
Under review as a conference paper at ICLR 2024

Supplementary Materials

A RELATED WORKS

Domain generalization. Addressing the challenge of domain shift and the absence of OOD data
has led to the introduction of several state-of-the-art methods in the domain generalization field
(Vapnik, 1999; Arjovsky et al., 2019; Zhang et al., 2022; Robey et al., 2021). These methods are
designed to enable deep learning models to possess intrinsic generalizability, allowing them to adapt
effectively from one or multiple source domains to target domains characterized by unknown dis-
tributions (Volpi et al., 2021). They encompass various techniques, such as aligning source domain
distributions to facilitate domain-invariant representation learning (Li et al., 2018b), subjecting the
model to domain shift during training through meta-learning (Li et al., 2018a), and augmenting data
with domain analysis, among others (Zhou et al., 2020), and so on. In the context of the number of
source domains, a significant portion of research (Zhang et al., 2022; Robey et al., 2021; Blanchard
et al., 2011) has focused on the multi-source setting. This setting assumes the availability of mul-
tiple distinct but relevant domains for the generalization task. As mentioned in (Blanchard et al.,
2011), the primary motivation for studying domain generalization is to harness data from multiple
sources in order to unveil stable patterns. This entails learning representations that are invariant to
the marginal distributions of data features, all while lacking access to the target data. Nevertheless,
existing domain generalization methods tend to overlook the aspect of learning with fairness, where
group fairness dependence patterns may not undergo changes across domains.

Fairness learning for changing environments. Two primary research directions aim to tackle
fairness-aware machine learning in dynamic or changing environments. The first approach involves
equality-aware monitoring methods (Kirton, 2019; Alonso et al., 2021; Pham et al., 2023; Rezaei
et al., 2021; Singh et al., 2021; Giguere et al., 2022; Chen et al., 2022), which strive to identify and
mitigate unfairness in a model’s behavior by continuously monitoring its predictions. These meth-
ods adapt the model’s parameters or structure when unfairness is detected. However, a significant
limitation of such approaches is their assumption of invariant fairness levels across domains, which
may not hold in real-world applications. The second approach (Oh et al., 2022; Creager et al., 2021)
focuses on evaluating a model’s fairness in a dynamic environment by treating shifted fairness levels
as domain labels. However, it does not take into account distribution shifts in non-sensitive features.

In response to these limitations, this paper adopts a novel approach by attributing the distribution
shift from source to target domains to both covariate shift and fairness dependence shift simulta-
neously. We aim to train a fairness-aware invariant classifier that can generalize effectively across
domains, ensuring robust performance in terms of both model accuracy and maintaining fair depen-
dence between predicted outcomes and sensitive attributes even under these shifts.

B NOTATIONS

For clear interpretation, we list the notations used in this paper and their corresponding explanation,
as shown in Tab. 5.

C EXPERIMENTAL SETTINGS

C.1 DATASETS.

We consider four datasets: ccMNIST, FairFace, YFCC100M-FDG, and New York
Stop-and-Frisk (NYSF) to evaluate our FDDG against state-of-the-art baseline methods,
where NYSF is a tabular data and the other three are image datasets.

(a) ccMNIST is a domain generalization benchmark created by colorizing digits and the back-
grounds of the MNIST dataset (LeCun et al., 1998). ccMNIST consists of images of handwritten
digits from 0 to 9. Similar to ColoredMNIST (Arjovsky et al., 2019), for binary classification,
digits are labeled with 0 and 1 for digits from 0-4 and 5-9, respectively. ccMNIST contains three
data domains, each characterized by a different digit color (i.e., red, green, blue) with 70,000 im-
ages. Each image has a black or white background color as the sensitive label. The domains are
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Table 5: Important notations and corresponding descriptions.

Notations Descriptions
X input feature space
Z sensitive space
Y output space
C parameterized latent space for content factors
S parameterized latent space for style factors
A parameterized latent space for sensitive factors
c content factor
s style factor
a sensitive factor
d[·] distance metric on output space
D data batch
x data features
y class label
z sensitive label
f classifier
F model space of classifier
f̂ ξ-parameterization of F
ŷ predicted class label
Θ parameter space

g(Y,Z) fairness metric on random variables Y and Z
| · | absolute function
p1 empirical estimate of the proportion of samples in the group z = 1
e data domain
E set of data domains
B sampled data batch
T domain transformation model
E encoder network
G decoder network
L loss function
δ, ϵ expectation of the relaxed constraint
h sensitive label classifier
ẑ sensitive label predicted by h

ηp, ηd primal and dual learning rate
λ dual variable
γ empirical constant

constructed so that each domain has a different correlation between the class label and sensitive at-
tribute (digit background colors), specifically 0.9 for the red domain, 0.7 for the green domain, and
0 for the blue domain.

(b) FairFace (Karkkainen & Joo, 2021) is a dataset that contains a balanced representation of
different racial groups. It includes 108,501 images from seven racial categories: Black (B), East
Asian (E), Indian (I), Latino (L), Middle Eastern (M), Southeast Asian (S), and White (W). In our
experiments, we set each racial group as a domain, gender as the sensitive label, and age (≥ or <
50) as the class label.

(c) YFCC100M-FDG is an image dataset created by Yahoo Labs and released to the public in 2014.
It is randomly selected from the YFCC100M (Thomee et al., 2016) dataset with a total of 90,000 im-
ages. For domain variations, YFCC100M-FDG is divided into three domains. Each contains 30,000
images from different year ranges, before 1999 (d0), 2000 to 2009 (d1), and 2010 to 2014 (d2). The
outdoor or Indoor tag is used as the binary class label for each image. Latitude and longitude coordi-
nates, representing where images were taken, are translated into different continents. The continent
North-America or non-North-America is used as the sensitive label (related to spatial disparity).
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(d) NYSF (Koh et al., 2021) is a real-world dataset on policing in New York City in 2011. It
documents whether a pedestrian who was stopped on suspicion of weapon possession would in fact
possess a weapon. NYSF consists of records collected in five different sub-cities, Manhattan (M),
Brooklyn (B), Queens (Q), Bronx (R), and Staten (S). We use cities as different domains. This data
had a pronounced racial bias against African Americans, so we consider race (black or non-black)
as the sensitive attribute.

C.2 BASELINES.

We compare the performance of our FDDG with 17 baseline methods that fall into three main cate-
gories:

• 12 state-of-the-art domain generalizations methods (RandAug, ERM (Vapnik, 1999), IRM (Ar-
jovsky et al., 2019), GDRO (Sagawa et al., 2020), Mixup (Yan et al., 2020), MLDG (Li et al.,
2018a), CORAL (Sun & Saenko, 2016), MMD (Li et al., 2018b), DANN (Ganin et al., 2016),
CDANN (Li et al., 2018c), DDG (Zhang et al., 2022), and MBDG (Robey et al., 2021));

• 3 state-of-the-art fairness-aware learning methods in changing environments (EIIL (Creager et al.,
2021), FarconVAE (Oh et al., 2022), and FATDM (Pham et al., 2023));

• 2 naive fairness-aware variants of DDG and MBDG, named DDG-FC and MBDG-FC, respec-
tively, by simply adding fairness constraints in Defn. 1 to their classifiers.

Notice that the settings of EIIL and FarconVAE are different from this paper. Both methods charac-
terize domain shift by a different level of correlation between the class label and sensitive features
but completely ignore the variation in data features.

C.3 EVALUATION METRICS.

Three metrics are used for evaluation, and two of them are for fairness quantification.

• Demographic Parity (DP) (Dwork et al., 2011) is formalized as

DP = k, if DP ≤ 1;DP = 1/k, otherwise, where k = P(Ŷ = 1|Z = −1)/P(Ŷ = 1|Z = 1)

This is also known as a lack of disparate impact (Feldman et al., 2015). A value closer to 1
indicates fairness.

• The Area Under the ROC Curve (AUC) (Calders et al., 2013) varies from zero to one, and it is
symmetric around 0.5, which represents random predictability or zero bias effect on predictions.

AUC =

∑
(xi,z=−1,yi)∈D−1

∑
(xj ,z=1,yj)∈D1

I
(
P(ŷi = 1) > P(ŷj = 1)

)
|D−1| × |D1|

where |D−1| and |D1| represent sample size of subgroups z = −1 and z = 1, respectively. I(·) is
the indicator function that returns 1 when its argument is true and 0 otherwise.

C.4 LEARNING THE TRANSFORMATION MODEL

One goal of the transformation model T is to disentangle an input instance from source domains into
three factors in latent spaces by learning a set of encoders E = {Em, Es, Ec, Ea} and decoders
G = {Gi, Go} parameterized by {θm,θs,θc,θa} ∈ Θ and {ϕi,ϕo} ∈ Φ, respectively. As shown
in Fig. 5, the learning process of T consists of two levels, an outer level and an inner level, where
each level is associated with an auto-encoder system factorizing its corresponding input into two
factors within two separated latent spaces. Specifically, in the outer level, an instance is first encoded
to a semantic factor m ∈ M and a style factor s ∈ S through the corresponding encoders Em :
X × Θ → M and Es : X × Θ → S , respectively. In the inner level, the semantic factor m is
further encoded to a content factor c ∈ C and a sensitive factor a ∈ A, through encoders Ec :
M×Θ→ C and Ea :M×Θ→ A. For data reconstruction, two decoders Gi : C ×A×Φ→M
and Go : M× S × Φ → X are introduced in the inner and outer levels. Inspired by image-to-
image translation in computer vision (Huang et al., 2018; Liu et al., 2017), our total loss function
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Inner Level

Outer Level

Figure 5: A two-level approach for leaning the transformation model T .

of learning such encoders and decoders comprises three components: a bidirectional reconstruction
loss, a sensitive label prediction loss, and an adversarial loss.

Reconstruction Loss encourages learning reconstruction in two directions: (1) data→latent→data
for data reconstruction, and (2) latent→data→latent for factor reconstruction. For simplicity, we
omit parameters for encoders and decoders in the following equations. As for data reconstruction,
in terms of the outer and inner levels, an instance x and its semantic factor m are required to be
reconstructed, respectively.

Ldata
recon = Ex∼p(x)

[∥∥Go
(
m̂, Es(x)

)
− x

∥∥
1

]︸ ︷︷ ︸
data reconstruction

+Em∼p(m)

[∥∥Gi
(
Ec(m), Ea(m)

)
−m

∥∥
1

]︸ ︷︷ ︸
reconstruction of semantic factors m (inner level)

where m̂ = Gi(c,a) = Gi
(
Ec(Em(x)), Ea(Em(x))

)
; p(m) is given by m = Em(x) and x ∼

p(x). For factor reconstruction, m, s, c and a are encouraged to be reconstructed through some
latent factors randomly sampled from the prior distributions.

Lfactor
recon = Ec∼p(c),a∼N (0,Ia)

[∥∥Ec(Gi(c,a)
)
− c

∥∥
1

]︸ ︷︷ ︸
reconstruction of content factors c

+Ec∼p(c),a∼N (0,Ia)

[∥∥Ea(Gi(c,a)
)
− a

∥∥
1

]︸ ︷︷ ︸
reconstruction of sensitive factors a

+ Em∼p(m),s∼N (0,Is)

[∥∥Es(Go(m, s))− s
∥∥
1

]
+ Ec∼p(c),s∼N (0,Is),a∼N (0,Ia)

[∥∥Es(Go(Gi(c,a), s)
)
− s

∥∥
1

]︸ ︷︷ ︸
reconstruction of style factors s

+ Em∼p(m),s∼N (0,Is)

[∥∥Em(
Go(m, s)

)
−m

∥∥
1

]︸ ︷︷ ︸
reconstruction of semantic factors m (outer level)

where p(c) is given by c = Ec(Em(x)), a = Ea(Em(x)), and s = Es(x).

Sensitive Loss. Since a sensitive factor is causally dependent on the sensitive features of a datapoint,
as shown in the inner level of Fig. 2, a simple classifier h : A × Θ → Z is trained and further it is
used to predict the sensitive label using a in the second stage.

Lsens = CrossEntropy(z, ẑ) where ẑ = h(a,θz) = h(Ea(Em(x)),θz)

Adversarial Loss. Motivated by the observation that GANs (Goodfellow et al., 2020) can improve
data quality for evaluating the disentanglement effect in the latent spaces, we use GANs to match the
distribution of reconstructed data to the same distribution. Followed by (Huang et al., 2018), data
and semantic factors generated through encoders and decoders should be indistinguishable from the
given ones in the same domain.

Ladv = Ec∼p(c),s∼N (0,Is),a∼N (0,Ia)

[
log

(
1−Do(Go(m̂, s))

)]
+ Ex∼p(x)

[
logDo(x)

]︸ ︷︷ ︸
outer level

+ Ec∼p(c),a∼N (0,Ia)

[
log

(
1−Di(Gi(c,a))

)]
+ Em∼p(m)

[
logDi(m)

]︸ ︷︷ ︸
inner level

where Do : X ×Ψ→ R and Di :M×Ψ→ R are the discriminators for the outer and inner levels
parameterized by ψo ∈ Ψ and ψi ∈ Ψ, respectively.
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Algorithm 2 Learning the Transformation Model T .

Require: learning rate α1, α2, α3, initial coefficients βd, βf , βz, βg .
Initialize: Parameter of encoders {θm,θs,θc,θa}, decoders {ϕi,ϕo}, sensitive classifier θz , and
discriminators {ψi,ψo}.

1: repeat
2: for minibatch {(xi, yi, zi)}qi=1 ∈ Ds do
3: Compute Ltotal for Stage 1 using Eq. (9).
4: ψo,ψi ← Adam(βgLadv,ψo,ψi, α1)
5: θm,θc,θs,θa,ϕo,ϕi ← Adam

(
βdLdata

recon + βfLfactor
recon ,θm,θc,θs,θa,ϕo,ϕi, α2

)
6: θz ← Adam(βzLsens,θz, α3)
7: end for
8: until convergence
9: Return {θm,θs,θc,θa,θz,ϕi,ϕo}

Total Loss. We jointly train the encoders, decoders, and discriminators to optimize the final objec-
tive, a weighted sum of the three loss terms.

min
Em,Es,Ec,Ea,Gi,Go

max
Di,Do

Ltotal = βdLdata
recon + βfLfactor

recon + βzLsens + βgLadv (9)

where βd, βf , βz, βg > 0 are hyperparameters that control the importance of each loss term. To
optimize, the learning algorithm is given in Algorithm 2.

C.5 ARCHITECTURE DETAILS

We have two sets of networks. One is for ccMNIST, FairFace, and YFCC100M-FDG, and the
other one is for the NYSF dataset.

For ccMNIST, FairFace, and YFCC100M-FDG datasets: All the images are resized to 224×224.
Em and Ec’s structures are the same. Each of them is made of four convolution layers. The first one
has 64 filters, and each of the others has 128 filters. The kernel sizes are (7, 7), (4, 4), (3, 3), (3, 3)
for layers 1 to 4, respectively. The stride of the second layer is (2, 2), and the stride of all the other
layers is (1, 1). The activation function of the first three layers is ReLU. The last convolution layer
does not have an activation function. Es and Ea’s structures are the same. Each of them is made of 6
convolution layers, and there is an adaptive average pooling layer with output size 1 between the last
two convolution layers. The numbers of filters are 64, 128, 256, 256, 256, and 2 for the convolution
layers, respectively. The kernel sizes are (7, 7), (4, 4), (4, 4), (4, 4), (4, 4), (1, 1). And the strides
are (1, 1), (2, 2), (2, 2), (2, 2), (2, 2), (1, 1). The activation function of the first five layers is ReLU.
The last convolution layer does not have an activation function. Go and Gi’s structures are almost
the same. The only difference between them is the output size, 3 for Go and 128 for Gi. Each of
them has two parts. The first part is made of 4 convolution layers, and there is an upsampling layer
with a scale factor 2.0 between the second convolution layer and the third convolution layer. The
numbers of filters are 128, 128, 64, and 3 for the convolution layers, respectively. The kernel sizes
are (3, 3), (3, 3), (5, 5), (7, 7). The strides are (1, 1) for all the convolution layers. The first and the
third convolution layers’ activation functions are ReLU. The fourth convolution layer’s activation
function is Tanh. The second convolution layer does not have an activation function. The second
part is made of three fully connected layers. The number of neurons is 256 and 256, respectively,
and the output size is 512. The activation function of the first two layers is ReLU, and there is
no activation function on the output. Do comprises 4 convolution layers followed by an average
pooling layer whose kernel size is 3, stride is 2, and padding is [1, 1]. The numbers of filters of
the convolution layers are 64, 128, 256, 1, respectively. The kernel sizes are (4, 4) for the first three
convolution layers and (1, 1) for the fourth convolution layer. The strides are (2, 2) for the first three
convolution layers and (1, 1) for the fourth convolution layer. The first three convolution layers’
activation functions are LeakyReLU. The other layers do not have activation functions. Di is made
of one fully connected layer whose input size is 112, and the output size is 64 with activation function
ReLU. h comprises one fully connected layer with input size 2, output size 1, and activation function
Sigmoid. f has two parts. The first part is Resnet-50 (He et al., 2016), and the second is one fully
connected layer with input size 2048 and output size 2.
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For the NYSF dataset: Em is made of two fully connected layers. The number of neurons is 32, and
the output size is 16. The activation function of the first layer is ReLU, and there is no activation
function on the output. Es is made of two fully connected layers. The number of neurons is 32,
and the output size is 2. The activation function of the first layer is ReLU, and there is no activation
function on the output. Go is made of two fully connected layers. The number of neurons is 32, and
the output size is 51. The activation function of the first layer is ReLU, and there is no activation
function on the output. Do is made of two fully connected layers. The number of neurons is 32, and
the output size is 16. The activation function of the first layer is ReLU, and there is no activation
function on the output. Ec is made of two fully connected layers. The number of neurons is 16,
and the output size is 8. The activation function of the first layer is ReLU, and there is no activation
function on the output. Ea is made of two fully connected layers. The number of neurons is 8, and
the output size is 2. The activation function of the first layer is ReLU, and there is no activation
function on the output. Gi is made of two fully connected layers. The number of neurons is 16, and
the output size is 16. The activation function of the first layer is ReLU, and there is no activation
function on the output. Di is made of two fully connected layers. The number of neurons is 8, and
the output size is 8. The activation function of the first layer is ReLU, and there is no activation
function on the output. h comprises one fully connected layer with input size 2 and output size 1.
The activation function is Sigmoid. f has two parts. The first part is made of 3 fully connected
layers. The number of neurons is 32, and the output size is 32. The activation function of the first
two layers is ReLU, and there is no activation function on the output. The second part is made of one
fully connected layer whose input size is 32, the output size is 32, and it does not have an activation
function.

C.6 HYPERPARAMETER SEARCH

We follow the same set of the MUNIT (Huang et al., 2018) for the hyperparameters. More
specifically, the learning rate is 0.0001, the number of iterations is 600000, and the batch size
is 1. The loss weights in learning T are chosen from {1, 5, 10}. The selected best ones are
βd = 10, βf = 1, βz = 1, βg = 1. We monitor the loss of the validation set and choose the β
with the lowest validation loss.

For the hyperparameters in learning the classifier f , the learning rate is chosen from
{0.000005, 0.00001, 0.00005, 0.0001, 0.0005}. η is chosen from {0.01, 0.05, 0.1}. γ is cho-
sen from {0.01, 0.025, 0.05}. λ is chosen from {0.1, 1, 10, 20}. The batch size is cho-
sen from {22, 64, 80, 128, 512, 1024, 2048}. The numbers of iterations are chosen from
{500, 1000, ..., 8000} on the ccMNIST and NYSF datasets. The number of iterations are chosen
from {300, 600, ..., 7800, 8000} on the FairFace and YFCC100M-FDG datasets. The selected
best ones are: the learning rate is 0.00005, η1 = η2 = 0.05, γ1 = γ2 = 0.025, λ1 = λ2 = 1. The
batch size on the ccMNIST and YFCC100M-FDG datasets is 64, and it is 22 on the FairFace
dataset and 1024 on the NYSF dataset. The number of iterations on the ccMNIST dataset is
3000, 500, 7000 for domains R, G, B, respectively. The number of iterations on the FairFace
dataset is 7200, 7200, 7800, 8000, 6600, 7200, 6900 for domains B, E, I, L, M, S, W, respectively.
The number of iterations on the YFCC100M-FDG dataset is 7200, 6000, 6900 for d0, d1, d2, respec-
tively. The number of iterations on the NYSF dataset is 500, 3500, 4000, 1500, 8000 for domains
R, B, M, Q, S, respectively. We monitor the accuracy and the value of fairness metrics from the
validation set and select the best ones. The grid space of the grid search on all the baselines is the
same as for our method.

C.7 MODEL SELECTION.

The model selection in domain generalization is intrinsically a learning problem, followed by (Robey
et al., 2021), we use leave-one-domain-out validation criteria, which is one of the three selection
methods stated in (Gulrajani & Lopez-Paz, 2020). Specifically, we evaluate FDDG on the held-out
training domain and average the performance of |Es| − 1 domains over the held-out one.
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D ABLATION STUDIES

We conduct three ablation studies, and detailed algorithms of designed ablation studies are given
in Algorithms 3 to 5. For additional ablation study results on ccMNIST, YFCC100M-FDG, and
NYSF, refer to Appendix F.

1. The difference between the full FDDG and the first ablation study (FDDG w/o sf) is that the
latter does not have the inner level when learning T . Since the inner level is used to extract the
content and sensitive factors from the semantic one, the same sensitive label of the generated
images will remain due to the absence of h(·). Therefore, FDDG w/o sf is expected to have a
lower level of fairness in the experiments. Results shown in the tables indicate that FDDG w/o sf
has a significantly lower performance on fairness metrics.

2. The second study (FDDG w/o T ) does not train the auto-encoders to generate images. All losses
are computed only based on the sampled images. Similar to FDDG w/o sf, it is much harder to
train a good classifier without the generated images in synthetic domains. Our results demonstrate
that FDDG w/o T performs worse on all the datasets.

3. The difference between FDDG and the third study (FDDG w/o fc) is that FDDG w/o fc does not
have the fairness loss Lfair in line 9 of Algorithm 1. Therefore, this algorithm only focuses on
accuracy without considering fairness. Results based on FDDG w/o fc show that it has a good
level of accuracy but a poor level of fairness.

Algorithm 3 FDDG w/o sf (Ablation Study 1)
1: repeat
2: for minibatch B = {(xi, zi, yi)}mi=1 ∈ Ds do
3: Lcls(θ) = (1/m)

∑m
i=1 ℓ(yi, f̂(xi,θ))

4: Lfair(θ) = (1/m)
∑m

i=1(
1

p1(1−p1)
( zi+1

2 − p1)f̂(xi,θ)

5: for each (xi, zi, yi) in the minibatch do
6: (x′

i, zi, yi) = DATAAUG(xi, xi, yi)

7: L′
cls(θ) = (1/m)

∑m
i=1 ℓ(yi, f̂(x

′
i,θ))

8: end for
9: Lcls(θ) = Lcls(θ) + L′

cls(θ)
10: L(θ) = Lcls(θ) + λ2 · Lfair(θ)
11: θ ← θ − ηp · ∇θL(θ)
12: λ2 ← max{[λ2 + ηd · (Lfair(θ)− γ2)], 0}
13: end for
14: until convergence
15: procedure DATAAUG(x, z, y)
16: c = Em(x,θm)
17: Sample s′ ∼ N (0, Is)
18: x′ = Go(c, s′,ϕo)
19: return (x′, z, y)
20: end procedure

Algorithm 4 FDDG w/o T (Ablation Study 2)
1: repeat
2: for minibatch B = {(xi, zi, yi)}mi=1 ∈ Ds do
3: Lcls(θ) = (1/m)

∑m
i=1 ℓ(yi, f̂(xi,θ))

4: Lfair(θ) = (1/m)
∑m

i=1(
1

p1(1−p1)
( zi+1

2 − p1)f̂(xi,θ)

5: L(θ) = Lcls(θ) + λ2 · Lfair(θ)
6: θ ← θ − ηp · ∇θL(θ)
7: λ2 ← max{[λ2 + ηd · (Lfair(θ)− γ2)], 0}
8: end for
9: until convergence
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Algorithm 5 FDDG w/o fc (Ablation Study 3)
1: repeat
2: for minibatch B = {(xi, zi, yi)}mi=1 ∈ Ds do
3: Lcls(θ) = (1/m)

∑m
i=1 ℓ(yi, f̂(xi,θ))

4: Initialize L′
inv(θ) = 0

5: for each (xi, zi, yi) in the minibatch do
6: (x′

i, yi) = DATAAUG(xi, zi, yi)

7: L′
inv(θ) += d[f̂(xi,θ), f̂(x

′
i,θ)]

8: end for
9: Linv(θ) = L′

inv(θ)/m
10: L(θ) = Lcls(θ) + λ1 · Linv(θ)
11: θ ← θ − ηp · ∇θL(θ)
12: λ1 ← max{[λ1 + ηd · (Linv(θ)− γ1)], 0}
13: end for
14: until convergence
15: procedure DATAAUG(x, z, y)
16: c = Ec(Em(x,θm),θc)
17: Sample a′ ∼ N (0, Ia)
18: Sample s′ ∼ N (0, Is)
19: x′ = Go(Gi(c,a′,ϕi), s

′,ϕo)
20: return (x′, z, y)
21: end procedure

E PROOFS

E.1 SKETCH PROOF OF THEOREM 1

Lemma 1. Given two domains ei, ej ∈ E , EP(Xej ,Zej )g(f(X
ej ), Zej ) can be bounded by

EP(Xei ,Zei )g(f(X
ei), Zei) as follows:

EP(Xej ,Zej )g(f(X
ej ), Zej ) ≤ EP(Xei ,Zei )g(f(X

ei), Zei) +
√
2D[P(Xej , Zej , Y ej ),P(Xei , Zei , Y ei)]

Lemma 2. Given two domains ei, ej ∈ E , under Lemma 1, ϵej (f) can be bounded by ϵei(f) as
follows:

ϵej (f) ≤ ϵei(f) +
√
2D[P(Xej , Zej , Y ej ),P(Xei , Zei , Y ei)]

Under Lemmas 1 and 2, we now prove Theorem 1

Proof. Let e⋆ ∈ Es be the source domain nearest to the target domain et ∈ E\Es. Under Lemma 2,
we have

ϵet(f) ≤ ϵei(f) +
√
2D[P(Xet , Zet , Y et),P(Xei , Zei , Y ei)]

where ei ∈ Es. Taking average of upper bounds based on all source domains, we have:

ϵet(f) ≤ 1

|Es|
∑
ei∈Es

ϵei(f) +

√
2

|Es|
∑
ei∈Es

D[P(Xet , Zet , Y et),P(Xei , Zei , Y ei)]

≤ 1

|Es|
∑
ei∈Es

ϵei(f) +

√
2

|Es|
|Es|D[P(Xet , Zet , Y et),P(Xe⋆ , Ze⋆ , Y e⋆)]

+

√
2

|Es|
∑
ei∈Es

D[P(Xe⋆ , Ze⋆ , Y e⋆),P(Xei , Zei , Y ei)]

≤ 1

|Es|
∑
ei∈Es

ϵei(f) +
√
2 min
ei∈Es

D[P(Xet , Zet , Y et),P(Xei , Zei , Y ei)]

+
√
2 max
ei,ej∈Es

D[P(Xei , Zei , Y ei),P(Xej , Zej , Y ej )]
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E.2 SKETCH PROOF OF THEOREM 2

Before we prove Theorem 2, we first make the following propositions and assumptions.

Proposition 1. Let d be a distance metric between probability measures for which it holds that
d[P,T] = 0 for two distributions P and T if and only if P = T almost surely. Then P ⋆(0, 0) = P ⋆

Proposition 2. Assuming the perturbation function P ⋆(γ1, γ2) is L-lipschitz continuous in γ1, γ2.
Then given Proposition 1, it follows that |P ⋆ − P ⋆(γ1, γ2)| ≤ L||γ||1, where γ = [γ1, γ2]

T .

Definition 4. Let Θ ⫅ Rp be a finite-dimensional parameter space. For ξ > 0, a function f̂ :
X×Θ→ Y is said to be an ξ-parameterization of F if it holds that for each f ∈ F , there exists a
parameter θ ∈ Θ such that EP(X)∥f̂(x,θ) − f(x)∥∞ ≤ ξ. Given an ξ-parameterization f̂ of F ,
consider the following saddle-point problem:

D⋆
ξ (γ1, γ2) ≜ max

λ1(ei,ej),λ2(ei,ej)
min
θ∈Θ

R(θ) +

∫
ei,ej∈E

[δei,ej (θ)− γ1]dλ1(ei, ej)

+

∫
ei,ej∈E

[ϵei(θ) + ϵej (θ)− γ2]dλ2(ei, ej)

where R(θ) = R(f̂(·,θ)) and Lei,ej (θ) = Lei,ej (f̂(·,θ)).
Assumption 4. The loss function ℓ is non-negative, convex, and Lℓ-Lipschitz continuous in its first
argument,

|ℓ(f1(x), y)− ℓ(f2(x), y)| ≤ ∥f1(x)− f2(x)∥∞
Assumption 5. The distance metric d is non-negative, convex, and satisfies the following uniform
Lipschitz-like inequality for some constant Ld > 0:

|d[f1(x), f1(x′ = T (x, z, e))]− d[f2(x), f2(x
′ = T (x, z, e))]| ≤ Ld∥f1(x)− f2(x)∥∞, ∀e ∈ E

Assumption 6. The fairness metric g is non-negative, convex, and satisfies the following uniform
Lipschitz-like inequality for some constant Lg > 0:

|(g ◦ f1)(x, z)− (g ◦ f2)(x, z)| ≤ Lg∥f1(x)− f2(x)∥∞, ∀e ∈ E

Assumption 7. There exists a parameter θ ∈ Θ such that δei,ej (θ) < γ1 − ξ ·max{Lℓ, Ld} and
ϵei(θ) + ϵej (θ) < γ2 − ξ ·max{Lℓ, Lg},∀ei, ej ∈ E
Proposition 3. Let γ1, γ2 > 0 be given. With the assumptions above, it holds that

P ⋆(γ1, γ2) ≤ D⋆
ξ (γ1, γ2) ≤ P ⋆(γ1, γ2) + ξ(1 + ∥λ⋆

p∥1) · k

where λ⋆
p is the optimal dual variable for a perturbed version of Eq. (5) in which the constraints are

tightened to hold with margin γ− ξ · k, k = max{Lℓ, Ld, Lg}. In particular, this result implies that

|P ⋆(γ1, γ2)−D⋆
ξ (γ1, γ2)| ≤ ξk(1 + ∥λ⋆

p∥L1
)

Proposition 4 (Empirical gap). Assume ℓ and d are non-negative and bounded in [−B,B] and let
dVC denote the VC-dimension of the hypothesis class Aξ = {f̂(·,θ) : θ ∈ Θ} ⊆ F . Then it holds
with probability 1− ω over the N samples from each domain that

|D⋆
ξ (γ1, γ2)−D⋆

ξ,N,Es
(γ1, γ2)| ≤ 2B

√
1

N
[1 + log(

4(2N)dVC

ω
)]

The Theorem 2. Let ξ > 0 be given, and let f̂ be an ξ-parameterization of F . Let the assumptions
holds, and further assume that ℓ, d, and g are [0, B]-bounded and that d[P,T] = 0 if and only if
P = T almost surely, and that P ⋆(γ1, γ2) is L-Lipschitz. Then assuming that Aξ = {f̂(·, θ) : θ ∈
Θ} ⊆ F has finite VC-dimension, it holds with probability 1− ω over the N samples that

|P ⋆ −D⋆
ξ,N,Es

(γ)| ≤ L||γ||1 + ξk(1 + ||λ⋆
p||1) +O(

√
log(M)/M)

Now we prove Theorem 2.
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Figure 6: Additional visualizations for data reconstruction and under the transformation model T .

Table 6: Full performance on ccMNIST. (bold is the best; underline is the second best).
DP ↑ / AUC ↓ / Accuracy ↑

Methods (R, 0.11) (G, 0.43) (B, 0.87) Avg

RandAug 0.11±0.05 / 0.95±0.02 / 90.59±0.23 0.44±0.01 / 0.71±0.03 / 87.62±0.22 0.87±0.03 / 0.66±0.01 / 86.33±1.50 0.47 / 0.77 / 88.18
ERM 0.12±0.25 / 0.91±0.03 / 98.00±1.14 0.43±0.23 / 0.78±0.01 / 98.07±0.35 0.89±0.06 / 0.64±0.01 / 95.64±1.75 0.48 / 0.78 / 97.24
IRM 0.21±0.15 / 0.97±0.02 / 75.50±2.11 0.28±0.10 / 0.64±0.01 / 92.74±0.27 0.76±0.12 / 0.63±0.03 / 80.05±2.34 0.42 / 0.75 / 82.76
GDRO 0.12±0.09 / 0.92±0.03 / 98.19±0.93 0.43±0.06 / 0.75±0.03 / 98.17±0.87 0.90±0.07 / 0.65±0.01 / 95.03±0.12 0.48 / 0.77 / 97.13
Mixup 0.12±0.21 / 0.92±0.02 / 97.89±1.97 0.41±0.06 / 0.79±0.02 / 98.00±1.36 0.93±0.04 / 0.65±0.01 / 96.09±1.07 0.49 / 0.79 / 97.32
MLDG 0.11±0.12 / 0.91±0.03 / 98.52±0.94 0.43±0.22 / 0.77±0.02 / 98.67±0.61 0.87±0.09 / 0.62±0.03 / 93.76±1.50 0.46 / 0.77 / 96.98
CORAL 0.11±0.08 / 0.91±0.03 / 98.69±0.76 0.42±0.20 / 0.79±0.02 / 98.30±0.98 0.87±0.07 / 0.64±0.01 / 93.74±1.54 0.47 / 0.78 / 96.91
MMD 0.11±0.08 / 0.92±0.01 / 98.69±1.07 0.41±0.21 / 0.73±0.03 / 97.72±1.31 0.93±0.04 / 0.59±0.01 / 95.37±1.56 0.48 / 0.75 / 97.26
DANN 0.14±0.08 / 0.87±0.03 / 85.94±1.76 0.17±0.13 / 0.90±0.03 / 84.93±0.67 0.76±0.17 / 0.63±0.03 / 84.04±1.75 0.36 / 0.80 / 84.97
CDANN 0.19±0.13 / 0.90±0.01 / 93.03±2.18 0.60±0.17 / 0.89±0.03 / 71.92±1.03 0.77±0.14 / 0.63±0.02 / 84.03±1.96 0.52 / 0.81 / 82.99
DDG 0.11±0.07 / 0.91±0.01 / 98.26±2.38 0.42±0.14 / 0.77±0.02 / 98.14±0.11 0.96±0.03 / 0.60±0.01 / 97.02±1.70 0.50 / 0.76 / 97.81
MBDG 0.12±0.04 / 0.93±0.01 / 98.47±0.94 0.42±0.08 / 0.81±0.03 / 97.62±1.87 0.90±0.08 / 0.64±0.03 / 96.01±2.26 0.48 / 0.79 / 97.37

DDG-FC 0.11±0.04 / 0.91±0.03 / 96.69±1.12 0.42±0.05 / 0.75±0.01 / 96.09±1.86 0.97±0.02 / 0.58±0.01 / 95.66±2.17 0.50 / 0.75 / 96.14
MBDG-FC 0.13±0.08 / 0.91±0.02 / 98.07±1.06 0.45±0.20 / 0.76±0.03 / 96.09±0.61 0.94±0.04 / 0.64±0.01 / 95.42±1.13 0.50 / 0.77 / 96.52
EIIL 0.15±0.08 / 0.94±0.03 / 81.00±0.31 0.26±0.06 / 0.98±0.01 / 82.67±2.44 0.62±0.16 / 0.98±0.01 / 71.68±0.51 0.34 / 0.97 / 78.45
FarconVAE 0.11±0.08 / 0.94±0.01 / 94.40±2.35 0.43±0.21 / 0.77±0.03 / 82.61±1.90 0.97±0.02 / 0.59±0.01 / 76.22±0.45 0.50 / 0.77 / 84.41
FATDM 0.17±0.03 / 0.86±0.02 / 96.00±0.23 0.92±0.02 / 0.64±0.01 / 95.55±1.10 0.90±0.06 / 0.57±0.03 / 95.23±0.55 0.66 / 0.67 / 95.59

FDDG 0.23±0.09 / 0.84±0.01 / 96.15±0.50 0.98±0.01 / 0.58±0.01 / 97.94±0.30 0.92±0.05 / 0.57±0.03 / 96.19±1.33 0.71 / 0.66 / 96.76

Proof. The proof of this theorem is a simple consequence of the triangle inequality. Indeed, by
combining Proposition 2, Proposition 3, and Proposition 4, we find that

|P ⋆ −D⋆
ξ,N,Es

(γ1, γ2)|
=|P ⋆ + P ⋆(γ1, γ2)− P ⋆(γ1, γ2) +D⋆

ξ (γ1, γ2)−D⋆
ξ (γ1, γ2)−D⋆

ξ,N,Es
(γ1, γ2)|

≤|P ⋆ − P ⋆(γ1, γ2)|+ |P ⋆(γ1, γ2)−D⋆
ξ (γ1, γ2)|+ |D⋆

ξ (γ1, γ2)−D⋆
ξ,N,Es

(γ1, γ2)|

≤L∥γ∥1 + ξk(1 + ∥λ⋆
p∥1) + 2B

√
1

N
[1 + log(

4(2N)dVC

ω
)]

F ADDITIONAL RESULTS

Additional results including more visualization (Fig. 6), as well as complete results with all domains
and baselines on ccMNIST (Tab. 6), FairFace (Tab. 7), FairFace (Tab. 8), and NYSF (Tab. 9)
are provided. Additional ablation study results are in Tabs. 10 to 13.

Trade-off between fairness-accuracy. In our algorithm, because λ2 is the parameter that regu-
larizes the fair loss, we conduct additional experiments to show the change between accuracy and
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Table 7: Full performance on FairFace. (bold is the best; underline is the second best).
DP ↑ / AUC ↓ / Accuracy ↑

Methods (B, 0.91) (E, 0.87) (I, 0.58)

RandAug 0.64±0.26 / 0.64±0.15 / 93.47±1.56 0.41±0.34 / 0.68±0.09 / 95.62±1.96 0.44±0.21 / 0.63±0.05 / 92.99±1.00
ERM 0.67±0.17 / 0.58±0.02 / 91.89±1.10 0.43±0.21 / 0.64±0.02 / 95.69±2.19 0.50±0.19 / 0.59±0.03 / 93.28±1.61
IRM 0.63±0.12 / 0.58±0.01 / 93.39±1.03 0.32±0.23 / 0.63±0.03 / 95.12±0.49 0.45±0.06 / 0.59±0.02 / 92.01±1.13
GDRO 0.71±0.16 / 0.57±0.02 / 89.81±1.10 0.46±0.16 / 0.61±0.02 / 95.26±1.53 0.50±0.14 / 0.59±0.01 / 93.27±1.27
Mixup 0.58±0.19 / 0.59±0.02 / 92.46±0.69 0.40±0.04 / 0.61±0.02 / 93.31±1.42 0.42±0.09 / 0.59±0.02 / 93.42±2.43
MLDG 0.63±0.25 / 0.58±0.02 / 92.71±2.36 0.41±0.15 / 0.62±0.03 / 95.59±0.87 0.51±0.15 / 0.60±0.02 / 93.35±1.87
CORAL 0.69±0.19 / 0.58±0.01 / 92.09±2.03 0.34±0.24 / 0.64±0.01 / 95.91±1.44 0.53±0.05 / 0.59±0.02 / 93.35±0.26
MMD 0.69±0.25 / 0.56±0.01 / 93.87±0.14 0.45±0.22 / 0.57±0.02 / 94.68±0.20 0.27±0.18 / 0.57±0.03 / 89.88±0.22
DANN 0.46±0.07 / 0.61±0.02 / 91.80±0.64 0.53±0.18 / 0.85±0.03 / 91.54±2.24 0.38±0.18 / 0.63±0.01 / 90.09±0.60
CDANN 0.62±0.24 / 0.59±0.03 / 91.22±0.33 0.43±0.10 / 0.66±0.02 / 94.75±2.23 0.43±0.18 / 0.61±0.01 / 92.41±1.68
DDG 0.60±0.20 / 0.59±0.02 / 91.76±1.03 0.36±0.15 / 0.63±0.02 / 95.52±2.35 0.49±0.17 / 0.59±0.01 / 92.35±2.04
MBDG 0.60±0.15 / 0.58±0.01 / 91.29±1.41 0.46±0.19 / 0.63±0.01 / 95.01±1.39 0.52±0.14 / 0.58±0.02 / 92.77±2.07

DDG-FC 0.61±0.06 / 0.58±0.03 / 92.27±1.65 0.39±0.18 / 0.64±0.03 / 95.51±2.36 0.45±0.17 / 0.58±0.03 / 93.38±0.52
MBDG-FC 0.70±0.15 / 0.56±0.03 / 92.12±0.43 0.35±0.07 / 0.60±0.01 / 95.54±1.80 0.56±0.07 / 0.57±0.01 / 92.41±1.61
EIIL 0.88±0.07 / 0.59±0.05 / 84.75±2.16 0.69±0.12 / 0.71±0.01 / 92.86±1.70 0.47±0.08 / 0.57±0.01 / 86.93±0.89
FarconVAE 0.93±0.03 / 0.54±0.01 / 89.61±0.64 0.72±0.17 / 0.63±0.01 / 91.50±1.89 0.42±0.24 / 0.58±0.03 / 87.42±2.14
FATDM 0.93±0.03 / 0.57±0.02 / 92.20±0.36 0.80±0.02 / 0.65±0.02 / 92.89±1.00 0.52±0.10 / 0.60±0.01 / 92.22±1.60

FDDG 0.94±0.05 / 0.55±0.02 / 93.91±0.33 0.87±0.05 / 0.60±0.01 / 95.91±1.06 0.48±0.06 / 0.57±0.02 / 92.55±1.45

DP ↑ / AUC ↓ / Accuracy ↑
Methods (M, 0.87) (S, 0.39) (W, 0.49)

RandAug 0.36±0.12 / 0.65±0.05 / 92.79±1.22 0.35±0.20 / 0.69±0.06 / 91.89±1.02 0.34±0.09 / 0.64±0.02 / 92.07±0.55
ERM 0.34±0.08 / 0.62±0.01 / 92.51±1.45 0.68±0.14 / 0.59±0.03 / 93.48±0.94 0.39±0.09 / 0.61±0.01 / 92.82±0.38
IRM 0.34±0.11 / 0.65±0.02 / 92.47±2.42 0.55±0.23 / 0.59±0.01 / 91.81±0.66 0.32±0.19 / 0.66±0.01 / 90.54±1.56
GDRO 0.45±0.14 / 0.63±0.02 / 91.75±1.11 0.72±0.14 / 0.59±0.01 / 93.65±0.67 0.48±0.09 / 0.60±0.01 / 92.50±0.38
Mixup 0.31±0.11 / 0.62±0.02 / 93.52±0.79 0.91±0.04 / 0.58±0.02 / 93.20±0.33 0.43±0.19 / 0.61±0.01 / 92.98±0.03
MLDG 0.35±0.20 / 0.62±0.01 / 92.45±0.07 0.71±0.22 / 0.57±0.01 / 93.85±0.40 0.47±0.20 / 0.59±0.01 / 92.82±1.65
CORAL 0.43±0.08 / 0.63±0.01 / 92.23±0.06 0.74±0.10 / 0.58±0.01 / 93.77±1.99 0.50±0.14 / 0.60±0.02 / 92.47±2.04
MMD 0.48±0.25 / 0.62±0.02 / 91.07±2.00 0.66±0.18 / 0.59±0.03 / 92.58±1.63 0.39±0.20 / 0.68±0.02 / 91.75±1.37
DANN 0.65±0.14 / 0.88±0.01 / 91.46±0.50 0.80±0.14 / 0.57±0.02 / 88.20±1.65 0.11±0.09 / 0.66±0.01 / 86.80±1.18
CDANN 0.27±0.12 / 0.67±0.01 / 91.07±0.97 0.52±0.12 / 0.82±0.02 / 88.32±0.37 0.35±0.17 / 0.67±0.02 / 90.19±0.60
DDG 0.37±0.14 / 0.64±0.01 / 91.36±0.65 0.63±0.22 / 0.58±0.01 / 93.40±0.37 0.51±0.07 / 0.60±0.01 / 91.34±0.80
MBDG 0.38±0.14 / 0.64±0.02 / 92.23±1.15 0.67±0.06 / 0.56±0.03 / 93.12±0.70 0.30±0.04 / 0.62±0.01 / 91.05±0.53

DDG-FC 0.42±0.09 / 0.95±0.03 / 92.70±1.49 0.76±0.21 / 0.59±0.02 / 93.85±1.79 0.48±0.15 / 0.62±0.02 / 92.45±1.55
MBDG-FC 0.49±0.19 / 0.63±0.03 / 90.67±0.42 0.74±0.23 / 0.57±0.01 / 93.24±0.32 0.32±0.07 / 0.60±0.03 / 91.50±0.57
EIIL 0.52±0.09 / 0.63±0.03 / 84.96±1.37 0.98±0.01 / 0.55±0.02 / 89.99±2.27 0.46±0.05 / 0.65±0.03 / 86.53±1.02
FarconVAE 0.54±0.22 / 0.58±0.02 / 85.62±1.49 0.92±0.06 / 0.56±0.10 / 90.00±0.05 0.51±0.07 / 0.60±0.01 / 86.40±0.42
FATDM 0.55±0.12 / 0.65±0.01 / 92.23±1.56 0.92±0.10 / 0.57±0.02 / 92.36±0.99 0.46±0.05 / 0.63±0.01 / 92.56±0.31

FDDG 0.54±0.08 / 0.62±0.02 / 92.61±1.84 0.98±0.01 / 0.55±0.01 / 92.26±2.48 0.52±0.17 / 0.58±0.03 / 93.02±0.50

DP ↑ / AUC ↓ / Accuracy ↑
Methods (L, 0.48) Avg

RandAug 0.39±0.10 / 0.70±0.02 / 91.77±0.61 0.42 / 0.66 / 92.94
ERM 0.57±0.15 / 0.62±0.01 / 91.96±0.51 0.51 / 0.61 / 93.08
IRM 0.41±.021 / 0.63±0.05 / 92.06±1.89 0.43 / 0.62 / 92.48
GDRO 0.54±0.15 / 0.62±0.01 / 91.59±0.51 0.55 / 0.60 / 92.55
Mixup 0.55±0.22 / 0.61±0.02 / 93.43±2.02 0.51 / 0.60 / 93.19
MLDG 0.53±0.18 / 0.62±0.03 / 92.99±0.86 0.51 / 0.60 / 93.39
CORAL 0.56±0.23 / 0.59±0.03 / 92.62±1.11 0.54 / 0.60 / 93.21
MMD 0.55±0.16 / 0.61±0.02 / 92.53±1.41 0.50 / 0.60 / 92.34
DANN 0.39±0.21 / 0.67±0.01 / 90.82±2.44 0.47 / 0.70 / 90.10
CDANN 0.42±0.23 / 0.61±0.03 / 92.42±2.19 0.43 / 0.66 / 91.48
DDG 0.44±0.17 / 0.62±0.02 / 93.46±0.32 0.49 / 0.61 / 92.74
MBDG 0.56±0.09 / 0.61±0.01 / 93.49±0.97 0.50 / 0.60 / 92.71

DDG-FC 0.50±0.25 / 0.62±0.03 / 92.42±0.30 0.52 / 0.61 / 93.23
MBDG-FC 0.57±0.23 / 0.62±0.02 / 91.89±0.81 0.53 / 0.60 / 92.48
EIIL 0.49±0.07 / 0.59±0.01 / 88.39±1.25 0.64 / 0.61 / 87.78
FarconVAE 0.58±0.05 / 0.60±0.05 / 88.70±0.71 0.66 / 0.58 / 88.46
FATDM 0.51±0.16 / 0.63±0.02 / 93.33±0.20 0.67 / 0.61 / 92.54

FDDG 0.58±0.15 / 0.59±0.01 / 93.73±0.26 0.70 / 0.58 / 93.42

fairness. Our results show that the larger (smaller) λ2, the better (worse) model fairness for each do-
main as well as in average, but it gives worse (better) model utility. Moreover, we show additional
experiment results based on choosing different γ1 and γ2. We observe that (1) by only increas-
ing γ2, the model towards giving unfair outcomes but higher accuracy; (2) by only increasing γ1,
performance on both model fairness and accuracy decreases. This may be due to the failure of dis-
entanglement of factors. Evaluation on all datasets of fairness-accuracy trade-offs is given in Table
14. Results in the table are average performance over target domains.
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Table 8: Full performance on YFCC100M-FDG. (bold is the best; underline is the second best).
DP ↑ / AUC ↓ / Accuracy ↑

Methods (d0 , 0.73) (d1 , 0.84) (d2 , 0.72) Avg

RandAug 0.67±0.06 / 0.57±0.02 / 57.47±1.20 0.67±0.34 / 0.61±0.01 / 82.43±1.25 0.65±0.21 / 0.64±0.02 / 87.88±0.35 0.66 / 0.61 / 75.93
ERM 0.81±0.09 / 0.58±0.01 / 40.51±0.23 0.71±0.18 / 0.66±0.03 / 83.91±0.33 0.89±0.08 / 0.59±0.01 / 82.06±0.33 0.80 / 0.61 / 68.83
IRM 0.76±0.10 / 0.58±0.02 / 50.51±2.44 0.87±0.08 / 0.60±0.02 / 73.26±0.03 0.70±0.24 / 0.57±0.02 / 82.78±2.19 0.78 / 0.58 / 68.85
GDRO 0.80±0.05 / 0.59±0.01 / 53.43±2.29 0.73±0.22 / 0.60±0.01 / 87.56±2.20 0.79±0.13 / 0.65±0.02 / 83.10±0.64 0.78 / 0.62 / 74.70
Mixup 0.82±0.07 / 0.57±0.03 / 61.15±0.28 0.79±0.14 / 0.63±0.03 / 78.63±0.97 0.89±0.05 / 0.60±0.01 / 85.18±0.80 0.84 / 0.60 / 74.99
MLDG 0.75±0.13 / 0.67±0.01 / 49.56±0.69 0.71±0.19 / 0.57±0.02 / 89.45±0.44 0.71±0.14 / 0.57±0.03 / 87.51±0.18 0.72 / 0.60 / 75.51
CORAL 0.80±0.11 / 0.58±0.02 / 58.96±2.34 0.72±0.11 / 0.64±0.03 / 91.66±0.85 0.70±0.07 / 0.64±0.03 / 89.28±1.77 0.74 / 0.62 / 79.97
MMD 0.79±0.11 / 0.59±0.02 / 61.51±1.79 0.71±0.15 / 0.64±0.03 / 91.15±2.33 0.79±0.17 / 0.60±0.01 / 86.69±0.19 0.76 / 0.61 / 79.87
DANN 0.70±0.13 / 0.78±0.02 / 47.71±1.56 0.79±0.12 / 0.53±0.01 / 84.80±1.14 0.77±0.17 / 0.59±0.02 / 58.50±1.74 0.75 / 0.64 / 63.67
CDANN 0.74±0.13 / 0.58±0.02 / 55.87±2.09 0.70±0.22 / 0.65±0.02 / 87.06±2.43 0.72±0.13 / 0.63±0.02 / 85.76±2.43 0.72 / 0.62 / 76.23
DDG 0.81±0.14 / 0.57±0.03 / 60.08±1.08 0.74±0.12 / 0.66±0.03 / 92.53±0.91 0.71±0.21 / 0.59±0.03 / 95.02±1.92 0.75 / 0.61 / 82.54
MBDG 0.79±0.15 / 0.58±0.01 / 60.46±1.90 0.73±0.07 / 0.67±0.01 / 94.36±0.23 0.71±0.11 / 0.59±0.03 / 93.48±0.65 0.74 / 0.61 / 82.77

DDG-FC 0.76±0.06 / 0.58±0.03 / 59.96±2.36 0.83±0.06 / 0.58±0.01 / 96.80±1.28 0.82±0.09 / 0.59±0.01 / 86.38±2.45 0.80 / 0.58 / 81.04
MBDG-FC 0.80±0.13 / 0.58±0.01 / 62.31±0.13 0.72±0.09 / 0.63±0.01 / 94.73±2.09 0.80±0.07 / 0.53±0.01 / 87.78±2.11 0.77 / 0.58 / 81.61
EIIL 0.87±0.11 / 0.55±0.02 / 56.74±0.60 0.76±0.05 / 0.54±0.03 / 68.99±0.91 0.87±0.06 / 0.78±0.03 / 72.19±0.75 0.83 / 0.62 / 65.98
FarconVAE 0.67±0.06 / 0.61±0.03 / 51.21±0.61 0.90±0.06 / 0.59±0.01 / 72.40±2.13 0.85±0.12 / 0.55±0.01 / 74.20±2.46 0.81 / 0.58 / 65.93
FATDM 0.80±0.10 / 0.55±0.01 / 61.56±0.89 0.88±0.08 / 0.56±0.01 / 90.00±0.66 0.86±0.10 / 0.60±0.02 / 89.12±1.30 0.84 / 0.57 / 80.22

FDDG 0.87±0.09 / 0.53±0.01 / 62.56±2.25 0.94±0.05 / 0.52±0.01 / 93.36±1.70 0.93±0.03 / 0.53±0.02 / 93.43±0.73 0.92 / 0.53 / 83.12

Table 9: Full performance on NYSF. (bold is the best; underline is the second best).
DP ↑ / AUC ↓ / Accuracy ↑

Methods (R, 0.93) (B, 0.85) (M, 0.81)

ERM 0.91±0.07 / 0.53±0.01 / 60.21±1.48 0.90±0.07 / 0.54±0.01 / 58.93±1.10 0.92±0.04 / 0.54±0.01 / 59.49±1.50
IRM 0.98±0.01 / 0.52±0.02 / 61.61±0.80 0.94±0.04 / 0.52±0.02 / 56.89±0.73 0.92±0.02 / 0.53±0.03 / 59.64±2.33
GDRO 0.81±0.18 / 0.56±0.02 / 58.73±2.23 0.89±0.07 / 0.55±0.03 / 59.44±1.66 0.87±0.08 / 0.55±0.02 / 62.57±0.91
Mixup 0.96±0.03 / 0.53±0.01 / 62.63±1.84 0.90±0.06 / 0.54±0.04 / 58.96±2.89 0.92±0.04 / 0.54±0.03 / 58.29±0.80
MLDG 0.96±0.03 / 0.52±0.02 / 61.81±0.53 0.90±0.08 / 0.55±0.01 / 58.11±0.13 0.93±0.02 / 0.53±0.02 / 58.27±0.47
CORAL 0.95±0.02 / 0.52±0.02 / 62.17±0.92 0.93±0.04 / 0.54±0.01 / 58.06±1.99 0.95±0.03 / 0.53±0.01 / 58.84±0.74
MMD 0.91±0.05 / 0.53±0.01 / 60.34±1.39 0.89±0.07 / 0.55±0.02 / 58.47±0.35 0.92±0.02 / 0.54±0.01 / 59.31±0.40
DANN 0.83±0.13 / 0.52±0.02 / 40.80±2.47 0.96±0.02 / 0.55±0.03 / 54.55±0.17 0.88±0.04 / 0.52±0.01 / 59.19±1.21
CDANN 0.95±0.03 / 0.52±0.01 / 57.61±0.68 0.94±0.03 / 0.54±0.02 / 56.97±1.29 0.87±0.09 / 0.52±0.02 / 59.59±1.74
DDG 0.92±0.03 / 0.52±0.01 / 56.52±0.71 0.92±0.04 / 0.54±0.04 / 58.21±1.40 0.92±0.07 / 0.53±0.02 / 60.91±2.47
MBDG 0.96±0.02 / 0.52±0.01 / 55.96±1.37 0.90±0.07 / 0.70±0.01 / 51.52±1.55 0.96±0.02 / 0.53±0.03 / 58.74±2.46

DDG-FC 0.95±0.03 / 0.52±0.01 / 54.53±1.44 0.93±0.02 / 0.53±0.03 / 59.32±0.59 0.92±0.04 / 0.52±0.01 / 60.08±1.31
MBDG-FC 0.96±0.02 / 0.55±0.02 / 55.93±1.98 0.91±0.07 / 0.54±0.03 / 55.50±0.55 0.90±0.06 / 0.53±0.02 / 57.37±2.39
EIIL 0.95±0.02 / 0.52±0.02 / 58.28±3.23 0.92±0.03 / 0.54±0.02 / 56.76±3.87 0.83±0.11 / 0.54±0.02 / 59.47±1.69
FarconVAE 0.90±0.07 / 0.53±0.03 / 60.52±0.14 0.89±0.05 / 0.55±0.04 / 60.30±0.64 0.82±0.07 / 0.56±0.01 / 60.31±0.40
FATDM 0.93±0.05 / 0.52±0.01 / 59.32±1.00 0.86±0.05 / 0.58±0.02 / 59.01±0.32 0.85±0.08 / 0.53±0.02 / 60.45±0.87

FDDG 0.99±0.00 / 0.50±0.00 / 62.01±1.87 0.96±0.01 / 0.52±0.02 / 58.37±0.67 0.92±0.02 / 0.52±0.02 / 59.49±1.93

DP ↑ / AUC ↓ / Accuracy ↑
Methods (Q, 0.59) (S, 0.62) Avg

ERM 0.88±0.06 / 0.57±0.02 / 62.48±0.64 0.86±0.12 / 0.61±0.03 / 54.54±0.68 0.90 / 0.56 / 59.13
IRM 0.87±0.06 / 0.54±0.01 / 55.81±1.74 0.89±0.07 / 0.54±0.03 / 57.00±2.01 0.92 / 0.53 / 58.19
GDRO 0.86±0.05 / 0.57±0.01 / 62.92±1.17 0.77±0.08 / 0.64±0.04 / 60.44±2.86 0.84 / 0.57 / 60.82
Mixup 0.93±0.04 / 0.53±0.01 / 61.34±1.60 0.84±0.08 / 0.61±0.02 / 53.07±3.13 0.91 / 0.55 / 58.86
MLDG 0.89±0.08 / 0.56±0.02 / 62.85±2.38 0.85±0.05 / 0.59±0.03 / 54.42±0.02 0.91 / 0.55 / 59.10
CORAL 0.95±0.03 / 0.53±0.02 / 61.45±0.28 0.88±0.08 / 0.54±0.03 / 52.08±1.06 0.93 / 0.53 / 58.52
MMD 0.88±0.03 / 0.56±0.01 / 62.48±1.31 0.81±0.17 / 0.61±0.02 / 57.73±1.54 0.88 / 0.56 / 59.67
DANN 0.96±0.02 / 0.53±0.02 / 63.60±0.34 0.86±0.05 / 0.56±0.03 / 58.96±0.98 0.90 / 0.54 / 55.42
CDANN 0.97±0.02 / 0.54±0.03 / 64.25±1.25 0.74±0.16 / 0.60±0.01 / 57.73±1.89 0.89 / 0.54 / 59.23
DDG 0.89±0.07 / 0.55±0.01 / 56.68±0.87 0.84±0.07 / 0.58±0.03 / 54.91±1.33 0.90 / 0.54 / 57.44
MBDG 0.96±0.03 / 0.52±0.01 / 60.73±1.56 0.90±0.04 / 0.52±0.02 / 52.45±1.98 0.93 / 0.56 / 55.88

DDG-FC 0.92±0.02 / 0.54±0.02 / 59.90±1.75 0.90±0.05 / 0.57±0.02 / 57.45±0.08 0.92 / 0.53 / 58.26
MBDG-FC 0.94±0.04 / 0.52±0.01 / 61.04±2.31 0.91±0.06 / 0.53±0.03 / 52.57±0.92 0.92 / 0.53 / 56.48
EIIL 0.84±0.12 / 0.55±0.02 / 52.18±0.26 0.95±0.03 / 0.59±0.02 / 55.74±0.12 0.90 / 0.54 / 56.49
FarconVAE 0.97±0.02 / 0.56±0.03 / 61.30±1.14 0.86±0.10 / 0.58±0.02 / 60.70±1.48 0.89 / 0.56 / 60.62
FATDM 0.85±0.05 / 0.52±0.01 / 60.35±0.44 0.88±0.03 / 0.52±0.01 / 59.22±0.09 0.87 / 0.53 / 59.67

FDDG 0.99±0.01 / 0.50±0.00 / 59.11±0.94 0.98±0.02 / 0.53±0.01 / 60.77±0.23 0.97 / 0.51 / 59.95

Table 10: Ablation studies results on ccMNIST.
DP ↑ / AUC ↓ / Accuracy ↑

Methods (R, 0.11) (G, 0.43) (B, 0.87) Avg

FDDG w/o sf 0.23±0.05 / 0.98±0.01 / 94.89±1.72 0.11±0.06 / 0.92±0.02 / 98.19±1.39 0.42±0.06 / 0.72±0.03 / 95.28±0.22 0.25 / 0.87 / 96.12
FDDG w/o T 0.21±0.12 / 0.92±0.01 / 96.74±1.15 0.15±0.08 / 0.86±0.02 / 96.95±0.93 0.48±0.06 / 0.57±0.02 / 96.05±1.17 0.28 / 0.79 / 96.58
FDDG w/o fc 0.22±0.08 / 0.91±0.02 / 96.63±0.63 0.44±0.16 / 0.75±0.01 / 97.90±0.40 0.97±0.02 / 0.61±0.02 / 96.01±0.20 0.54 / 0.76 / 96.85
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Table 11: Ablation studies results on FairFace.
DP ↑ / AUC ↓ / Accuracy ↑

Methods (B, 0.91) (E, 0.87) (I, 0.58)

FDDG w/o sf 0.68±0.18 / 0.57±0.02 / 93.07±0.68 0.43±0.20 / 0.60±0.03 / 95.55±2.09 0.37±0.09 / 0.59±0.03 / 92.26±0.37
FDDG w/o T 0.83±0.08 / 0.56±0.01 / 92.81±0.81 0.50±0.22 / 0.56±0.01 / 95.12±0.73 0.42±0.17 / 0.59±0.02 / 92.34±0.14
FDDG w/o fc 0.59±0.16 / 0.58±0.01 / 92.92±1.35 0.36±0.08 / 0.62±0.03 / 95.55±1.84 0.42±0.20 / 0.62±0.02 / 93.35±0.83

DP ↑ / AUC ↓ / Accuracy ↑
Methods (M, 0.87) (S, 0.39) (W, 0.49)

FDDG w/o sf 0.49±0.13 / 0.62±0.03 / 92.61±2.32 0.69±0.22 / 0.56±0.01 / 93.28±2.31 0.35±0.26 / 0.58±0.01 / 92.18±0.46
FDDG w/o T 0.39±0.07 / 0.68±0.01 / 91.46±2.05 0.92±0.06 / 0.56±0.01 / 87.87±1.25 0.52±0.23 / 0.59±0.01 / 90.78±0.31
FDDG w/o fc 0.38±0.15 / 0.72±0.03 / 92.27±0.02 0.42±0.16 / 0.67±0.03 / 92.17±0.99 0.34±0.08 / 0.72±0.03 / 91.88±0.67

DP ↑ / AUC ↓ / Accuracy ↑
Methods (L, 0.48) Avg

FDDG w/o sf 0.47±0.07 / 0.63±0.01 / 92.62±0.93 0.49 / 0.59 / 93.08
FDDG w/o T 0.53±0.03 / 0.59±0.01 / 91.19±0.57 0.58 / 0.59 / 91.65
FDDG w/o fc 0.40±0.07 / 0.70±0.02 / 92.96±0.85 0.42 / 0.66 / 93.01

Table 12: Ablation studies results on YFCC100M-FDG.
DP ↑ / AUC ↓ / Accuracy ↑

Methods (d0 , 0.73) (d1 , 0.84) (d2 , 0.72) Avg

FDDG w/o sf 0.69±0.13 / 0.57±0.02 / 43.09±1.45 0.83±0.08 / 0.63±0.02 / 89.68±0.60 0.89±0.05 / 0.54±0.03 / 87.70±1.69 0.80 / 0.58 / 73.49
FDDG w/o T 0.82±0.12 / 0.56±0.03 / 47.21±1.17 0.83±0.05 / 0.63±0.01 / 73.10±0.26 0.82±0.08 / 0.53±0.02 / 72.95±2.25 0.82 / 0.57 / 64.42
FDDG w/o fc 0.72±0.17 / 0.69±0.03 / 54.24±1.75 0.92±0.02 / 0.64±0.03 / 94.35±2.35 0.92±0.07 / 0.64±0.03 / 93.20±2.17 0.86 / 0.66 / 80.59

Table 13: Ablation studies results on NYSF.
DP ↑ / AUC ↓ / Accuracy ↑

Methods (R, 0.93) (B, 0.85) (M, 0.81)

FDDG w/o sf 0.95±0.02 / 0.52±0.01 / 55.78±1.01 0.97±0.01 / 0.51±0.01 / 55.30±1.08 0.95±0.03 / 0.53±0.01 / 58.29±0.80
FDDG w/o T 0.95±0.03 / 0.52±0.01 / 61.36±0.42 0.91±0.06 / 0.54±0.01 / 57.67±0.82 0.89±0.05 / 0.55±0.01 / 60.68±0.31
FDDG w/o fc 0.95±0.02 / 0.52±0.02 / 63.72±0.37 0.87±0.09 / 0.55±0.01 / 58.86±0.68 0.89±0.08 / 0.54±0.01 / 60.61±0.59

DP ↑ / AUC ↓ / Accuracy ↑
Methods (Q, 0.59) (S, 0.62) Avg

FDDG w/o sf 0.92±0.06 / 0.54±0.02 / 57.61±1.30 0.90±0.02 / 0.59±0.02 / 52.82±1.20 0.94 / 0.53 / 55.96
FDDG w/o T 0.97±0.02 / 0.52±0.01 / 59.33±0.17 0.87±0.11 / 0.57±0.01 / 55.40±0.73 0.92 / 0.54 / 58.89
FDDG w/o fc 0.83±0.08 / 0.57±0.01 / 64.17±0.35 0.89±0.06 / 0.58±0.02 / 56.51±0.84 0.89 / 0.55 / 60.77

Table 14: Trade-off between fairness-accuracy.
DP ↑ / AUC ↓ / Accuracy ↑

ccMNIST FairFace YFCC100M-FDG NYSF

λ2 = 0.05 0.53 / 0.75 / 98.61 0.57 / 0.63 / 95.99 0.88 / 0.55 / 88.31 0.86 / 0.57 / 61.71
λ2 = 1 0.71 / 0.66 / 96.76 0.70 / 0.58 / 93.42 0.92 / 0.53 / 83.12 0.97 / 0.51 / 59.95
λ2 = 50 0.72 / 0.63 / 89.07 0.78 / 0.52 / 88.65 0.95 / 0.51 / 72.63 0.98 / 0.51 / 55.28

γ1 = 0.025, γ2 = 0.25 0.47 / 0.79 / 97.07 0.53 / 0.60 / 93.99 0.88 / 0.55 / 88.69 0.86 / 0.56 / 61.71
γ1 = 0.25, γ2 = 0.025 0.66 / 0.75 / 88.54 0.62 / 0.58 / 93.06 0.91 / 0.54 / 81.49 0.86 / 0.57 / 58.03
γ1 = 0.025, γ2 = 0.025 0.71 / 0.66 / 96.97 0.70 / 0.58 / 93.42 0.92 / 0.53 / 83.12 0.97 / 0.51 / 59.95

G LIMITATIONS

In Sec. 5 and Appendix F, we empirically demonstrate the effectiveness of the proposed FDDG,
wherein our method is developed based on assumptions. We assume (1) data instances can be
encoded into three latent factors, (2) such factors are independent of each other, and (3) each domain
shares the same content space. FDDG may not work well when data are generated with more than
three factors, and each is correlated to the other. To address such limitations, studies on causal
learning could be a solution. Moreover, our model relies on domain augmentation. While the results
demonstrate its effectiveness, it might not perform optimally when content spaces do not completely
overlap across domains. In such scenarios, a preferable approach would involve initially augmenting
data by minimizing semantic gaps for each class across training domains, followed by conducting
domain augmentations.
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