Published as a conference paper at ICLR 2023

A HYPER-PARAMETERS

Symbol Value Description
te, We, hyycp | 11,128,128,3 | Video dimensions
tpy Wy, My, Cp 2,8,8,3 Patches dimensions (all frames except the first one)
t,,w,, 6,16,16 Video tokens dimension (before linear projection)
h. 512 Hidden size in the transformer layer
d, 32 Embedding dimension (after linear projection)
— 4 Number of layers for spatial transformer
— 4 Number of layers for temporal transformer
— 2048 MLP size
|E| 8192 Codebook size
- AdamW Optimizer
51 0.9 first moment of gradient
B2 0.99 second moment of gradient
- le-4 Learning rate
- le-4 Weight decay
- Cosine decay | Learning rate scheduler
- M Target number of training steps for learning rate scheduler
- 100K Warmup steps
- 10 Gradient clipping magnitude
- 1028 Batch size
Table 6. Hyperparamters used for C-ViViT architecture and optimizer.
Symbol Value Description
|z] 1536 Sequence Length
- 24 Number of layer
- 2048 Embedding dimension
- 8192 MLP dimension
- 32 Number of heads
- AdamW Optimizer
51 0.9 first moment of gradient
B2 0.99 second moment of gradient
- le-4 Learning rate
- le-4 Weight decay
- Cosine decay | Learning rate scheduler
- 4M Target number of training steps for learning rate scheduler
- 10K Warmup steps
- 10 Gradient clipping magnitude
- 512 Batch size

Table 7. Hyperparamters used for MaskGIT architecture and optimizer.

B DETAILS OF EXPERIMENTS

B.1

B.1.1

All encoder-decoder baselines have approximately 50M parameters. The Convolutional baseline
encoder architecture consists of 5 convolutional blocks with channel multipliers of [1, 1,2, 2, 4], 2
residual layers and 128 hidden units per block, and embedding dimension of 256. The ViT baseline
encoder architecture consists of an image patchification step over non-overlapping 8 x 8 spatial
patches which are linearly transformed into image tokens. Next, we follow with 8 transformer layers
with 512 hidden units, 8 attention heads, 2048 mlp units, and embedding dimension of 32. C-ViViT
encoder architecture patches the first frame to non-overlapping 8 x 8 patches, and then the rest of

VIDEO QUANTIZATION

NETWORK ARCHITECTURE

15

Published as a conference paper at ICLR 2023

the frames to non-overlapping 2 x 8 X 8 spatio-temporal patches which are linearly transformed
into video embeddings. Next, C-ViViT encoder architecture consists of 4 spatial and 4 temporal
transformer layers with 512 hidden units, 8 attention heads, 2048 mlp hidden units, and embedding
dimension of 32. The decoder architecture for all models is the same as the encoder but in reverse
to put the latent embeddings back to image space. The VQ objective is trained with commitment
loss of 5 = 0.25 and codebook size of 8192. The discriminator architecture is the StyleGAN [25]
discriminator with blur resample, and channel multiplier of 1.

B.1.2 TRAINING

We train all encoder-decoder baselines and with StyleGAN [25] discriminators with a batch size of
128 using Adam optimizer [27]] with 51 = 0.9 and 52 = 0.99. We use a linear learning rate warmup
to a peak value of 1 x 10~* over 100, 000 steps and then decaying over the remaining 900, 000 steps
with a cosine schedule, and use a decoupled weight decay [30] of 1 x 10~* for the encoder-decoder
and discriminator. To capture longer time horizons during training and better evaluate temporal
coherence, we downsample the MiT dataset from 25 FPS to 6 FPS and evaluate on videos of 10
frames at spatial resolution of 128 x 128.

B.2 IMAGE CONDITIONAL VIDEO GENERATION

B.2.1 BAIR ROBOT PUSH C-VIVIT ARCHITECTURE

We use a similar setup as in Section [B.1, but the video tokenization step is done over 4 x 4 spatial
patches on the first image and 2 x 4 x 4 spatio-temporal patches in the rest of the video. The spatial
encoder consists of 8 layers and the temporal encoder consists of 6 layers.

B.2.2 KINETICS-600 C-VIVIT ARCHITECTURE

We use a similar setup as in Section|B.2.1] but both the spatial encoder and temporal encoder consist
of 8 layers.

B.2.3 MASKGIT ARCHITECTURE

To perform video prediction in latent space in the BAIR Robot Push and Kinetics-600 datasets, we
use an unconditional transformer architecture consisting of 24 layers, 768 hidden units, 16 attention
heads, dropout and attention dropout rate of 0.1, 3072 mlp hidden units.

B.2.4 TRAINING AND INFERENCE

As described in Table [7} we train C-ViViT with the same optimizer setup as in Sec [B.I] but we
do not downsample the FPS of any of the datasets in this section for fair comparison with the
video prediction baselines. We train MaskGIT on the video tokens extracted using C-ViViT in an
unconditional setting, that is, we do not assume frames or text inputs to be given. During training,
we use the Adam [27] optimizer with 5; = 0.9 and 52 = 0.99. We use a linear learning rate warmup
up to a peak value of 1 x 10~* over 10, 000 steps, and constant learning rate schedule for ~2M
steps. At inference time, we initialize MaskGIT given a number of input frames, and predict the rest
of the frames depending on the dataset on which we evaluate.

B.3 TEXT CONDITIONAL VIDEO GENERATION
B.3.1 ARCHITECTURE

In our text conditional video generation, we use the same C-ViViT architecture and training de-
scribed in Section E To train MaskGIT, we include a text conditioning in the form of T5X em-
beddings [41] which are used as input through the use of cross attention with the video tokens. We
reduce the number of parameters of our base model for fairness in the quantitative comparisons
against NUWA. The MaskGIT architecture used against NUWA consists of 20 transformer layers
with 1536 hidden units, 24 attention heads, and 6144 MLP hidden units, resulting in 0.9B param-
eters similar to NUWA. For the main experiments in this paper, we use a larger architecture that

16

Published as a conference paper at ICLR 2023

consists of consists of 24 transformer layers with 2048 hidden units, 32 attention heads, and 8192
mlp hidden units, resulting in 1.8B parameters.

B.3.2 TRAINING AND INFERENCE

For all our text-conditional video generation, we use the training parameters Table 7]

B.3.3 INFERENCE PARAMETERS AGAINST NUWA

We use A = 0.1, 12 MaskGIT iterations, and temperature of 4.0.

B.3.4 INFERENCE PARAMETERS FOR ABLATION OF IMAGE AND VIDEO DATA FOR TRAINING.

We use A = 6, 24 MaskGIT iterations, and temperature of 4.0.

B.3.5 INFERENCE PARAMETERS FOR ALL VIDEOS IN THE PAPER.

We use A = 12, 48 MaskGIT iterations, and temperature of 8.0.

1st prompt: “Side view of an astronaut is walking through a puddle on mars”

o ol ol ke oo o

2nd prompt: “The astronaut is dancing on mars”

R e i o

3rd prompt: “The astronaut walks his dog on mars”

Ly v

4rd prompt: “The astronaut and his dog watch fireworks”

FLE I T

Figure 5. Another example of story conditional video generation. Full videos are available at

phenaki. github.io}

C OTHER EXPERIMENTS

C.1 CLASS CONDITIONAL VIDEO GENERATION

In order to compare Phenaki with more previous work, we train a smaller version of the model with
345M parameters on UCF-101 [47]] while conditioning it on the class of each video. As it can be

17

https://phenaki.github.io/

Published as a conference paper at ICLR 2023

Table 8. Quantitative results of video generation on class conditional UCF-101 [47]. We report
FVD numbers of a smaller version of Phenaki with 345M parameters The numbers for other method
after 540K training steps. The FVD numbers for previous methods are taken from [16].

Method FVDJ

TGANV2 [44] 1209

CogVideo [22] 626

TATS [16] 332

Phenaki (Ours) 250

Table 9. Training and inference speed of Phenaki.

Size Condition Training Il\daskGIT Infqrence
terations Time
C-ViViT MaskGiT
Number Training | Number Training
of TPUs Time of TPUs Time
1.8B Text 64 81 hours 512 126 Hours 24 4 FPS
345M | Class 64 65 hours 64 49 Hours 128 2 FPS

seen in Table [§] Phenaki outperforms all of the previous work. We use a temperature of 6.0, 128
MaskGIT iterations during sampling, and no classifier free guidance during training or evaluation
for simplicity in our experiments.

D COMPUTATIONAL COST

As mentioned in the paper, training Phenaki has two main stages. First, training C-ViViT which
takes ~81 hours on 64 TPUs and second training MaskGIT which takes ~126 hours on 512 TPUs.
Our 1.8B parameter text-conditioned model runs 24 MaskGIT iterations during sampling and gener-
ates video at ~4 frames per second. In addition, we provide a summary of the computational cost for
the 345M parameter class-conditioned model used in Section [C|which runs 128 MaskGIT iterations
during sampling and generates videos at ~2 frames per second. A summary of these numbers can
be seen in Table[9]

E STYLIZATION FROM IMAGE DATASETS

To highlight the stylization learned from images in our model, we provide comparisons of gener-
ations from the model trained only with video data and with a combination of video and image
datasets in our website phenaki.github.io/style_videos.html.

F LONG VIDEO GENERATION

To highlight the long term generation in our model, we provide 5 minute videos given the same
prompt during the entire generation in our website phenaki.github.io/five_min_videos.html.

18

https://phenaki.github.io/style_videos.html
https://phenaki.github.io/five_min_videos.html

	Introduction
	The Phenaki model
	Encoder-decoder video model: C-ViViT
	Text-to-video generation with bidirectional transformers

	Experiments
	Text conditional video generation
	Text-Image conditional video generation
	Visual story telling by dynamic text inputs
	Video Encoding
	Image conditional video generation a.k.a Video prediction

	Related Works
	Conclusion
	Hyper-Parameters
	Details of Experiments
	Video Quantization
	Network architecture
	Training

	Image conditional video generation
	BAIR Robot Push C-ViViT architecture
	Kinetics-600 C-ViViT architecture
	MaskGIT architecture
	Training and Inference

	Text conditional video generation
	Architecture
	Training and inference
	Inference parameters against NUWA
	Inference parameters for ablation of image and video data for training.
	Inference parameters for all videos in the paper.

	Other Experiments
	Class conditional video generation

	Computational Cost
	Stylization from image datasets
	Long video generation

