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1 Mathematical Proof

Before the proof, we first revisit the definition of MoSo.

Definition 1. The MoSo score for a specific sample z selected from the training set S is

Mpzq “ L
´

S{z,w˚S{z
¯

´ L
´

S{z,w˚S
¯

, (1)

where S{z indicates the dataset S excluding z, Lp¨q is the average cross-entropy loss on the consid-
ered set of samples, w˚S is the optimal parameter trained on the full set S, and w˚S{z is the optimal
parameter on S{z.

1.1 Proof for Proposition 1.1

Proposition 1.1. The MoSo score could be efficiently approximated with linear complexity, that is,

M̂pzq “ Et„uniformt1,...,T u

´

ηt∇LpS{z,wtq
T∇lpz,wtq

¯

, (2)

where S{z indicates the dataset S excluding z, lp¨q is the cross-entropy loss function and Lp¨q means
the average cross-entropy loss, ∇ is the gradient operator with respect to the network parameters,
and tpwt, ηtq|

T
t“1u denotes a series of parameters and learning rate during training the surrogate

network on S with the SGD optimizer.

Proof.

Given a specific sample z, we present a unified loss formulation:

Lε “
1

N

N
ÿ

px,yqPL

l
”

px, yq,w
ı

` ε ¨ l
”

z,w
ı

, (3)

where ε is a coefficient. Hence, we have LpS,wq “ Lε:0 and LpS{z,wq “ Lε: ´1
N

. We suppose that,
with the SGD optimizer, the training process reaches the optimal solution after T steps,

w˚ “ wT
S “ arg minLε:0, w˚S{z “ wT

S{z “ arg minLε: ´1
N
. (4)

where w˚ “ wT
S and wt “ wt

S for simplicity.

Hence, the MoSo-score could be re-writed as:

Mpzq “ LT
ε: ´1

N

´ LTε:0 `
1

N
¨ l
´

z,wT
S

¯

,
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and, we use Mtpzq to denote the empirical risk on S{z gap at the t-th step,

Mtpzq “ Lt
ε: ´1

N

´ Ltε:0 `
1

N
¨ l
´

z,wt
S

¯

,

where t ď T . We use Mpzq to denote MT pzq. Note that the network on the full set S and that on the
subset S{z is started from the same initialization, that is, M0pzq “ 0. Let’s start with the identical
equation below,

Mpzq “
´

Mpzq ´MT´1pzq
¯

`

´

MT´1pzq ´MT´2pzq
¯

` ...`
´

M1pzq ´M0pzq
¯

`M0pzq

“

´

Mpzq ´MT´1pzq
¯

`

´

MT´1pzq ´MT´2pzq
¯

` ...`
´

M1pzq ´M0pzq
¯

“ ∆MT `∆MT´1 ` ...`∆M1.
(5)

Let’s take one single item ∆Mt as an example,

∆Mt “Mtpzq ´Mt´1pzq

“

”

Lt
ε: ´1

N

´ Ltε:0 `
1

N
l
´

z,wt
S

¯ı

´

”

Lt´1

ε: ´1
N

´ Lt´1
ε:0 `

1

N
l
´

z,wt´1
S

¯ı

“

”

Lt
ε: ´1

N

´ Lt´1

ε: ´1
N

ı

´

”

Ltε:0 ´ Lt´1
ε:0

ı

`
1

N

”

l
´

z,wt
S

¯

´ l
´

z,wt´1
S

¯ı

.

(6)

By using the first-order Taylor approximation to approximate Lt with Lt´1, we estimate ∆Mt with,

∆yMt “ r∇Lt´1

ε: ´1
N

sT
´

wt
S{z ´wt´1

S{z

¯

´ r∇Lt´1
ε:0 s

T
´

wt
S ´wt´1

S

¯

`
1

N
∇l

´

z,wt´1
S

¯T´

wt
S ´wt´1

S

¯

.

(7)

According to the update rule of the SGD optimizer, that is, wt “ wt´1 ´ ηt∇Lt´1, ∆Mt could be
converted into

∆yMt “ ´ηt||∇Lt
ε: ´1

N

||2 ` ηt||∇Lt´1
ε:0 ||

2 ´ ηt
1

N
∇l

´

z,wt´1
S

¯T

∇Lt´1
ε:0 . (8)

Here, we use the Taylor approximation again to approximate ∇Lt´1

ε: ´1
N

with ∇Lt´1
ε:0 ,

∇Lt´1

ε: ´1
N

« ∇Lt´1
ε:0 `

BLt´1

Bε
|ε“0

´

pε :
´1

N
q ´ pε : 0q

¯

“ ∇Lt´1
ε:0 ´

1

N

B∇Lt´1

Bε
|ε“0,

(9)

where B∇Lt´1

Bε |ε“0 “ ∇lpz,wt´1
S q. By substituting Eq. (9) into Eq. (8), we have that,

∆ĄMt “
ηt
N

”

∇Lt´1
ε:0 ´

1

N
∇l

´

z,wt´1
S

¯ıT

∇l
´

z,wt´1
S

¯

“
ηt
N

∇LpS{z,wt´1
S qT∇lpz,wt´1

S q.
(10)

By substituting Eq. (10) into Eq. (5), we have that,

Mpzq “ ∆MT `∆MT´1 ` ...`∆M1

« ∆ĄMT `∆ ČMT´1 ` ...`∆ĄM1

“
ÿ

t

ηt
N

∇LpS{z,wtq
T∇lpz,wtq,

“
T

N

ÿ

t

ηt
T
∇LpS{z,wtq

T∇lpz,wtq

“
T

N
¨ Et„uniformt1,...,T u

´

ηt∇LpS{z,wtq
T∇lpz,wtq

¯

.

(11)
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In practice, TN is just a constant that contributes little, where N is the number of all training data and
T is the number of update steps in training. Moreover, sometimes numerical instability may occur
due to factors such as N or T being too large, so we completely ignore this insignificant constant in
our applications. Thus, we have the final approximator,

M̂pzq “ Et„uniformt1,...,T u

´

ηt∇LpS{z,wtq
T∇lpz,wtq

¯

.

So, Proposition 1.1 has been proven.

1.2 Proof for Proposition 1.2

Proposition 1.2. By supposing the loss function is `-Lipschitz continuous and the gradient norm
of the network parameter is upper-bounded by g, and setting the learning rate as a constant η, the
approximation error of Eq. (2) is bounded by:

|Mpzq ´ M̂pzq| ď O
´

p`η ` 1qgT ` ηg2T
¯

, (12)

where T is the maximum iteration.

1.2.1 Proof for Proposition 1.2.

Note that the final approximator is the time domain mathematical expectation for ∆ĄMt, which is used
to replace the untraceable ∆Mt, so we analyze the overall error by starting from |∆Mt ´∆ĄMt|,

|∆Mt ´∆ĄMt| ď |∆Mt ´∆yMt| ` |∆yMt ´∆ĄMt|,

where the first |∆Mt ´∆yMt| occurs when approximating Lt with Lt´1 in Eq.(7), the other one
occurs when approximating ∇Lt´1

ε: ´1
N

with ∇Lt´1
ε:0 in Eq.(9).

As for the first approximation error,

Op|∆Mt ´∆yMt|q 9 Op|Lt ´ xLt|q
“ Op|Lt ´ Lt´1 ´∇Lt´1pwt ´wt´1q|q

ď Op|Lt ´ Lt´1| ` |∇Lt´1pwt ´wt´1q|q,

(13)

since the loss function is `-Lipschitz continuous by the mild assumption, we have that,

Op|Lt ´ Lt´1| ` |∇Lt´1pwt ´wt´1q|q ď Op`|wt ´wt´1| ` |∇Lt´1pwt ´wt´1q|q, (14)

according to the update rule in SGD, we have wt “ wt´1 ´ η∇Lt´1, so,

Op|∆Mt ´∆yMt|q ď Op`η|∇Lt´1| ` η||∇Lt´1||2q. (15)

Since the gradient norm is upper-bounded by a constant g, thus,

Op|∆Mt ´∆yMt|q ď Op`ηg ` ηg2q. (16)

As for the second approximation error term Op|∆yMt ´ ∆ĄMt|q, since it estimates ∇Lt´1

ε: ´1
N

with

∇Lt´1
ε:0 in Eq.(9), we have that,

Op|∆yMt ´∆ĄMt|q 9 |∇Lt´1

ε: ´1
N

´∇{Lt´1

ε: ´1
N

|

“ |∇Lt´1

ε: ´1
N

´ p∇Lt´1
ε:0 ´

1

N

B∇Lt´1

Bε
|ε“0q|

ď |∇Lt´1

ε: ´1
N

| ` |∇Lt´1
ε:0 | `

ˇ

ˇ

ˇ

1

N

B∇Lt´1

Bε
|ε“0

ˇ

ˇ

ˇ
,

(17)

where B∇Lt´1

Bε |ε“0 “ ∇lpz,wt´1
S q. Since the gradient norm is bounded by constant g and N is

generally a quite big value (e.g., N “ 1M for ImageNet), so,

|∇Lt´1

ε: ´1
N

| ` |∇Lt´1
ε:0 | `

ˇ

ˇ

ˇ

1

N

B∇Lt´1

Bε
|ε“0

ˇ

ˇ

ˇ
« Opgq. (18)
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By jointly considering Eq.(16) and Eq.(18) and then taking the summation from t “ 1 to T , we have
that,

Op|Mpzq ´ M̂pzq|q ď O
´

`ηgT ` ηg2T ` gT
¯

“ O
´

p`η ` 1qgT ` ηg2T
¯

.

Proposition 1.2 has been proven.
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