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1 Mathematical Proof
Before the proof, we first revisit the definition of MoSo.

Definition 1. The MoSo score for a specific sample z selected from the training set S is
M(2) = £(8/z. w5, ) = £(S/2w5). (M

where S/z indicates the dataset S excluding z, L(-) is the average cross-entropy loss on the consid-
ered set of samples, W is the optimal parameter trained on the full set S, and w'; /2 is the optimal

parameter on S/ z.

1.1 Proof for Proposition 1.1

Proposition 1.1. The MoSo score could be efficiently approximated with linear complexity, that is,

M(Z) = Et~uniform{1,...,T} (UtV/:(S/Z, Wt)TVl(Z> Wt)) ; 2

where S/z indicates the dataset S excluding z, l(+) is the cross-entropy loss function and L(-) means
the average cross-entropy loss, V is the gradient operator with respect to the network parameters,
and {(wy,n;)|1_,} denotes a series of parameters and learning rate during training the surrogate
network on S with the SGD optimizer.

Proof.

Given a specific sample z, we present a unified loss formulation:

EE:% i l[(a@y),w]—i—e-l[z,w]7 3)
(z,y)el

where € is a coefficient. Hence, we have £(S,w) = L0 and L(S/z, w) = L, -1. We suppose that,
with the SGD optimizer, the training process reaches the optimal solution after 7" steps,

w* = wi = argmin L..o, Wz/z = ng/z = arg min ,CE:—WI. 4)

where w* = wk and w' = w for simplicity.

Hence, the MoSo-score could be re-writed as:
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and, we use M?(z) to denote the empirical risk on S/z gap at the ¢-th step,
1
Mi(z) = Ei:% — L+ i -l(z,wfg),

where t < T'. We use M (z) to denote M”(z). Note that the network on the full set S and that on the
subset S/ is started from the same initialization, that is, M°(z) = 0. Let’s start with the identical
equation below,

M(z) = <./\/l(z) - ./\/lT_l(z)) n (MT—l(z) - MT—Q(Z)) Yot (Ml(z> - MO(Z)) + MO(2)
- (M(z) - MT1 (z)) + (MT—l(z) - MT_2(z)) TR (Ml(z) - MO(Z))

= AMT + AMTL 4+ AML.
5

Let’s take one single item AM? as an example,

AM! = M(z) — Mt‘l(z)
[ s (o) et e i)

o) ]S o)

By using the first-order Taylor approximation to approximate £¢ with £!~1, we estimate AM" with,

AME = [Vﬁt ,11] (WS/Z g/i) — [Vﬁiil]T(wg - wf;l) + %Vl(z wih 1>T(ng wih 1).
(7

According to the update rule of the SGD optimizer, that is, w! = wi=1 — 7, VL=, AM! could be
converted into

— 1
AME = = [VLL P+ nel VL — ntNVl(z WS 1) VL' ®)

Here, we use the Taylor approximation again to approximate Vﬁi:_% with V,Cz)l,

oct—1 -1
t—1 t—1 . _ .
VLI, ~ VLG + |6=0((e.7N) (e - 0))
ol 1ove!
- V‘CE:O N Oe |6:07

(€))

where ‘Nﬁ

|E o = Vi(z,wl ). By substituting Eq. (9) into Eq. (8), we have that,

AN = 2 [vetgt - (s )| Vi (ews ) (10)
:%Vﬁ(S/z,w DIVI(z, ws ).

By substituting Eq. (10) into Eq. (5), we have that,

M(z) = AMT + AMTL 4 4 AM?
~ AMT + AMT1 4 4 AMI
= 2 %Vﬁ(é‘/z, w) T Vi(z, wy),

¢ 1D

;Zt: %Vﬁ(S/Z,Wt)TVl(Z,Wt)

T
= N : IEi&~uniform{1,...,T} (UtV/v‘(S/Z, Wt)TVl(Z, Wt)) .



In practice, % is just a constant that contributes little, where IV is the number of all training data and
T is the number of update steps in training. Moreover, sometimes numerical instability may occur
due to factors such as N or 7" being too large, so we completely ignore this insignificant constant in
our applications. Thus, we have the final approximator,

M<Z) = Et~unif0rm{1,...,T} (UtV£(8/27 Wt>TVZ(Z> Wt)) .

So, Proposition 1.1 has been proven.

1.2 Proof for Proposition 1.2

Proposition 1.2. By supposing the loss function is {-Lipschitz continuous and the gradient norm
of the network parameter is upper-bounded by g, and setting the learning rate as a constant 1, the
approximation error of Eq. (2) is bounded by:

M(z) = M(2)| < O((tn + 1)gT + ng’T ). (12)
where T' is the maximum iteration.
1.2.1 Proof for Proposition 1.2.

Note that the final approximator is the time domain mathematical expectation for AM?, which is used
to replace the untraceable AM?, so we analyze the overall error by starting from |[AM® — AM!?

IAM" — AME| < |[AME — AME| + |AME — AM],

s

where the first [AM? — AM? | occurs when approximating £¢ with £¢~! in Eq.(7), the other one

occurs when approximating VL', with VLI ;! in Eq.(9).
E:W N

As for the first approximation error,
O(AM — AME|) o O(|LF — L1))
O(L! — L — VLY (wh — wi™ 1)) (13)
O(IL" = L'+ VL~ (w! = w' ™)),
since the loss function is /-Lipschitz continuous by the mild assumption, we have that,
o(ct — £t + vt wt —wi ) < o(lwt —wi T + (VL (wh —wiTY)),  (14)

<

according to the update rule in SGD, we have w! = wi=! — VLI~ 5o,

O(AM! — AME|) < O(Un|V LY + ]| VL), (15)
Since the gradient norm is upper-bounded by a constant g, thus,
o(|AM! — A./T/l\f|) < O(fng + ng?). (16)

As for the second approximation error term O(|]AM? — AM?|), since it estimates VL' L, with
pp .

VL in Eq.(9), we have that,

N

O(AME — ANy o VLI, — VL

B _ 1 ovett
= |vc§:% — (VLI — N a0l (17)
iavﬁ—l

< VL [+ VLG +)

=1
N

N e o

-1 . . . .
where avg:; le—o = Vi(z,wk ). Since the gradient norm is bounded by constant g and N is

generally a quite big value (e.g., N = 1M for ImageNet), so,
1 over!t

=1 it —_ ~ . 18
VL, |+ VL + | 55— lo| = O9) as)




By jointly considering Eq.(16) and Eq.(18) and then taking the summation from ¢ = 1 to 7", we have
that,

O(IM(2) = M(2)l) < O(engT +ng®T + gT) = O((tn + 1)gT + ng°T ).

Proposition 1.2 has been proven.
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