 0.83 25.57 ± 7.01 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
SNIP 90.21 ± 0.59 87.21 ± 3.00 68.27 ± 15.13 48.92 ± 16.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Synflow 89.77 ± 0.13 89.16 ± 0.31 87.21 ± 0.12 84.86 ± 0.37 78.68 ± 2.30 66.01 ± 9.94 45.45 ± 1.90 38.97 ± 1.97
Random 89.28 ± 0.26 86.29 ± 0.11 46.32 ± 9.87 15.60 ± 6.67 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
K-MNIST
Dense 95.58 ± 0.33
Depth 2 95.45 ± 0.24 94.56 ± 0.25 90.52 ± 0.30 81.88 ± 0.15 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Depth 3 95.17 ± 0.19 94.91 ± 0.15 93.08 ± 0.10 88.68 ± 0.59 78.02 ± 0.58 61.69 ± 0.29 21.95 ± 16.90 10.00 ± 0.00
Depth 4 94.72 ± 0.19 94.41 ± 0.22 92.91 ± 0.21 87.91 ± 0.40 79.37 ± 0.19 61.75 ± 0.90 43.09 ± 1.87 27.10 ± 12.12
GMP 93.18 ± 0.42 90.92 ± 0.40 79.28 ± 0.71 50.75 ± 11.04 20.12 ± 9.81 10.95 ± 1.64 10.00 ± 0.00 10.00 ± 0.00
SNIP 91.86 ± 0.73 89.00 ± 0.18 71.32 ± 1.48 26.25 ± 0.37 12.64 ± 4.57 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Synflow 92.21 ± 0.31 90.59 ± 0.17 82.77 ± 1.28 72.95 ± 0.46 58.95 ± 1.42 44.67 ± 3.48 27.69 ± 6.51 26.96 ± 4.16
Random 89.52 ± 0.60 82.18 ± 0.79 32.65 ± 7.40 11.20 ± 2.92 9.47 ± 0.92 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00

LeNet-300-100
MNIST
Dense 98.29 ± 0.05
Depth 2 97.49 ± 0.10 97.30 ± 0.12 96.33 ± 0.02 94.54 ± 0.27 91.15 ± 0.13 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Depth 3 97.30 ± 0.13 97.25 ± 0.15 97.11 ± 0.21 96.79 ± 0.19 95.83 ± 0.26 93.58 ± 0.34 90.29 ± 0.24 88.55 ± 0.63
Depth 4 97.31 ± 0.10 97.22 ± 0.12 97.08 ± 0.15 96.81 ± 0.15 96.05 ± 0.25 94.27 ± 0.26 90.62 ± 0.40 88.49 ± 1.00
GMP 98.34 ± 0.16 98.14 ± 0.32 97.39 ± 0.56 96.59 ± 0.03 93.30 ± 1.75 75.38 ± 15.13 25.97 ± 9.12 19.16 ± 6.95
SNIP 98.09 ± 0.13 97.67 ± 0.19 96.25 ± 0.66 94.51 ± 0.21 86.45 ± 4.37 59.67 ± 6.41 40.38 ± 7.88 14.52 ± 2.79
Synflow 97.83 ± 0.17 97.40 ± 0.30 96.26 ± 0.59 94.03 ± 0.19 88.86 ± 0.46 75.61 ± 2.02 48.75 ± 11.40 49.49 ± 5.19
Random 97.35 ± 0.09 95.83 ± 0.35 79.32 ± 7.61 38.01 ± 10.45 14.64 ± 2.90 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00
F-MNIST
Dense 89.12 ± 0.40
Depth 2 87.95 ± 0.03 87.42 ± 0.12 86.16 ± 0.12 85.05 ± 0.09 82.80 ± 0.06 53.87 ± 31.02 41.90 ± 22.68 38.05 ± 20.10
Depth 3 87.84 ± 0.12 87.66 ± 0.10 87.34 ± 0.12 86.97 ± 0.11 86.02 ± 0.20 84.84 ± 0.35 82.35 ± 0.11 81.35 ± 0.16
Depth 4 87.68 ± 0.15 87.53 ± 0.21 87.35 ± 0.25 87.15 ± 0.09 86.52 ± 0.16 84.96 ± 0.26 82.32 ± 0.31 81.30 ± 0.40
GMP 88.22 ± 1.00 87.95 ± 1.07 87.10 ± 1.30 85.22 ± 2.15 79.77 ± 5.47 55.70 ± 25.45 26.55 ± 14.94 17.29 ± 6.42
SNIP 88.61 ± 1.08 87.68 ± 0.84 82.35 ± 5.34 83.76 ± 1.10 75.64 ± 5.02 21.69 ± 17.05 13.23 ± 5.59 10.00 ± 0.00
Synflow 88.16 ± 1.06 87.54 ± 0.74 86.57 ± 0.75 85.23 ± 0.41 82.04 ± 0.59 76.75 ± 0.33 68.29 ± 1.46 51.62 ± 13.97
Random 87.79 ± 0.12 87.14 ± 0.57 73.35 ± 8.92 29.92 ± 9.75 16.21 ± 4.80 10.16 ± 0.27 10.00 ± 0.00 10.00 ± 0.00
K-MNIST
Dense 91.44 ± 0.24
Depth 2 88.26 ± 0.09 86.61 ± 0.15 80.74 ± 0.24 73.23 ± 0.36 63.19 ± 0.63 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Depth 3 87.83 ± 0.20 87.49 ± 0.22 86.60 ± 0.06 83.92 ± 0.19 77.75 ± 0.22 66.56 ± 3.07 52.17 ± 1.94 48.71 ± 1.67
Depth 4 87.96 ± 0.16 87.63 ± 0.17 86.99 ± 0.24 84.49 ± 0.21 78.85 ± 0.66 70.16 ± 0.51 55.77 ± 1.78 51.13 ± 2.19
GMP 90.43 ± 0.37 88.09 ± 0.43 83.18 ± 0.34 75.34 ± 0.61 51.39 ± 0.57 21.50 ± 4.05 9.41 ± 1.02 10.00 ± 0.00
SNIP 88.51 ± 0.49 85.15 ± 0.20 79.96 ± 1.03 68.30 ± 0.79 47.25 ± 2.25 25.02 ± 3.44 10.00 ± 0.00 10.85 ± 1.47
Synflow 88.52 ± 0.32 86.05 ± 0.34 82.30 ± 0.45 77.29 ± 0.39 65.65 ± 1.26 52.01 ± 1.36 36.22 ± 1.61 37.92 ± 2.96
Random 87.02 ± 0.31 82.10 ± 0.15 57.30 ± 2.39 22.22 ± 3.61 11.96 ± 3.39 11.65 ± 2.35 10.00 ± 0.00 10.00 ± 0.00

33

Published as a conference paper at ICLR 2025

G EXPERIMENTAL DETAILS

G.1 DESCRIPTION OF COMPARISON METHODS

In the following, we briefly describe the comparison methods used in our study, covering different
approaches of network sparsification before or post-training.

SNIP (Single-shot Network Pruning): This method introduces the concept of connection sen-
sitivity to quantify the impact of individual weights on the network’s loss function, given by
z(l) =

∣∣g(l) ⊙w(l)
∣∣ for layer l ∈ [L], where g(l) is the loss gradient with respect to w(l). By

computing this score for each weight at initialization, SNIP identifies and preserves the most crucial
connections, enabling effective one-shot pruning before training. This approach has shown remark-
able efficacy in maintaining network performance even at high sparsity levels (Lee et al., 2019).
SynFlow: As a data-independent pruning approach, SynFlow addresses the important issue of layer
collapse in neural network pruning. It utilizes a layerwise conservation principle to ensure conser-
vation of synaptic flow across the network, thereby maintaining high model capacity even under
extreme compression ratios. SynFlow has demonstrated state-of-the-art performance at very high
sparsity levels, outperforming many data-driven approaches in scenarios where over 99% of param-
eters are pruned (Tanaka et al., 2020).
Global Magnitude Pruning (GMP): This method is based on the assumption that the weight mag-
nitudes are a good proxy for their importance in the network. Despite its heuristic nature, GMP
has proven remarkably effective, especially at low sparsity levels. Its success has led to numerous
refinements and adaptations of pruning schedules and criteria, with its lasting popularity in both
research and practice highlighting its robustness and efficacy (Han et al., 2015; Blalock et al., 2020;
Frankle et al., 2020).
Random Pruning: Serving as a baseline method, random pruning uniformly removes weights or
structures without considering their importance, thereby helping to evaluate the effectiveness of
more sophisticated pruning strategies.

G.2 DETAILS ON ARCHITECTURES, DATASETS, AND TRAINING HYPERPARAMETERS

Neural network architectures In the following, we briefly describe the neural architectures used
in our experiments.

• LeNet-300-100: This fully-connected network, designed for MNIST classification, con-
sists of an input layer (784 units), two hidden layers (300 and 100 units respectively), and
an output layer (10 units). All layers utilize ReLU activation functions. The architecture
closely follows the original version proposed by (LeCun et al., 1989), adapted to incorpo-
rate modern activations for improved performance.

• LeNet-5 (LeCun et al., 1998) is a small but effective convolutional network with two con-
volutional layers (6 and 16 filters, both 5x5), and three fully connected layers (120, 84, and
10 units). We use ReLU activations and add batch normalization (Ioffe & Szegedy, 2015)
and average pooling after each convolutional layer.

• VGG-16 for CIFAR10/100 consists of 13 convolutional layers and 3 fully connected layers
(Simonyan & Zisserman, 2014). The convolutional part is described by 2x(64 filters),
2x(128 filters), 3x(256 filters), 3x(512 filters), 3x(512 filters), with max pooling inserted
after each group. All filter sizes are 3x3. Batch normalization is applied before each ReLU
activation as described by (Lee et al., 2019). VGG-19 extends VGG-16 by adding one more
convolutional layer to each of the last three convolutional blocks, resulting in 19 layers in
total. Following (Zagoruyko, 2015), the two fully-connected layers before the output are
reduced to a single layer layer with 512 units compared to the ImageNet version.

• ResNet-18 is a popular residual network with 18 layers (He et al., 2016). In our implemen-
tation, the architecture is adapted following common practice for smaller image datasets
(Tanaka et al., 2020). We modify the first convolutional layer to use 3x3 filters and remove
the initial max pooling layer. The network consists of an initial convolutional layer, fol-
lowed by 4 stages of basic blocks (2 blocks each), with filter sizes [64, 128, 256, 512].
Global average pooling is used before the fully connected output layer. Likewise, our
ResNet-34 implementation is also adapted for smaller datasets. The architecture follows a

34

Published as a conference paper at ICLR 2025

Table 3: Summary of datasets used in experiments.

Dataset Training Samples Test Samples Classes Input Features

MNIST 60,000 10,000 10 784 (28×28×1)
F-MNIST 60,000 10,000 10 784 (28×28×1)
K-MNIST 60,000 10,000 10 784 (28×28×1)
CIFAR-10 50,000 10,000 10 3,072 (32×32×3)
CIFAR-100 50,000 10,000 100 3,072 (32×32×3)
Tiny ImageNet 100,000 10,000 200 12,288 (64×64×3)

similar pattern to ResNet-18 with more layers in each stage. As with ResNet-18, we use
3x3 filters in the first layer and omit the initial max pooling, appropriate for the image size
of our experiments.

• WideResNet is a ResNet variant whose increased width compared to plain ResNets allows
for better feature representations. In our experiments, we choose WRN-16-8, which is
specifically suited for CIFAR-like tasks (Zagoruyko & Komodakis, 2016).

Datasets In our experimental evaluation, we use several standard image classification datasets of
varying size and complexity, summarized in Table 3.
MNIST, Fashion-MNIST (F-MNIST), and Kuzushiji-MNIST (K-MNIST) are grayscale image
datasets, each containing 10 classes with images of 28x28 pixels. The original MNIST comprises
handwritten digits, while F-MNIST contains images of clothing items, and K-MNIST has handwrit-
ten Japanese characters. These datasets combine a range of classification tasks with similar input
dimensions but varying levels of difficulty.
CIFAR10 and CIFAR100 contain 32x32x3 (color) images with 10 and 100 classes respectively.
These datasets present more challenging classification tasks due to their higher resolution, color in-
formation, and larger number of classes for CIFAR100.
Finally, Tiny ImageNet is a subset of the ImageNet dataset featuring 200 classes with 64x64x3 color
images. This dataset is markedly more challenging and computationally intensive due to the rela-
tively complex task with more and higher resolution images, as well as a larger number of classes.
All datasets are split into training (50,000 or 60,000 samples) and test (10,000 samples) sets. We fur-
ther apply standard data pre-processing and augmentation techniques: For the three MNIST variants,
we use pixel rescaling to [0, 1]. The CIFAR and Tiny ImageNet images are normalized. For larger
networks, we additionally employ data augmentation, including horizontal flips, width and height
shifts (up to 12.5%), and rotations (up to 15◦). Table 4 contains the combinations of architectures
and datasets we conducted experiments on.

Training hyperparameters In our experiments, we use training hyperparameter configurations
following broadly established standard settings (Simonyan & Zisserman, 2014; He et al., 2015;
Zagoruyko & Komodakis, 2016), as displayed in Table 4. For both LeNet-300-100 and LeNet-5,
we set the initial LR to 0.15 and found it to perform well across datasets, with the exception of
LeNet-300-100 on K-MNIST. Because established LRs were found to be suboptimal for DWF, we
additionally select the best-performing LR (using small λ = 10−6) from a discrete grid between 0.05
and 1 for each factorization depth, architecture, and dataset. For DWF, the sparsity level is controlled
using a logarithmically spaced sequence of λ parameters between 10−6 and 10−1 on which we
train each model to obtain the sparsity-accuracy tradeoff curves. For the comparison methods in
Section 5.3, we follow the implementation details provided in Frankle et al. (2020); Lee et al. (2019)
if available. To make for a fair comparison, we also train the two LeNet architectures using the same
LR of 0.15 and cosine decay. For the larger networks, we only adjust the LR schedule from step to
cosine decay but use the prescribed initial LR. To obtain tradeoff curves for the respective pruning
methods, we train each method on a sequence of 15 compression ratios between 101 and 105.

Further details for DWF Although our method requires no post-hoc pruning, it is sensible to
apply a sufficiently small threshold to the final collapsed weights to account for numerical inaccu-
racies which have no impact on performance. We set this threshold to float32.mach.eps ≈
1.19 × 10−7. Additionally, the DWF initialization (Algorithm 1) requires specification of the lower
truncation threshold for the factor initializations, which we set to ϖmin = 3 × 10−3 for all our
experiments (cf. left plot of Fig. 4).

35

Published as a conference paper at ICLR 2025

Table 4: Training hyperparameters for different architectures and datasets. The LRs for the larger models
correspond to factorization depths D = 2, 3, 4. The comparison methods use standard Kaiming initialization.
LRs for the supplementary results on WRN-16-8 and ResNet-34 were not tuned.

Architecture Dataset Epochs Batch size Optim. Mom. Init. LR Schedule

LeNet-300-100
MNIST 75 256 SGD 0.9 DWF-Init 0.15 Cosine

F-MNIST 75 256 SGD 0.9 DWF-Init 0.15 Cosine
K-MNIST 75 256 SGD 0.9 DWF-Init 0.4 Cosine

LeNet-5
MNIST 75 256 SGD 0.9 DWF-Init 0.15 Cosine

F-MNIST 75 256 SGD 0.9 DWF-Init 0.15 Cosine
K-MNIST 75 256 SGD 0.9 DWF-Init 0.15 Cosine

VGG-16 CIFAR-10 250 128 SGD 0.9 DWF-Init {0.5,0.6,0.6} Cosine
VGG-19 CIFAR-100 250 128 SGD 0.9 DWF-Init {0.3,0.6,0.6} Cosine

ResNet-18
CIFAR-10 250 128 SGD 0.9 DWF-Init {0.2,0.5,0.7} Cosine
CIFAR-100 250 128 SGD 0.9 DWF-Init {0.2,0.5,0.7} Cosine

Tiny ImageNet 250 128 SGD 0.9 DWF-Init {0.5,0.8,1.1} Cosine

WRN-16-8
CIFAR-10 250 128 SGD 0.9 DWF-Init {0.2,0.5,0.7} Cosine
CIFAR-100 250 128 SGD 0.9 DWF-Init {0.2,0.5,0.7} Cosine

Tiny ImageNet 250 128 SGD 0.9 DWF-Init {0.2,0.5,0.7} Cosine

ResNet-34 CIFAR-100 250 128 SGD 0.9 DWF-Init {0.2,0.5,0.7} Cosine
Tiny ImageNet 150 128 SGD 0.9 DWF-Init {0.2,0.5,0.7} Cosine

H OTHER APPROACHES TO FACTOR INITIALIZATION

H.1 ROOT INITIALIZATION AND RESULTS

An alternative option to obtain an initialization of factors ωd that recovers the distribution of the
original weight w is given in the following.
Definition 4 (Root initialization). A root initialization of a depth-D factorized weight w = ω1 ⊙
. . .⊙ωD is given by first drawing a single standard weight initialization (Definition 3) for each entry
of w and assigning ω1 ← sign(w) · |w|1/D and ω2, . . . ,ωD ← |w|1/D element-wise.

Fig. 23 compares the root initialization against the vanilla initialization and the proposed DWF ini-
tialization with and without truncation. While the root initialization yields satisfactory results im-
proving upon vanilla initialization for D = 2, we observe that it behaves similarly to the VarMatch
initialization for D = 3, both outperformed compared to our DWF initialization and yields the worst
results for D = 4.

100 101 102 103 104

Compression ratio (CR)

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

LeNet-300-100 (F-MNIST, depth=2)

100 101 102 103 104

Compression ratio (CR)

0.2

0.4

0.6

0.8

1.0 LeNet-300-100 (F-MNIST, depth=3)

100 101 102 103 104

Compression ratio (CR)

0.2

0.4

0.6

0.8

1.0 LeNet-300-100 (F-MNIST, depth=4)

Initialization
Max. acc.
Kaiming
VarMatch
Root
DWF Init

Figure 23: Sparsity-accuracy tradeoffs for different depths D (columns) and initializations (colors).

In Fig. 24, we further analyze the learning dynamics of a DWF model with root initialization. The
results demonstrate qualitatively similar learning dynamics to our proposed DWF initialization, sug-
gesting them to be a general feature of DWF and SGD optimization.

H.2 EXACT GAUSSIAN FACTOR REPRESENTATION

Although the density of random variables whose product is Gaussian is non-trivial, an exact ex-
pression in terms of compositions of transformations of Gamma-distributed random variables can
be derived. The expression is found by writing the (symmetric) standard Gaussian as w = R · eU ,
where R is a Rademacher variable taking values ±1 with equal probability and U := ln |w|. Pinelis
(2018) establish the infinite divisibility of the exp-normally distributed U by inspection of its char-
acteristic function. This result can be readily exploited to obtain factor distributions such that their
D-times product is a zero-mean Gaussian with arbitrary variance σ2

w > 0:

36

Published as a conference paper at ICLR 2025

0 50 100 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

, S
pa

rs
ity

ResNet-18 (root init, depth=4, cosine LR)

0 50 100 150
Epoch

ResNet-18 (root init, depth=4, const. LR)

0 50 100 150
Epoch

ResNet-18 (root init, depth=4, step LR)

0

300

600

900

1200

1500

1800

Co
m

pr
es

sio
n

ra
tio

0

50

100

150

L2
 N

or
m

Training acc. Val. acc. Sparsity Compression ratio L2 Norm (collapsed)

Figure 24: Learning dynamics for the root initialization for different learning rate schedules (columns).

Lemma 5 (Gaussian Product Factor (GPF) Distribution). Let D ∈ N+. Consider independent and
identically (i.i.d.) distributed random variables {ωd}Dd=1 constructed as:

ωd
D∼ Rd · exp

{
ln(2 · σ2

w)

2D
− G0,d −

∞∑
k=1

[
Gk,d

2k + 1
− 1

2D
ln

(
1 +

1

k

)]}
, (19)

where Rd are i.i.d. Rademacher random variables (taking values ±1 with probability 1
2) and Gk,d

are i.i.d. Gamma(1
D , 1) variables for all k ≥ 0 and d ∈ {1, . . . , D}. Then their product follows a

zero-mean normal distribution:
D∏

d=1

ωd
D∼ N (0, σ2

w) (20)

Proof. We first establish the result for σ2
w = 1 and then extend to arbitrary positive variances. Let

w ∼ N (0, 1). Given the symmetry of the normal distribution, we can represent w as w = R · eU ,
where R is a Rademacher random variable and U = ln |w| is the logarithm of its absolute value.
The characteristic function of U is given by ϕU (t) = E[eitU] = E[eit ln |w|]. Since w has an even
density, we can simplify the expectation as:

ϕU (t) = 2

∫ ∞

0

eit ln x · fw(x)dx (21)

Substituting the standard normal density fw(x) =
1√
2π

e−x2/2:

ϕU (t) =
2√
2π

∫ ∞

0

xite−x2/2dx (22)

Substituting u = x2/2 implies x =
√
2u and dx = du√

2u
and therefore

ϕU (t) =
2√
2π

∫ ∞

0

(
√
2u)ite−u du√

2u
, (23)

The term (
√
2u)it can be written as 2it/2uit/2, giving using further simplification:

ϕU (t) =
2it/2√

π

∫ ∞

0

u(it−1)/2e−udu (24)

The integral is the Gamma function with argument s = 1+it
2 :

ϕU (t) =
2it/2√

π
· Γ
(
1 + it

2

)
= 2it/2 ·

Γ(1+it
2)

Γ(12)
(25)

using the identity Γ(12) =
√
π. We now apply Euler’s product formula to both gamma functions:

Γ(z) =
1

z

∞∏
k=1

((
1 +

1

k

)z

· 1

1 + z
k

)
(26)

Let z = 1+it
2 and z0 = 1

2 . Then:

Γ

(
1 + it

2

)
=

2

1 + it

∞∏
k=1

(1 +
1

k

) 1+it
2

·
1

1 + 1+it
2k

 and Γ

(
1

2

)
= 2

∞∏
k=1

((
1 +

1

k

) 1
2
·

1

1 + 1
2k

)
(27)

37

Published as a conference paper at ICLR 2025

Taking their ratio and substituting into our expression for ϕU (t):

ϕU (t) = 2it/2 · 2

1 + it
· 1
2

∞∏
k=1

((
1 +

1

k

) 1+it
2 − 1

2

·
1 + 1

2k

1 + 1+it
2k

)
(28)

The exponent simplifies as 1+it
2 − 1

2 = it
2 , giving:

ϕU (t) = 2it/2 · 1

1 + it

∞∏
k=1

((
1 +

1

k

)it/2

·
1 + 1

2k

1 + 1+it
2k

)
(29)

For the fraction in the product, multiply numerator and denominator by 2k:

1 + 1
2k

1 + 1+it
2k

=
2k + 1

2k + 1 + it
=

1

1 + it
2k+1

(30)

Writing the expression in exponential form:

ϕU (t) = e
it
2 ln 2 · 1

1 + it

∞∏
k=1

(
e

it
2 ln(1+ 1

k) · 1

1 + it
2k+1

)
(31)

This characteristic function reveals that U can be expressed as:

U
D∼ ln(2)

2
− E0 −

∞∑
k=1

[
Ek

2k + 1
− 1

2
ln(1 +

1

k
)

]
(32)

where Ek
iid∼ Exp(1) for all k ≥ 0, since e

it
2 ln 2 is the characteristic function of the constant ln 2

2 ,
1

1+it is the characteristic function of −E0, and for each k, e
it
2 ln(1+ 1

k) is the characteristic function
of 1

2 ln(1 +
1
k). Lastly, 1

1+ it
2k+1

is the characteristic function of − Ek

2k+1 . For the factors ωd, we dis-

tribute the components of U across D dimensions using the property that the sum of D independent
Gamma(1

D , 1) random variables follows Exp(1):

ln |ωd|
D∼ ln(2)

2D
− G0,d −

∞∑
k=1

[
Gk,d

2k + 1
− 1

2D
ln(1 +

1

k
)

]
(33)

where Gk,d ∼ Gamma(1
D , 1). Taking the product:

D∏
d=1

ωd =

(
D∏

d=1

Rd

)
· exp

(
D∑

d=1

ln |ωd|

)
(34)

Since
∑D

d=1 Gk,d ∼ Gamma(1, 1) = Ek, the sum of logarithms recovers the distribution of U :

D∑
d=1

ln |ωd|
D∼ U (35)

Therefore,
∏D

d=1 ωd
D∼ N (0, 1). For arbitrary σ2

w > 0, we modify the constant term in the factor

distribution to ln(σ2
w)

2D to produce the desired product variance, yielding the result:

ωd
iid∼ Rd · exp

{
ln(2 · σ2

w)

2D
− G0,d −

∞∑
k=1

[
Gk,d

2k + 1
− 1

2D
ln

(
1 +

1

k

)]}
⇒

D∏
d=1

ωd
D∼ N (0, σ2

w). (36)

.

Practical challenges Unfortunately, it is hard to efficiently implement sampling from the factor
distribution due to the infinite sum and the series of additional operations required to compute ωd.
Since the summands tend to 0 as k → ∞, it seems practical to truncate the infinite sum at a rea-
sonable value to approximate the true factor distribution. Fig. 25 shows the kernel density estimates
of the factor distribution for D = {2, 3, 4, 10, 20} as well as the densities of the resulting product

38

Published as a conference paper at ICLR 2025

alongside an overlay of the ground truth Gaussian. To obtain the estimates, n = 1000 products were
sampled using the target standard deviation σw = 0.1. The plots in Fig. 25 show the approximation
power computing only the first k ∈ {1, 5} terms of the infinite sum. The results show that even the
coarsest approximation using only a single summand k = 1 yields product distributions that are sta-
tistically indistinguishable from a Gaussian using a Kolmogorov-Smirnoff test for any factorization
depth D. Expectedly, the approximation improves with the number of summands k.

A significant drawback to the exact Gaussian factorization approach using Lemma 5 over the pro-
posed DWF initialization is its impractical initialization complexity, rendering the approach unfeasi-
ble in practice. This is owed to the accumulating number of additional operations required for each
scalar weight, such as drawing multiple random variables per single factor ωd, computing several
constants, summing or multiplying them, and exponentiation. For example, initializing a factorized
ResNet-18 with D = 2 using a vanilla initialization takes ≈ 1s, for the proposed DWF initialization
≈ 3s, but for the coarsely approximated exact Gaussian factor distribution with k = 1 around 180
minutes on an A-4000 GPU with 48GB RAM, despite yielding identical performance to the DWF
init. The same network could not be initialized within a time budget of six hours for depths D > 2.

1.0 0.5 0.0 0.5 1.0
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

Factor density (iid, D=2)
Factor

1
2

1.0 0.5 0.0 0.5 1.0
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

Factor density (iid, D=3)
Factor

1
2
3

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
De

ns
ity

Factor density (iid, D=4)
Factor

1
2
3
4

1 0 1
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

Factor density (iid, D=10)
Factor

1
2
3

4
5
6

7
8

9
10

1 0 1
Value

0.0

0.2

0.4

0.6

0.8

De
ns

ity

Factor density (iid, D=20)
Factor

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

0.5 0.0 0.5
Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

K-S p-val: 0.155

Product density (D=2)

Product density
N(0, 0.1)

0.5 0.0 0.5
Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

K-S p-val: 0.056

Product density (D=3)

Product density
N(0, 0.1)

0.5 0.0 0.5
Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

K-S p-val: 0.228

Product density (D=4)

Product density
N(0, 0.1)

0.5 0.0 0.5
Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2
De

ns
ity

K-S p-val: 0.232

Product density (D=10)

Product density
N(0, 0.1)

0.5 0.0 0.5
Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

K-S p-val: 0.274

Product density (D=20)

Product density
N(0, 0.1)

(a) Only including the first k = 1 summands.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity

Factor density (iid, D=2)
Factor

1
2

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity

Factor density (iid, D=3)
Factor

1
2
3

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity

Factor density (iid, D=4)
Factor

1
2
3
4

1 0 1
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

Factor density (iid, D=10)
Factor

1
2
3

4
5
6

7
8

9
10

1 0 1
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity
Factor density (iid, D=20)

Factor
1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

1.0 0.5 0.0 0.5 1.0
Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

K-S p-val: 0.062

Product density (D=2)

Product density
N(0, 0.1)

1.0 0.5 0.0 0.5 1.0
Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

K-S p-val: 0.821

Product density (D=3)

Product density
N(0, 0.1)

1.0 0.5 0.0 0.5 1.0
Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

K-S p-val: 0.290

Product density (D=4)

Product density
N(0, 0.1)

1.0 0.5 0.0 0.5 1.0
Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

K-S p-val: 0.646

Product density (D=10)

Product density
N(0, 0.1)

1.0 0.5 0.0 0.5 1.0
Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

K-S p-val: 0.680

Product density (D=20)

Product density
N(0, 0.1)

(b) Only including the first k = 5 summands.
Figure 25: Approximation of a Gaussian product for different truncation values of the infinite sum in Lemma 5.
K-S corresponds to the Kolmogorov-Smirnoff test for normality.

39

Published as a conference paper at ICLR 2025

I COMPUTATIONAL ENVIRONMENT AND RUNTIME ANALYSIS

I.1 COMPUTATIONAL ENVIRONMENT

Large experiments on ResNet-18 and VGG-19 on datasets CIFAR10, CIFAR100, and Tiny Ima-
geNet were run on an A-100 GPU server with 32GB RAM and 16 CPU cores. Smaller experiments
were conducted on a single A-4000 GPU with 48GB RAM or CPU workstations.

I.2 RUNTIME ANALYSIS

Here, we investigate the computational overhead induced by DWF compared to vanilla training. We
conducted experiments with WRN-16-8 on CIFAR10 and VGG-19 on CIFAR100 across various
batch sizes. Each model was trained for 1000 iterations using SGD. We measured the average
wall-clock time per sample and peak GPU memory utilization during training. All experiments
were performed on a single A-4000 GPU with 48GB RAM, repeated five times to report means
and standard deviations. Our results, displayed in Fig. 26 and Fig. 27, show that the factorization
depth D in the DWF model only has a minor impact on computational costs during training. For
batch sizes of 256 or higher, both networks exhibit an indistinguishable time per sample comparable
to vanilla training across all levels of D. At smaller batch sizes, we observe a slight monotonic
increase in runtime with greater D. For example, WRN-16-8 with a batch size of 128 and D = 2 runs
approximately 10% longer than vanilla training, while VGG-19 with a batch size of 64 and D = 4
shows the largest increase of about 80%. These findings demonstrate that DWF training under
typical settings incurs only a small additional cost compared to standard training. This contrasts with
many sparsification techniques like Iterative Magnitude Pruning (Frankle & Carbin, 2019), which
can lead to several-fold increases in training time due to multiple cycles of pruning and re-training.

64 128 256 1024
Batch size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

W
al

lcl
oc

k
tim

e
(m

s/
sa

m
pl

e)

WRN-16-8 (CIFAR10)

64 128 256 1024
Batch size

0.0

0.2

0.4

0.6

0.8

VGG-19 (CIFAR100)
Original
Depth 2
Depth 3
Depth 4
Depth 6

Figure 26: Comparison of wall-clock time per sample for WRN-16-8 (left) and VGG-19 (right) on CI-
FAR10/100 across factorization depths D. Results indicate insignificant runtime overhead for DWF compared
to vanilla training, particularly for larger batch sizes where runtime is identical.

GPU memory utilization is primarily dependent on batch size, with D having rather small effects
in total. In conclusion, besides factorizing the weights into D factors, DWF incurs only a minor
additional runtime and memory cost on commonly used convolutional architectures. The minimal
increase, especially for typical batch sizes, suggests DWF can be readily integrated into existing
training protocols without major changes in computational overhead.

64 128 256 1024
Batch size

0

2

4

6

8

10

Pe
ak

 G
PU

 u
sa

ge
 (G

B)

WRN-16-8 (CIFAR10)
Original
Depth 2
Depth 3
Depth 4
Depth 6

64 128 256 1024
Batch size

0

1

2

3

4

5

6
VGG-19 (CIFAR100)

Figure 27: Peak GPU memory utilization for WRN-16-8 (left) and VGG-19 (right) across depths D. The
results show that batch training is the dominant factor for memory usage, with only a minimal impact of D.

40

	Introduction
	Background and related literature
	Notation
	Differentiable L1 regularization

	Theoretical results
	Optimization and dynamics of deep factorized networks
	Initialization
	Learning rate
	Learning dynamics and delayed generalization
	Impact of regularization and evolution of layer-wise metrics

	Performance evaluation
	Failure of vanilla L1 optimization with SGD
	Run times
	Compression benchmark

	Conclusion
	Further related literature
	Intuition for sparsity via L2 regularized weight factorization
	Further results and missing proofs
	Proof of lemma:min-l2-penalty
	Proof of lemma:init-factorized-networks
	Proof of thm:equi
	Balanced factors and absorbing states in SGD optimization (lemma:balancedness)

	Algorithms
	DWF initialization
	DWF training

	Details on optimization
	Learning rates in factorized networks
	Ablation study on initializations
	Relationship between sparsity, regularization and weight norms

	Additional results and ablation studies
	Ablation study on the factorization depth D
	Combined training and validation accuracy
	Evolution of layer-wise compression and weight norms
	Evolution of misalignment and onset of sparsity
	Post-hoc pruning and fine-tuning
	Additional sparsity-accuracy tradeoffs
	Additional benchmark results

	Experimental details
	Description of comparison methods
	Details on architectures, datasets, and training hyperparameters

	Other approaches to factor initialization
	Root initialization and results
	Exact Gaussian Factor Representation

	Computational environment and runtime analysis
	Computational environment
	Runtime analysis

