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ABSTRACT

This paper investigates stochastic bandit algorithms that are robust to adversar-
ial attacks, where an attacker can first observe the learner’s action and then alter
their reward observation. We study two cases of this model, with or without the
knowledge of an attack budget C, defined as an upper bound of the summation of
the difference between the actual and altered rewards. For both cases, we devise
two types of algorithms with regret bounds having additive or multiplicative C
dependence terms. For the known attack budget case, we prove our algorithms
achieve the regret bound of O((K/∆) log T +KC) and Õ(

√
KTC) for the ad-

ditive and multiplicative C terms, respectively, where K is the number of arms, T
is the time horizon, ∆ is the gap between the expected rewards of the optimal arm
and the second-best arm, and Õ hides the logarithmic factors. For the unknown
case, we prove our algorithms achieve the regret bound of Õ(

√
KT +KC2) and

Õ(KC
√
T ) for the additive and multiplicative C terms, respectively. In addition

to these upper bound results, we provide several lower bounds showing the tight-
ness of our bounds and the optimality of our algorithms. These results delineate
an intrinsic separation between the bandits with attacks and corruption models.

1 INTRODUCTION

Online learning literature (Borodin & El-Yaniv, 2005, §7.1.2) usually considers two types of non-
oblivious adversary models: the medium adversary and the strong adversary.1 The medium ad-
versary chooses the next instance before observing the learner’s actions, while the strong adver-
sary chooses instances after observing the learner’s actions. When it comes to the multi-armed
bandits (MAB) learning with an adversary, the medium adversary corresponds to the bandits with
corruption (Lykouris et al., 2018), and the strong adversary corresponds to adversarial attacks on
bandits (Jun et al., 2018). Bandit algorithms robust to corruption are developed for the medium
adversary models in bandits literature, e.g., Auer et al. (2002); Audibert & Bubeck (2010); Lykouris
et al. (2018); Gupta et al. (2019). However, for the strong adversary model, i.e., the adversarial at-
tack model on MAB, most previous efforts focus on devising attacking policies to mislead the learner
to pull a suboptimal arm and thus suffer a linear regret, e.g., Jun et al. (2018); Liu & Shroff (2019);
Zuo (2024). Developing robust algorithms for the adversarial attack model and achieving regret with
benign dependence on the total attack is still largely unexplored (details discussed at the end of §1).

Stochastic MAB with adversarial attacks In this paper, we study the stochastic MAB under adver-
sarial attacks and develop robust algorithms whose regret bounds degrade gracefully in the presence
of such attacks. Denote by K ∈ N+ as the number of arms, and each arm k is associated with a
reward random variable Xk with an unknown mean µk. Denote by k∗ as the arm index with the
highest mean reward, and ∆k := µk∗ − µk the reward gap between the optimal arm k∗ and any
suboptimal arm k. The learner aims to minimize the regret, defined as the difference between the
highest total rewards of pulling a single arm and the accumulated rewards of the concern algorithm.

1There is a third adversary model, called the weak adversary, which is oblivious. The medium adversary is
also called the adaptive-online adversary, while the strong adversary is called the adaptive-offline adversary.
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In each time slot, the learner first pulls an arm. Then, the adversary observes the pulled arm and its
realized reward and chooses an attacked reward for the learner to observe. Denote by C as the total
amount of attacks that the adversary uses to alter the original rewards to the attacked rewards over
all rounds. We present the extended formal model definitions in §2.

Model difference between bandits with corruptions and attacks. Different from the attack
(strong adversary) above, in each time slot, the medium adversary (corruption) chooses the corrupted
rewards for all arms before observing which arm is pulled by the learner. This simple order alter-
nation yields intrinsic differences, making the attack model more challenging than the corruption
model. Specifically, the attack model (attack after observing the pulled arm) makes the randomized
arm pulling policies, widely used in algorithms for bandits robust to corruptions (Lykouris et al.,
2018; Gupta et al., 2019), invalid. Without randomization, devising robust algorithms for attacks is
much more challenging than that for corruptions. We discuss more details of the differences in §2.

Contributions This paper offers a thorough investigation into robust algorithms for stochastic
MABs under an adversarial attack model. We explore both known and unknown attack budget
C scenarios, where the unknown attack budget case is also known as the adaptive budget case.
For both cases, we develop robust algorithms with two kinds of regret bounds having additive or
multiplicative C dependence terms. We summarize our contributions as follows:

Known attack budget case. For the known attack case (§4), we first investigate the successive elim-
ination with wider confidence radius (SE-WR) algorithm, which was initially proposed for bandits
with corruptions (Lykouris et al., 2018). In §4.1, we show SE-WR can be applied to the bandits with
known adversarial attack budget and prove that this algorithm enjoys a tighter regret upper bound
O(
∑

k ̸=k∗ log T/∆k+KC) (under both attack and corruption models) than previous analysis (Lyk-
ouris et al., 2018) under the corruption model. This improvement removes the original additive term∑

k ̸=k∗ C/∆k’s dependence of ∆k and reduces it to KC. To achieve gap-independent regret bounds
in §4.2, we propose two stopping conditions for the successive elimination to modify the SE-WR
algorithm to two SE-WR-Stop algorithms (see 1⃝ in Figure 1). We prove that the regrets of these
two modified algorithms are O(

√
KT log T +KC) and O(

√
KT (log T + C)) respectively.

Unknown attack budget case. To address the MAB with unknown attack case (§5), we use algo-
rithms proposed for known attacks as building blocks to devise algorithms for unknown attacks. We
consider two types of algorithmic techniques. In §5.1, we apply a multi-phase idea to extend the
SE-WR algorithm to a phase elimination algorithm (PE-WR, see 2⃝ in Figure 1). The PE-WR algo-
rithm utilizes a multi-phase structure—each phase with carefully chosen attack budgets and phase
lengths—to defend against unknown attacks. We show that the regret of PE-WR is upper bounded
by O(

√
KT + KC2) (additive). In §5.2, we apply a model selection technique, which treats the

unknown attack C as a parameter in model selection (see 3⃝ in Figure 1). Specifically, we consider
log2 T base instances of SE-WR-Stop with different input attack budgets and then use the model
selection technique to “corral” these base instances, composing the model-selection SE-WR-Stop
(called MS-SE-WR) algorithm. We upper bound the regret of MS-SE-WR by Õ(

√
KCT

2
3 ) or

Õ(KC
√
T ) (multiplicative) depending on the choice of the model selection algorithm. Figure 1

summarizes the relations of algorithm design, and Figure 2 shows which type of algorithm performs
better, those with additive bounds or those with multiplicative bounds, varies depending on the total
attacks, highlighting the necessity to study both types of bounds.

Lower bounds. In §3, we also provide lower bound results to show the tightness of our upper
bounds. We first show a general Ω(KC) lower bound for any algorithm under attack. This lower
bound improves a factor K of the number of arms upon prior Ω(C) lower bounds (Gupta et al.,
2019). Based on this, we propose the gap-dependent lower bound Ω(

∑
k ̸=k∗ log T/∆k + KC)

(informal expression) and gap-independent lower bound Ω(
√
KT +KC). Our refined upper bound

of SE-WR matches the gap-dependent lower bound up to some prefactors, and one of our proposed
SE-WR-Stop algorithms matches the gap-independent lower bound up to some logarithmic factors.
To show the tightness of our upper bounds for the unknown attack algorithms, we derive lower
bounds, Ω(Tα +C

1
α ) and Ω(C

1
α−1Tα) with α ∈ [ 12 , 1), for two classes of algorithms whose regret

upper bounds follow certain additive and multiplicative forms respectively. With α = 1
2 , these

two lower bounds, becoming Ω(
√
T + C2) and Ω(C

√
T ), match the upper bounds of PE-WR and

MS-SE-WR in terms of T and C. We summarize our analysis results in Table 1.
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Figure 1: Algorithm design overview: only SE-WR has a
gap-dependent bound; others are all gap-independent.
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Figure 2: Comparison of unknown C
regrets (see Remark 11 for detail)

Table 1: Results overview: upper bounds with † are for pseudo regret in expectation, while all other
upper bounds are for realized regret with high probability; lower bounds with ‡ are only for special
classes of algorithms (see Propositions 4 and 5), and the lower bound with †† holds when T → ∞.
We study both additive and multiplicative bounds because which one is better depends on the value
of C (see Figure 2 for unknown C case and the detailed discussion in Remark 11).

Regret Bounds Known Attack C (§4) Unknown Attack C (§5)

Additive C O
(∑

k ̸=k∗
log T
∆k

+KC
)
, O(
√
KT log T +KC) Õ

(√
KT +KC2

)
Multiplicative C O(

√
KT (log T + C)) Õ(

√
KCT

2
3 )†, Õ(KC

√
T )†

Lower Bounds (§3) Ω
(∑

k ̸=k∗
log T
∆k

+KC
)††

,Ω(
√
KT +KC) Ω(Tα + C

1
α )‡,Ω(C

1
α−1Tα)‡

Experiment. Besides the above analytical results, we also conduct experiments to validate the perfor-
mance of our algorithms. The attacker employs the attack strategy proposed in Jun et al. (2018) when
there are remaining attack budgets. We compare the regrets of our algorithms with prior algorithms
under different attack budgets. The results show that our algorithms outperform the state-of-the-art
algorithms in most cases, especially when the attack budget is large. We provide more details in §6.

Result separation between corruption and attack. With the results in this paper, we demonstrate
a clear separation between corruption (medium adversary) and attack (strong adversary) models in
terms of the additive regret bounds. Denote by C ′ the total corruption to distinguish from the total
attack C. In the case of known corruption/attack budget, while both achieving the gap-dependent
regret bounds

∑
k ̸=k∗(1/∆k) log T in T -dependent terms, we show that the regret due to attack is

Θ(KC) which has a factor of K worse than the additional Θ(C ′) regret due to corruption. That
implies, with the same amount of budget, an attacker can produce K times larger impact on regret
than that under the corruption model. For unknown budget cases, while bandits with corruptions
have the regret bounds of O(

∑
k ̸=k∗ log

2(KT/δ)/∆k +KC ′) (Gupta et al., 2019), it is impossible
for attack case to achieve a regret upper bound in the form of O (ploylog(T ) + Cα) for any α > 0
(contradicts with Theorem 3). Instead, we show that the regret with unknown attacks can attain
Õ(
√
KT + KC2) where the C2 additive term is tight. Even with ignoring the worse order of the

first T -related terms, the second regret term due to attack O(C2) is still a factor of C worse than the
additional O(C ′) regret due to corruption. That is, an attack with O(

√
T ) budget is enough to make

the algorithm suffer a linear regret in the attack model,2 while one needs a linear O(T ) corruption
budget to achieve the same effect in the corruption case. This separation is also studied in linear
bandits in the concurrent work (Liu et al., 2024).

Extended literature review Robustness against corruption. Lykouris et al. (2018) propose the ban-
dits with corruption model and devised algorithms with O((K log T +KC ′)/∆) regret for known
corruption C ′ case and algorithms with O(C ′K2 log T/∆) regret for unknown C ′ case, where ∆

2This statement is for the algorithm with Õ(
√
KT + KC2) mentioned above. Our lower bound results

do not exclude the possible existence of other algorithms with upper bounds Õ(Tα + C
1
α ) for α ∈ [ 1

2
, 1), in

which case a sublinear O(Tα) budget can make the algorithm suffer linear regret.
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Procedure 1 Decision under Attacks
1: for each round t = 1, 2, . . . , T do
2: The learner pulls an arm It
3: A stochastic reward XIt,t is drawn from this arm It
4: The adversary observes the pulled arm It and its realized reward XIt,t

5: The adversary chooses an attacked reward X̃It,t

6: The learner only observes the attacked reward X̃It,t, and not XIt,t

denotes the smallest non-zero reward gap. Later, Gupta et al. (2019) study the same model and
propose an algorithm that improves the multiplicative C ′ dependence of regret for unknown C ′

case to additive C ′, i.e., O(K log2 T/∆ + KC ′). However, the robust design of both algorithms
above relies on randomly pulling arms, which is not feasible in our attack setting. Besides bandits
robust to corruption, there is another line of works on best-of-both-world bandit algorithm design,
e.g., Seldin & Lugosi (2017); Wei & Luo (2018); Zimmert & Seldin (2021); Masoudian & Seldin
(2021), where their algorithms can be applied to the bandit with corruption but do not work in the
adversarial attack model either. Notably, Zimmert & Seldin (2021); Masoudian & Seldin (2021)
show that their best-of-both-worlds algorithms can be applied to the bandit with corruption model
and achieve O(K log T/∆+

√
C ′ log T ) regret, which can be better than that of Gupta et al. (2019)

in some parameter regimes.

Attacks on bandits. Attack policy design for MAB algorithms has been studied by Jun et al. (2018);
Liu & Shroff (2019); Xu et al. (2021); Zuo et al. (2024); Zuo (2024) and many others. They aim to
design attacking policies to mislead the learner, typically with logarithmic regrets when there is no
attack, to pull a suboptimal arm and thus suffer a linear regret. This is the opposite of our objective
for designing robust algorithms to achieve sublinear regret under any attacks.

Robustness against attacks. The only existing results on robust algorithms for MAB under attacks
are by Zuo (2024, Section 6) and Rangi et al. (2022). Zuo et al. (2024, Section 6) uses competitive
ratio as the objective—used when one cannot achieve sublinear regret, instead of the finer-grained
regret studied in this paper. Rangi et al. (2022) studies how the “verification scheme”, an additional
assumption, can help the learner to detect the attack and achieve sublinear regret, but they do not
study robust algorithms as this paper does. Apart from the MAB model, there are works studying
robust algorithms on structured bandits under attacks, e.g., linear bandits (Bogunovic et al., 2021;
He et al., 2022), Gaussian bandits (Bogunovic et al., 2020; 2022), and Lipschitz bandits (Kang et al.,
2024). Among them, Bogunovic et al. (2020) are the first to devise robust algorithms for bandits
under attacks (referred to as corruptions). Although their bandits results can be reduced to MAB, this
reduction does not provide tight regrets as in Table 1 of this paper. We elaborate on this in §5.

2 MODEL: MAB WITH ADVERSARIAL ATTACKS

We consider a MAB with K ∈ N+ arms. Each arm k ∈ K := {1, 2, . . . ,K} is associated with a
reward random variable Xk ∈ [0, 1] with an unknown mean µk. Denote the unique arm with highest
reward mean as k∗, i.e., k∗ = argmaxk∈K µk.3 We consider T ∈ N+ decision rounds. At each
round t ∈ T := {1, 2, . . . , T}, the learner selects an arm It ∈ K, and the arm generates a reward
realization XIt,t (not disclosed to the learner yet). The adversary observes the pulled arm It and its
realized reward XIt,t and then chooses an attacked reward X̃It,t for the learner to observe. The total
attack is the sum of the absolute differences between the raw rewards and the attacked rewards over
all rounds, i.e., C :=

∑T
t=1|XIt,t − X̃It,t|. We summarize the decision process in Procedure 1.

Regret objective The adversary aims to maximize the learner’s regret, while the learner aims to
minimize the regret. We define the (realized) regret as the difference between the highest total
realized raw rewards of a single arm and the accumulated raw rewards of the learning algorithm,

RT := max
k∈K

∑
t∈T

(Xk,t −XIt,t). (1)

3We assume the uniqueness of the optimal arm for simplicity. Our algorithms and results (with slightly
change) also work for the case with multiple optimal arms.
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Besides the realized regret in (1), another common regret definition is the pseudo-regret, defined as
R̄T := maxk∈K E

[∑
t∈T (Xk,t −XIt,t)

]
= E

[
Tµk∗ −

∑
t∈T µIt

]
. By Jensen’s inequality, we

have R̄T ⩽ E[RT ], implying that the pseudo-regret is a weaker metric than the realized regret. The
paper focuses on realized regret, with pseudo-regret results included as needed.

Comparison between corruption and attack models Unlike the attack model, prior work on robust
bandit algorithms against corruption (Lykouris et al., 2018; Gupta et al., 2019) involves the adversary
selecting corruption rewards before observing the learner’s actions (see Appendix B for details).
The total corruption is defined as C ′ :=

∑T
t=1 maxk|Xt(k) − X̃k,t|. Although the definitions of

corruption and attacks differ slightly, the models are fundamentally distinct due to the sequence of
events: in the attack model, the adversary modifies rewards after observing the learner’s actions,
whereas in the corruption model, the modification occurs before.

To illustrate this distinction, consider that achieving the same impact on a bandit algorithm requires
a significantly larger budget under the corruption model compared to the attack model. For example,
a naive attack policy that forces the learner to incur linear regrets might involve altering the reward
of the optimal arm k∗ whenever it is selected, making it smaller than the mean of the best suboptimal
arm (Liu & Shroff, 2019). In the attack model, where the adversary observes the learner’s action
before attacking, this strategy may require only an O(log T ) or sublinear O(Tα) budget for some
α < 1, depending on the specific algorithm. In contrast, under the corruption model, since the ad-
versary does not know which arm will be pulled before corrupting the rewards, they would need to
corrupt the optimal arm’s reward realization in all T rounds to achieve the same effect, resulting in
an O(T ) cost. This is substantially higher than the sublinear attack budget. From another perspec-
tive, designing robust algorithms is more challenging in the attack model because the adversary’s
ability to act after observing the selected arm renders common randomized strategies ineffective.
For instance, algorithms like EXP3.P (Auer et al., 2002) and BARBAR (Gupta et al., 2019) utilize
randomization to mitigate corruption, but this approach is less effective against adversaries who can
adapt their attacks based on observed actions. Therefore, developing robust algorithms against such
adaptive adversaries is significantly more complex.

3 LOWER BOUNDS

This section first presents a general lower bound for the adversarial attack model on stochastic multi-
armed bandits (Theorem 1) and two of its variants. Later, we derive two lower bounds for two special
classes of bandit algorithms (Propositions 4 and 5). All proofs are deferred to Appendix C.

3.1 A GENERAL LOWER BOUND

We first present a general lower bound Ω(KC) in Theorem 1, originally derived in the linear bandit
scenario by Bogunovic et al. (2021, Theorem 3). Together with known lower bounds of MAB, we
derive Proposition 2. The §4 presents algorithms matching these lower bounds.
Theorem 1. Given a stochastic multi-armed bandit game with K arms, under attack with budget C,
and T > KC decision rounds,4 for any bandits algorithm, there exists an attack policy with budget
C that can make the algorithm suffer Ω(KC) regret.
Proposition 2. For gap-dependent regret bounds and any consistent bandit algorithm5, the lower
bound is roughly Ω

(∑
k ̸=k∗

log T
∆k

+KC
)

, or formally, for some universal constant ξ > 0,

lim inf
T→∞

R̄T − ξKC

log T
⩾
∑
k ̸=k∗

1

2∆k
. (2)

For gap-independent cases, the lower bound is
R̄T ⩾ Ω(

√
KT +KC). (3)

3.2 TWO LOWER BOUNDS FOR SPECIAL ALGORITHM CLASSES

We first recall results from adversarial bandit attacks on bandits (Liu & Shroff, 2019; Zuo, 2024)
in Theorem 3, then derive two lower bounds for bandit algorithms with additive and multiplicative
regret bounds respectively. In §5, we present algorithms that match these lower bounds.

4Note that T ⩽ KC implies that C = Ω(T ) which trivially results in a linear regret.
5When C = 0, a consistent bandits algorithm has regret R̄T ⩽ O(Tα) for any α ∈ (0, 1).
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Algorithm 2 SE-WR: Successive Elimination with Wide Confidence Radius

Input: total attack C (or budget CInput), number of arms K, decision rounds T , parameter δ
Initialize: candidate arm set S ← K, number of arm pulls Nk ← 0, reward estimates µ̃k ← 0

1: while t ⩽ T do
2: Uniformly pull each arm in S once and observes X̃k for all arms k ∈ S
3: Update parameters: t← t+ |S|, Nk ← Nk + 1, µ̃k ← µ̃k(Nk−1)+X̃k

Nk
for all arms k ∈ S

4: µ̃max ← maxk µ̃k

5: S ←
{
k ∈ S : µ̃k ⩾ µ̃max − 2

(√
log(2KT/δ)

Nk
+ C

Nk

)}

Theorem 3 (Adapted from (Zuo, 2024, Fact 1) and (He et al., 2022, Theorem 4.12)). If an algorithm
achieves regret RT when total attack C = 0, then there exists an attack policy with C = Θ(RT )
that can make the algorithm suffer linear regret.

Proposition 4 (Achievable additive regret bounds). Given any parameter α ∈ [ 12 , 1), for any bandit
algorithm with an additive regret upper bound of the form O(Tα + Cβ), we have β ⩾ 1

α .

Proposition 5 (Achievable multiplicative regret bounds). Given parameter α ∈ [ 12 , 1), for any
bandit algorithm with a multiplicative regret bound of the form O(TαCβ), we have β ⩾ 1

α − 1.

4 ALGORITHMS WITH KNOWN ATTACK BUDGET

In this section, we study the stochastic multi-armed bandit problem with a known attack budget. In
§4.1, we first present an algorithm with an additive gap-dependent upper bound on the attack budget.
Then, in §4.2, we modify this algorithm to two variants with gap-independent upper bounds, one
with an additive C term and another with a multiplicative C term.

4.1 SE-WR: AN ALGORITHM WITH GAP-DEPENDENT UPPER BOUND

Given the knowledge of attack budget C, one is able to predict the worst-case attack and design an
algorithm to defend against it. Here, the robustness is achieved by widening the confidence radius
of the reward estimate to account for the C attack such that the corresponding widened confidence
interval contains the true reward mean with a high probability (as if the rewards were not attacked).
Denote µ̃k as the empirical mean of the attacked reward observations of arm k. The widened confi-
dence interval is centered at µ̃k and has a radius of

√
log(2/δ)/Nk+C/Nk, where Nk is the number

of times arm k is pulled and δ is the confidence parameter. Then, we utilize the successive elimina-
tion (SE) algorithm (Even-Dar et al., 2006) to devise a robust bandit algorithm in Algorithm 2. The
algorithm maintains a candidate set of arms S, initialized as the set of all arms K, and successively
eliminate suboptimal arms according to the widened confidence intervals (Line 5), called successive
elimination with wide radius (SE-WR). A similar algorithm design idea was also used in Lykouris
et al. (2018) for the stochastic bandit problem with corruption attacks. Theorem 6 provides the regret
upper bound of Algorithm 2.

Theorem 6. Given the total attack or its upper bound C, Algorithm 2’s the realized regret is upper
bounded by RT ⩽ O(

∑
k ̸=k∗ log(KT/δ)/∆k +KC) with probability 1 − δ, and, with δ = K/T ,

its pseudo regret is upper bounded as R̄T ⩽ O(
∑

k ̸=k∗ log T/∆k +KC).

The regret upper bound in Theorem 6 matches the lower bound in (2) in terms of both the
first classic regret term and the second additive attack Ω(KC) term. This shows that the re-
gret upper bound is nearly optimal up to some prefactors. Our regret upper bounds improve the
O(
∑

k ̸=k∗ log(KT/δ)/∆k +
∑

k ̸=k∗ C/∆k) in Lykouris et al. (2018, Theorem 1) by removing the
multiplicative dependence of 1/∆k on the total attack C term. This improvement comes from a
tighter analysis for sufficient pulling times for eliminating a suboptimal arm (see Lemma 14 in Ap-
pendix E). This improvement is crucial for achieving our tight multiplicative regret bounds for both
known and unknown attack budget cases (Sections 4.2 and 5.2).
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4.2 SE-WR-Stop: ALGORITHMS WITH GAP-INDEPENDENT UPPER BOUNDS

We follow the approach of stochastic bandits literature (Lattimore & Szepesvári, 2020, Chapter 6) to
transfer the algorithm with a gap-dependent upper bound to another algorithm with gap-independent
bounds. The main idea is to replace the while loop condition in Line 1 in Algorithm 2 with nuanced
stopping conditions. If the stopping condition is triggered before the end of the MAB game, i.e.,
t = T , the algorithm will uniformly pull the remaining arms in the candidate set S until the end of
the game. The pseudo-code is deferred to Algorithm 6 in Appendix D for its similarity to SE-WR.

We consider two kinds of stopping conditions. The first condition aims to transfer the gap-dependent
bound to an independent one while keeping the additive KC term in the upper bound. We start
from a stopping condition Nk ⩽ log(KT/δ)/ϵ2 + C/ϵ, where ϵ is a parameter to be determined.
With this condition and the proof details of Theorem 6, we can upper bound the realized regret as
follows, RT ⩽ O(K log(KT/δ)/ϵ+ ϵT +KC) ⩽ O(

√
KT log(KT/δ)+KC), where we choose

ϵ =
√

K log(KT/δ)/T in the last inequality. The second stopping condition, while transferring the
gap-dependent to independent, also converts the additive KC term to multiplication. To derive it,
we start from a stopping condition Nk ⩽ log(KT/δ)+C

ϵ2 , where ϵ is a parameter to be determined.
Similar to the derivation for the first condition, we can upper bound the realized regret as follows,
RT ⩽ O((K log(KT/δ) +KC)/ϵ+ϵT ) ⩽ O(

√
KT (log(KT/δ) + C)) where the last inequality

sets ϵ =
√
(K log(KT/δ) +KC)/T . The above results are summarized in Theorem 7 below.

Theorem 7. Given the total attack or its upper bound C, SE-WR-Stop (Algorithm 6) with stopping
condition Nk ⩽ T

K + C
√

T
K log(KT/δ) has the realized regret upper bounded as follows,

RT ⩽ O(
√
KT log(KT/δ) +KC) with probability 1− δ, (4)

and SE-WR-Stop with stopping condition Nk ⩽ T
K has the realized regret as follows,

RT ⩽ O(
√

KT (log(KT/δ) + C)) with probability 1− δ. (5)

Let δ = K/T , the regret in (4) becomes O
(√

KT log T +KC
)
, matching the lower bound in (3)

up to logarithmic factors. This implies the regret bound in (4) is nearly optimal. Let δ = K/T , the
regret in (5) becomes O(

√
KT (log T + C)). Although this bound cannot match the lower bound

in (3), its dependence on total attack C is square root, better than the linear dependence in (4). This
better dependence will shine when devising algorithms for unknown attack budgets in §5.2.

5 ALGORITHMS WITH UNKNOWN ATTACK BUDGET

This section presents algorithms that can defend against attacks with unknown attack budgets. We
present algorithms with additive and multiplicative upper bounds in §5.1 and §5.2 respectively.

Before diving into the detailed algorithm designs, we recall that the input attack budget CInput for
SE-WR and SE-WR-Stop can be interpreted as the level of robustness that the algorithms have. For
any actual attack C ⩽ CInput, the algorithms achieve the regret upper bounds in Theorems 6 and 7
respectively; for attack C > CInput, the algorithms may be misled by the attacker and suffer linear
regret. One simple way to achieve robustness against unknown attacks is to set the CInput =

√
T/K

for SE-WR in §4.1, called SE-WR–
√

T/K later, which leads to a piece-wise regret bound

RT =

{
Õ(
√
KT ) if C = O(

√
T/K),

O(T ) if C = Ω(
√

T/K).
(6)

We note that even this simple conversion-based bound in (6) is new among literature, thanks to our
tighter analysis in Theorem 6. The best prior regret bound with a similar form is from He et al. (2022)
(reduced to stochastic bandits): RT = Õ(K

√
T ) if C = O(

√
T ); RT = O(T ) if C = Ω(

√
T ),

which is worse than our bound in (6) by a factor of
√
K. Without the knowledge of the actual

attack budget C, the performance of SE-WR and SE-WR-Stop algorithms has a “robust-or-not”
separation as in (6), which is not satisfactory for practical applications, especially when the actual
corruption is small. In this section, we apply two types of “smoothing” algorithmic techniques to
“smooth” this “robust-or-not” separation of SE-WR and SE-WR-Stop so as to achieve robustness
against unknown attacks. An overview of algorithm design is in Figure 1 (see 2⃝ and 3⃝).
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Algorithm 3 PE-WR: Phase Elimination with Wide Confidence Radius

Input: number of arms K, decision rounds T , confidence parameter δ
Initialize: candidate arm set S ← K, the number of arm pulls Nk ← 0, reward mean estimates

µ̂k ← 0, phase h← 0, phase upper bound H ← ⌈log2 T ⌉ − 1, initial pulling times L0 ← K
1: for each phase h = 0, 1, . . . do
2: Ĉh ← min{

√
T/K, 2H−h−1}

3: Pull each arm in S for Lh/|Sh| times
4: Update arm empirical means µ̂k,h for all arms k ∈ S

5: Sh+1 ←
{
k ∈ Sh : µ̂k,h ⩾ max

k′∈Sh

µ̂k′,h − 2
(√

log(2KH/δ)
Lh/|Sh| + Ĉh

Lh/|Sh|

)}
6: Lh+1 ← 2Lh

On the other hand, robust algorithms designed for unknown corruptions, e.g., Lykouris et al. (2018);
Gupta et al. (2019), do not apply to the unknown attack setting. Because these robust algorithms all
rely on some randomized action mechanism to defend against corruption, which is invalid for the
attack as the attacker can manipulate the rewards of the arms after observing the learner’s actions.

5.1 PE-WR: AN ALGORITHM WITH ADDITIVE UPPER BOUND

The first “smoothing” algorithmic technique is applying the multi-phase structure to modify SE-WR
(Algorithm 2), yielding the phase elimination with wide confidence radius algorithm, PE-WR (Al-
gorithm 3) for unknown attack budget. This algorithm considers multiple phases of SE-WR, each
with a different assumed attack budget CInput, and the candidate arm set S is updated consecutively
among phases, that is, the arms eliminated in previous phases are not considered in later phases.

Specifically, PE-WR separates the total decision rounds into multiple phases h ∈ {1, 2, . . . }, each
with a length doubled from the previous phase (Line 6). In phase h, the elimination assumes the
potential attack is upper bounded by Ĉh, which is halved in each phase (Line 2). This mechanism
results in two kinds of phases. Denote h′ as the first phase whose corresponding Ĉh′ is smaller than
the true attack budget C. Then, for phases h < h′, we have Ĉh ⩾ C, and, therefore, the algorithm
eliminates arms properly as SE-WR; for phases h ⩾ h′, as Ĉh < C, the algorithm may falsely
eliminate the optimal arm and suffer extra regret. But even though the optimal arm is eliminated,
the algorithm in these phases still has the level of Ĉh robustness, which guarantees some relatively
good suboptimal arms—with a mean close to the optimal arm—remaining in the candidate set S
such that the total regret due to losing the optimal arm in these phases is not large (bounded by KC2

in the proof). We present PE-WR in Algorithm 3 and its regret upper bound in Theorem 8.
Theorem 8. Algorithm 3 has a realized regret upper bound, with a probability of 1 − δ, RT ⩽
O(
√
KT log (K log T/δ) +

√
T log T + KC log T + KC2), and by setting δ = K/T , a pseudo

regret upper bound R̄T ⩽ Õ(
√
KT +KC2).

Comparing our upper bound in Theorem 8 to the lower bound in Proposition 4 with α = 1/2,
Ω(
√
T + C2), our upper bound is tight in terms of both T and C. Compared with the lower bound

Ω(
√
KT +KC) in Theorem 2, our upper bound is also tight in terms of K. We also note that the

bound in Theorem 8 for PE-WR has the same order as the “robust-or-not” piece-wise bound in (6),
but PE-WR is expected to be empirically superior, especially when the actual corruption is small.

This multi-phase elimination idea is widely used in bandit literature, e.g., batched bandits (Gao
et al., 2019), multi-player bandits (Wang et al., 2019), and linear bandits (Bogunovic et al., 2021).
The most related to ours is the phase elimination algorithm proposed in Bogunovic et al. (2021)
for linear bandits. However, directly reducing their results (Bogunovic et al., 2021, Theorem 2)
to our stochastic bandit case would yield a Õ(

√
KT + KC

√
K log T + C2) upper bound for

C ⩽
√
T/(K log(logK) log T ) only, and, for general C, their results would become Õ(

√
KT +

KC
√
K log T + K2C2). Our result in Theorem 8, simplified as Õ(

√
KT + KC log T + KC2),

is tighter than theirs by a factor of
√
K on the second log T term, and, for the general C case, our

result is tighter by a factor of K on the third C2 term. This improvement comes from the tighter
confidence bound employed in Line 5 of Algorithm 3 and the corresponding tighter analysis for the
necessary number of observations for the algorithm to eliminate arms (Lemma 14) in §4.1.
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Algorithm 4 MS-SE-WR: Model Selection with Wide Confidence Radius

Input: number of arms K, decision rounds T , model selection algorithm ModSelAlg
1: Construct G := ⌈log2 T ⌉ base algorithm instances as

B ← {SE-WR-Stop(C = 2g,K, T, δ = K/T ) : g = 1, 2, . . . , G}.
2: ModSelAlg(B) for T decision rounds

5.2 MS-SE-WR: AN ALGORITHM WITH MULTIPLICATIVE UPPER BOUND

While the additive bound in Theorem 8 can be transferred to a multiplicative bound Õ(KC2
√
T ),

this bound cannot match the lower bound in Proposition 5, e.g., Ω(C
√
T ) for α = 1

2 . In this sec-
tion, we deploy another algorithmic technique, model selection, to SE-WR-Stop to achieve tight
multiplicative upper bounds for the unknown attack budget case. Unlike the multi-phase technique,
where each phase assumes a different attack budget, we consider multiple algorithm instances with
different attack budget inputs, called “models.” Model selection means selecting the model (algo-
rithm instance) that performs best in the unknown environment. In our scenario, it is to select the
instance with the smallest attack budget input CInput that is larger than the actual attack budget C.

Specially, we consider G := ⌈log2 T ⌉ instances of SE-WR-Stop, each with a different attack
budget input CInput = 2g , g = 1, 2, . . . , G. Among these instances, the best is g∗ = ⌈log2 C⌉, as
2g

∗ ∈ [C, 2C) is the smallest attack budget larger than the actual attack C. We then apply a model
selection algorithm, e.g., CORRAL (Agarwal et al., 2017) or EXP3.P (Auer et al., 2002), to select
the best one among the G instances. Algorithm 4 presents the pseudo-code. To prove the regret
upper bound, we recall a simplified version of Pacchiano et al. (2020, Theorem 5.3) in Lemma 9.
Lemma 9. If base algorithm instance has regret upper bound R̄T ⩽ Tαc(δ) with probability 1− δ
for known constant α ∈ [ 12 , 1) and the unknown function c : R → R, then the regrets of CORRAL
and EXP3.P are R̄T ⩽ Õ(c(δ)

1
αTα) and R̄T ⩽ Õ(c(δ)T

1
2−α ) respectively.

Applying this lemma to our case, we first convert the gap-independent upper bound in (5) of
SE-WR-Stop (Algorithm 6) in Theorem 7 to a multiplicative upper bound: When the stop condi-
tion is Nk ⩽ T

K , the realized regret upper bound is R̄T ⩽ O(
√
KTC log(KT/δ)) with a probability

of at least 1 − δ. Plugging this into Lemma 9 with α = 1
2 and c(δ) =

√
C log(KT/δ) and letting

δ = K/T , we have the pseudo regret upper bounds for MS-SE-WR as follows:
Theorem 10. Deploying SE-WR-Stop (stop condition Nk ⩽ T/K) as the base algorithm in-
stance, Algorithm 4 with CORRAL has pseudo regret upper bound R̄T ⩽ Õ(KC

√
T ), and Algo-

rithm 4 with EXP3.P has pseudo regret upper bound R̄T ⩽ Õ(
√
KCT

2
3 ).

The bounds in Theorem 10 are tight in terms of the trade-off of T and C, as they respectively
match the lower bounds in Proposition 5, Ω(

√
CT

2
3 ) when α = 2

3 and Ω(C
√
T ) when α = 1

2 .
The challenge of achieving these tight regret bounds in Theorem 10 is in discovering the right base
algorithm instances with suitable multiplicative upper bounds. For example, the first upper bound in
Theorem 7 can also be converted to the multiplicative R̄T ⩽ O(C

√
KT log(KT/δ)) bound with

a probability of at least 1− δ. However, applying the model selection technique to this bound only
results in Õ(C

√
KT

2
3 ) and Õ(C2K

√
T ) bounds, which are not as tight as the ones in Theorem 10.

This model selection technique was also used in Kang et al. (2024) to boost the algorithm for Lip-
chitz bandits with a known attack budget to an algorithm with an unknown attack budget. However,
their regret upper bounds, mapping to our MAB setting, are Õ(C

1
K+2T

K+2
K+3 ) and Õ(C

1
K+1T

K+1
K+2 ),

which have a much worse dependence on T than the ones in Theorem 10, especially when K is
large. This is because the regret upper bounds of their base algorithms have a much worse depen-
dence on T than our base SE-WR-Stop algorithm. This highlights the importance of devising the
suitable base algorithm instances for MAB with the known attack budget in §4.2.
Remark 11 (Regret comparison for unknown C case in Figure 2). The section presents three dif-
ferent upper bounds for unknown attacks, one additive Õ(

√
KT +KC2) by PE-WR and two mul-

tiplicative Õ(
√
KCT

2
3 ), Õ(KC

√
T ) by two types of MS-SE-WR. Giving attack C = T β for some

parameter β ∈ [0, 1], these three bounds can be written in the form of Õ(T γ) for corresponding
exponents γ. Figure 2 compares these bounds in terms of the exponent γ by varying β. Compar-
ing all three bounds, the additive bound is better than both multiplicative ones when β ⩽ 4

9 , and
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Figure 3: Regret comparison of algorithms with known attack budgets when varying budget C
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Figure 4: Regret comparison of algorithms with unknown attack budgets when varying budget C

the Õ(
√
KCT

2
3 ) bound is better than the additive one when β > 4

9 . Especially, the multiplica-
tive bound Õ(

√
KCT

2
3 ) is still sublinear when the total corruption is large than

√
T , specifically,

Ω(
√
T ) < C < O(T

2
3 ), which is not achievable by the additive bound. Comparing among the two

multiplicative bounds, the Õ(KC
√
T ) is better than Õ(

√
KCT

2
3 ) when β ⩽ 1

3 , and vice versa.

6 EXPERIMENTS

Baselines We compare our algorithms with baselines: Upper Confidence Bound (UCB) (Lattimore
& Szepesvári, 2020), Successive Elimination (SE) (Even-Dar et al., 2006), Fast-Slow Active Arm
Elimination Race (FSAAER) and Multi-Layer Active Arm Elimination Race (MLAAER) (Lykouris
et al., 2018), BARBAR (Gupta et al., 2019). These baselines are grouped by whether they require
knowledge of attack budgets. To distinguish our two SE-WR-Stop algorithms, we call the one
with stopping condition Nk ⩽ T/K as SE-WR-Stop–T/K and the other SE-WR-Stop.

Setup We adopt the attack strategy from Jun et al. (2018) (details in Appendix G.1), a standard
attack policy for stochastic bandits. Although our algorithms outperform baselines under this attack,
they could perform even better under more sophisticated policies. We consider a stochastic bandit
with K = 10 arms, where each arm k follows a Bernoulli distribution with means µk decreasing
from 0.9 to 0.45 in steps of 0.05. We evaluate all algorithms under four attack budgets (C ∈
{0, 3000, 6000, 9000}) over T = 200000 rounds, repeating each experiment 10 times and reporting
the average and deviation of cumulative regret. Additional results can be found in Appendix G.

Observations Figures 3 and 4 show the regret of algorithms under known and unknown attack
budgets. Known attack budgets: Figures 3b–3d show that baselines, including FSAAER (Lykouris
et al., 2018), perform poorly, while our algorithms (SE-WR and SE-WR-Stop) achieve sublinear
regret, confirming the need for developing robust algorithms in this attack model. The increase in
the regret of SE-WR and SE-WR-Stop with the attack budget C is consistent with our theoretical
results. Unknown attack budgets: Figure 4 shows the following: (i) When total attack is small, e.g.,
C = 0 in Figure 4a, the adaptive PE-WR algorithm outperforms the SE-WR–

√
T/K algorithm (with

rigid “robust-or-not” separate in (6)), highlighting the need for adaptive strategies in unknown attack
settings. (ii) Baselines like MLAAER (Lykouris et al., 2018) (developed for corruptions) achieve
sublinear regret for small budgets (e.g., C = 0) as expected but perform poorly when C = 6000
(comparing to our robust algorithms, PE-WR and MS-SE-WR), and even fail when C = 9000,
underscoring the need for devising robust algorithms for attacks. (iii) For large budgets (C = 9000),
only our MS-SE-WR algorithms maintain sublinear regret, consistent with our theoretical results
that algorithms with multiplicative regret bounds perform better when C > Ω(

√
T ) (detailed in

Remark 11), emphasizing the importance of studying such bounds.
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Yevgeny Seldin and Gábor Lugosi. An improved parametrization and analysis of the exp3++ algo-
rithm for stochastic and adversarial bandits. In Conference on Learning Theory, pp. 1743–1759.
PMLR, 2017.

Yuanhao Wang, Jiachen Hu, Xiaoyu Chen, and Liwei Wang. Distributed bandit learning: Near-
optimal regret with efficient communication. arXiv preprint arXiv:1904.06309, 2019.

Chen-Yu Wei and Haipeng Luo. More adaptive algorithms for adversarial bandits. In Conference
On Learning Theory, pp. 1263–1291. PMLR, 2018.

Yinglun Xu, Bhuvesh Kumar, and Jacob D Abernethy. Observation-free attacks on stochastic ban-
dits. Advances in Neural Information Processing Systems, 34:22550–22561, 2021.

Julian Zimmert and Yevgeny Seldin. Tsallis-inf: An optimal algorithm for stochastic and adversarial
bandits. The Journal of Machine Learning Research, 22(1):1310–1358, 2021.

Jinhang Zuo, Zhiyao Zhang, Zhiyong Wang, Shuai Li, Mohammad Hajiesmaili, and Adam Wier-
man. Adversarial attacks on online learning to rank with click feedback. Advances in Neural
Information Processing Systems, 36, 2024.

Shiliang Zuo. Near optimal adversarial attack on stochastic bandits and defenses with smoothed
responses. In The 27th International Conference on Artificial Intelligence and Statistics, 2024.

12



Published as a conference paper at ICLR 2025

A APPLICATION EXAMPLES OF OUR ATTACK MODEL

A key application of our model lies in online news recommendation systems. Here, the platform
(learner) recommends articles (arms) to users with the goal of maximizing total clicks (rewards).
However, click fraud botnets (adversaries) may maliciously target the system by generating fake
clicks on specific articles (attack reward observations), thereby misleading the recommendation
algorithm. This scenario extends naturally to other online recommendation systems, such as e-
commerce, video streaming, and social media platforms.

Another potential application is in resource allocation for content delivery networks (CDNs). In this
context, the CDN manager (learner) allocates resources (e.g., storage, bandwidth) to various servers
(arms) to optimize overall performance (rewards, such as response time or throughput). However,
the manager might encounter distributed denial-of-service (DDoS) attacks (adversaries) targeting
specific servers (attack their reward observations) to degrade system performance.

B OTHER MODEL DETAILS: CORRUPTION PROCESS, REGRET DISCUSSION

In this section, we provide more details on the corruption process. At each round t ∈ {1, 2, . . . , T},
the adversary observes the realized rewards Xk,t for all arms k, as well as the rewards and actions
of the learner in previous rounds. The adversary then chooses the corrupted rewards X̃k,t for all
arms k. The learner pulls an arm It (maybe randomly) and observes the attacked reward X̃It,t. We
summarize the decision process in Procedure 5. We denote the total amount of corruption as

C ′ :=

T∑
t=1

max
k
|Xk,t − X̃k,t|,

where It is the pulled arm at time slot t.

Procedure 5 Decision under Corruptions

1: for each round t = 1, 2, . . . , T do
2: Stochastic rewards Xk,t are drawn from all arms k
3: The adversary observes the realized rewards Xk,t

as well as the rewards and actions of the learner in previous rounds
4: The adversary chooses the corruption rewards X̃k,t for all arms k
5: The learner pulls an arm It (maybe randomly) and observes the attacked reward X̃It,t

Remark 12 (Regret defined by corrupted rewards). Beside the regret defined on raw reward
in (1), one can also define the regret based on the corrupted rewards as follows, R̃T :=
maxk∈K

∑
t∈T (X̃k,t−X̃It,t). This definition is considered in Zimmert & Seldin (2021); Bogunovic

et al. (2020). As the adversary can manipulate at most C rewards, one can easily show that,
|R̃T − RT | ⩽ 2C. We will focus on the regret defined by raw rewards (1) in the following, as
most results in this paper have at least a linear dependence on C.

C PROOF FOR LOWER BOUND

Theorem 1. Given a stochastic multi-armed bandit game with K arms, under attack with budget C,
and T > KC decision rounds,6 for any bandits algorithm, there exists an attack policy with budget
C that can make the algorithm suffer Ω(KC) regret.

Proof of Theorem 1. We consider K instances of a MAB game where for instance Ik for any k ∈
{1, 2, . . . ,K}, the arm k has reward ϵ > 0 and all other arms have reward 0 without any noise.

The adversary’s policy is that whenever the algorithm pulls an arm with a non-zero reward, the
adversary attacks the algorithm by changing the reward of the arm to 0. The adversary can conceal
the optimal arm for ⌊Cϵ ⌋ pulls.

6Note that T ⩽ KC implies that C = Ω(T ) which trivially results in a linear regret.
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After ⌊Cϵ ⌋⌊
K
2 ⌋ time slots, there exists at least ⌊K2 ⌋ arms that are pulled at most ⌊Cϵ ⌋ times. That is,

if the optimal arm is among these ⌊K2 ⌋ arms, the algorithm cannot identify the optimal arm. Let us
pick the instance whose optimal arm is among these ⌊K2 ⌋ arms. Then, during these ⌊Cϵ ⌋⌊

K
2 ⌋ time

slots, the algorithm needs to pay the regret of⌊
C

ϵ

⌋(⌊
K

2

⌋
− 1

)
ϵ = Ω(KC).

Proposition 2 For gap-dependent regret bounds and any consistent bandit algorithm7, the lower
bound is roughly Ω

(∑
k ̸=k∗

log T
∆k

+KC
)

, or formally, for some universal constant ξ > 0,

lim inf
T→∞

R̄T − ξKC

log T
⩾
∑
k ̸=k∗

1

2∆k
.

For gap-independent cases, the lower bound is

R̄T ⩾ Ω(
√
KT +KC).

Proof of Proposition 2. From bandits literature, e.g., Lattimore & Szepesvári (2020, Chapter 16),
we know that the pseudo regret of any consistent bandit algorithm can be lower bounded as follows,

lim inf
T→∞

R̄T

log T
⩾
∑
k ̸=k∗

1

∆k
.

On the other hand, we can rewrite the Ω(KC) lower bound in Theorem 1 as follows,

lim inf
T→∞

R̄T − ξKC

log T
⩾ 0,

where ξ > 0 is a universal constant. Adding the above two inequalities and dividing both sides by
2, we have

lim inf
T→∞

R̄T − (ξ/2)KC

log T
⩾
∑
k ̸=k∗

1

2∆k
.

For the gap-independent case, recall in bandits literature (Lattimore & Szepesvári, 2020, Chapter
15), we have the R̄T ⩾ Ω(

√
KT ) lower bound. Combining it with the Ω(KC) lower bound in

Theorem 1 yields R̄T ⩾ Ω(max{
√
KT,KC}) = Ω(

√
KT +KC) lower bound.

Proposition 4 (Achievable additive regret bounds) Given any parameter α ∈ [ 12 , 1), for any bandit
algorithm that achieves an additive regret upper bound of the form O(Tα + Cβ), we have β ⩾ 1

α .

Proposition 5 (Achievable multiplicative regret bounds) Given parameter α ∈ [ 12 , 1), for any bandit
algorithm that achieves a multiplicative regret bound of the form O(TαCβ), we have β ⩾ 1

α − 1.

Proof of Propositions 4 and 5. We use contradiction to prove both propositions. We first prove
Proposition 4. Given Theorem 3, we know that there exists an attack policy with C = Θ(RT )
that can make the algorithm suffer linear regret. Thus, if the algorithm achieves an additive regret
upper bound of the form O(Tα+Cβ) with β < 1

α , then the algorithm only suffers a sublinear regret
when C = Tα, which contradicts Theorem 3. Thus, the parameter β ⩾ 1

α . Proposition 5 can be
proved via a similar contradiction argument.
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Algorithm 6 SE-WR-Stop: Successive Elimination with Wide Confidence Radius and Stop Con-
dition
Input: total attack C, number of arms K, decision rounds T , confidence parameter δ

1: Initialize candidate arm set S ← K, the number of arm pulls Nk ← 0, and reward mean
estimates µ̂k ← 0

2: while Nk ⩽ T
K and t ⩽ T do ▷ or Nk ⩽ T

K + C
√

T
K log(KT/δ)

3: Uniformly pull each arm in S once and observes Xk for all arms k ∈ S
4: Update parameters: t← t+ |S|, Nk ← Nk + 1, µ̂k ← µ̂k(Nk−1)+Xk

Nk

5: µ̂max ← maxk µ̂k

6: S ←
{
k ∈ S : µ̂k ⩾ µ̂max − 2

(√
log(2KT/δ)

Nk
+ C

Nk

)}
7: Uniformly pull arms in S till the end of the game

D DEFERRED ALGORITHM PSEUDO-CODE

E PROOF FOR UPPER BOUNDS WITH KNOWN ATTACK

Theorem 6. Given the total attack or its upper bound C, Algorithm 2’s the realized regret is upper
bounded by RT ⩽ O(

∑
k ̸=k∗ log(KT/δ)/∆k +KC) with probability 1 − δ, and, with δ = K/T ,

its pseudo regret is upper bounded as R̄T ⩽ O(
∑

k ̸=k∗ log T/∆k +KC).

Proof of Theorem 6. We first recall the following lemma from Lykouris et al. (2018).

Lemma 13 (Lykouris et al. (2018, Lemma 3.1)). With a probability of at least 1 − δ, the optimal
arm k∗ is never eliminated.

Next, we prove a lemma shows the sufficient number of pulling that are necessary for a suboptimal
arm to be eliminated. This lemma is tighter than the one in Lykouris et al. (2018, Lemma 3.2)
(proved for Nk ⩾ 64 log(2KT/δ)+64C

∆2
k

), and, based on it, we derive tighter regret bounds.

Lemma 14. With a probability of at least 1 − δ, all suboptimal arms k ̸= k∗ are eliminated after
pulling each arm Nk ⩾ 64 log(2KT/δ)

∆2
k

+ 6C
∆k

times.

Proof for Lemma 14. With Lemma 13, we know that the optimal arm k∗ is never eliminated. Thus,
in the following, we show that the suboptimal arm k will be eliminated by the optimal arm k∗ on or
before Nk ⩾ 64 log(2KT/δ)

∆2
k

+ 8C
∆k

.

Denote µ̂k as the empirical mean of the raw stochastic reward observation of arm k. By Hoeffding’s
inequality, we have, with a probability of at least 1− δ

KT ,

|µ̂k − µk| ⩽

√
log(2KT/δ)

Nk
(7)

⩽
∆k

8
,

where the last inequality is due to Nk ⩾ 64 log(2KT/δ)
∆2

k
.

Comparing the true empirical mean µ̂k with the attacked empirical mean µk, we have

|µ̃k − µ̂k| ⩽
C

Nk
⩽

∆k

8
,

7When C = 0, a consistent bandits algorithm has regret R̄T ⩽ O(Tα) for any α ∈ (0, 1).
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where the last inequality is due to Nk ⩾ 8C
∆k

. Combining the two inequalities, we have

|µ̃k − µk| ⩽
∆k

4
.

Last, we show that the elimination condition for arm k would have been triggered before Nk ⩾
64 log(2KT/δ)

∆2
k

+ 8C
∆k

as follows,

µ̃k∗ − 2

√ log(2KT/δ)

Nk
+

C

Nk

 ⩾ µ̃k∗ − 2

(
∆k

8
+

∆k

8

)

⩾ µk∗ − ∆k

4
− 2∆k

4

= µk +
∆k

4
⩾ µ̃k.

As the pseudo regret is upper bounded at most
∑

k ∆kNk, we have

R̄T ⩽
∑
k ̸=k∗

∆kNk

⩽
∑
k ̸=k∗

∆k

(
64 log(2KT/δ)

∆2
k

+
8C

∆k

)

= O

∑
k ̸=k∗

log(KT/δ)

∆k
+KC


⩽ O

∑
k ̸=k∗

log T

∆k
+KC

 ,

(8)

where the last inequality is by choosing δ = K
T .

Transfer pseudo-regret to realized regret. Next, we show the high probability bound for the
realized regret RT . Multiplying Nk to both sides of (7), we have that, for any arm k, the dif-
ference between the actual accumulated reward and its expected counterpart is upper bounded by√
Nk log(2KT/δ) with a probability of at least 1 − δ/KT . The probability of any of the above

events does not hold is at most 1− δ.

For any suboptimal arm k, we bound the difference as follows,

√
Nk log(2KT/δ) ⩽ Nk

√
log(2KT/δ)

Nk
⩽ Nk∆k

√
log(2KT/δ)

64 log(2KT/δ) + 8C∆k
⩽

Nk∆k

8
.

In case that the arm k′ with the highest empirical mean is not the optimal arm k∗, for example, this
arm k′ has a smaller reward gap ∆k ⩽ O(

√
1/T ), the regret reduction due to this event is at most

Nk′∆k′ .

Putting the potential impact of different kinds of reward realization above, we can bound the realized
regret by O(

∑
k ̸=k∗ Nk∆k) still. Thus, with similar derivation as (8), we have the realized regret of

the algorithm is at most

O

∑
k ̸=k∗

log(KT/δ)

∆k
+KC

 with probability 1− δ.
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F PROOF FOR UPPER BOUNDS WITH UNKNOWN ATTACK

Theorem 8. Algorithm 3 has a realized regret upper bound, with a probability of 1 − δ, RT ⩽
O(
√
KT log (K log T/δ) +

√
T log T + KC log T + KC2), and by setting δ = K/T , a pseudo

regret upper bound R̄T ⩽ Õ(
√
KT +KC2).

Proof of Theorem 8. For C >
√
T/K, the Õ(

√
KT +KC2) = O(T ) upper bound holds trivially.

Hence, we only consider C ⩽
√
T/K in this proof.

Note that the elimination condition in Algorithm 3 fails with a probability of at most δ/KH . Apply-
ing a union bound to sum all potential failure probabilities shows that, with a probability of at least
1 − δ, the elimination condition works properly for all arms in all phases. In the rest of the proof,
we exclude this failure probability and assume that the elimination only fails when C > Ĉh.

Denote H ′ as the actual number of phases, while recall H = ⌈log2 T ⌉ − 1 is the upper bound of
the number of phases. As the analysis of Algorithm 2 shows, for phase h with Ĉh > C, the optimal
arm k∗ is in the candidate set Sh with high probability. Denote h′ as the first phase with Ĉh′ ⩽ C,
implying H − h′ ⩽ log2 C.

Denote k∗h as the arm with the highest reward mean in phase h. Then, we have k∗h = k∗ for h < h′.
Next, we use induction to show, for h ⩾ h′, the remaining best arm k∗h is close to the optimal arm
k∗ as follows,

µk∗ − µk∗
h
⩽

2C

Lh/|Sh|
.

If the optimal arm is eliminated in phase h′, then we have

µ̂k∗,h′ ⩽ max
k∈Sh′

µ̂k,h′ − 2

(√
log(2KH/δ)

Lh′/|Sh′ |
+

Ĉh′

Lh′/|Sh′ |

)
.

Denote k̂∗h′ = argmaxk∈Sh′ µ̂k,h′ . We have

µk̂∗
h′

(a)

⩾ µ̂k̂∗
h′ ,h

′ −

(√
log(2KH/δ)

Lh′/|Sh′ |
+

C

Lh′/|Sh′ |

)
(b)

⩾ µ̂k∗,h′ + 2

(√
log(2KH/δ)

Lh′/|Sh′ |
+

Ĉh′

Lh′/|Sh′ |

)
−

(√
log(2KH/δ)

Lh′/|Sh′ |
+

C

Lh′/|Sh′ |

)
(c)

⩾ µk∗ + 2

(√
log(2KH/δ)

Lh′/|Sh′ |
+

Ĉh′

Lh′/|Sh′ |

)
− 2

(√
log(2KH/δ)

Lh′/|Sh′ |
+

C

Lh′/|Sh′ |

)

= µk∗ − 2(C − Ĉh′)

Lh′/|Sh′ |

⩾ µk∗ − 2C

Lh′/|Sh′ |

⩾ µk∗ − 2CK

Lh′

where inequalities (a) and (c) come from the Hoeffding’s inequality and the attack C, inequality (b)
is due to the elimination condition in round h′. That is,

µk∗ − µk̂∗
h′

⩽
2CK

Lh′
.

With a similar analysis, we can show, µk̂∗
h′+i

− µk̂∗
h′+i+1

⩽ 2CK
Lh′+i

, for all i = 1, . . . , H − h′ − 1.

Based on the inequality, we further have, for any h ⩾ h′,

µk∗ − µk̂∗
h
⩽

h−h′∑
i=0

2CK

Lh′+i
=

h−h′∑
i=0

2CK

L02h
′+i

⩽
2CK

L02h
′+1

. (9)
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Next, we decompose the pseudo regret as follows,

R̄T =

T∑
t=1

(µk∗ − µIt) =
∑
k∈K

Nk,T (µk∗ − µk) =

H′∑
h=0

∑
k∈Sh

Lh

|Sh|
(µk∗ − µk)

⩽ L0 +

h′∑
h=1

∑
k∈Sh

Lh

|Sh|
(µk∗ − µk) +

H′∑
h=h′+1

∑
k∈Sh

Lh

|Sh|
(µk∗ − µk)

= L0 +

h′∑
h=1

∑
k∈Sh

Lh

|Sh|
(µk∗ − µk) +

H′∑
h=h′+1

∑
k∈Sh

Lh

|Sh|
(µk∗

h
− µk)︸ ︷︷ ︸

Part I

+

H′∑
h=h′+1

∑
k∈Sh

Lh

|Sh|
(µk∗ − µk∗

h
)︸ ︷︷ ︸

Part II

.

To bound Part I, we notice that all arms in Sh are not eliminated at the end of the previous phase,
implying, for h < h′,

µk

(a)

⩾ µ̂k −

(√
log(2KH/δ)

Lh−1/|Sh−1|
+

C

Lh−1/|Sh−1|

)
(b)

⩾ max
k′∈Sh−1

µ̂k′,h−1 − 2

(√
log(2KH/δ)

Lh−1/|Sh−1|
+

Ĉh−1

Lh−1/|Sh−1|

)

−

(√
log(2KH/δ)

Lh−1/|Sh−1|
+

C

Lh−1/|Sh−1|

)
(c)

⩾ µ̂k∗,h−1 −

(
3

√
log(2KH/δ)

Lh−1/|Sh−1|
+

2Ĉh−1 + C

Lh−1/|Sh−1|

)
(d)

⩾ µk∗ −

(
4

√
log(2KH/δ)

Lh−1/|Sh−1|
+

2Ĉh−1 + 2C

Lh−1/|Sh−1|

)
,

where inequalities (a) and (d) are due to the Hoeffding’s inequality and the attack C, inequality (b)
is due to the elimination condition, and inequality (c) is due to k∗ ∈ Sh−1. That is, for arms k ∈ Sh,
we have

µk∗ − µk ⩽ 4

√
log(2KH/δ)

Lh−1/|Sh−1|
+

2(Ĉh−1 + C)

Lh−1/|Sh−1|
. (10)

As we have k∗h ∈ Sh, and with the same derivation as (10), we also have

µk∗
h
− µk ⩽ 4

√
log(2KH/δ)

Lh−1/|Sh−1|
+

2(Ĉh−1 + C)

Lh−1/|Sh−1|
. (11)
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Therefore, we have
h′∑

h=1

∑
k∈Sh

Lh

|Sh|
∆k +

H′∑
h=h′+1

∑
k∈Sh

Lh

|Sh|
(µk∗

h
− µk)

(a)

⩽
H′∑
h=1

Lh · 4

√
log(2KH/δ)

Lh−1/|Sh−1|
+

2(Ĉh−1 + C)

Lh−1/|Sh−1|
.

=

H′∑
h=1

(
4

√
L2
h log(2KH/δ)

Lh−1/|Sh−1|
+

2Lh(Ĉh−1 + C)

Lh−1/|Sh−1|

)

⩽
H′∑
h=1

(
4
√
2LhK log(2KH/δ) + 4K(Ĉh−1 + C)

)

= 4
√
2K log(2KH/δ)

H′∑
h=1

√
Lh + 4K

H′∑
h=1

(Ĉh−1 + C)

(a)

⩽ 4g
√
2KL0 log(2KH/δ)T + 4

√
T log2 T + 4KC log2 T.

(12)

where inequality (a) is due to (10) and (11), and inequality (b) is because
∑H′

h=1

√
Lh ⩽ g

√
T since

the summation of a geometric increasing series is upper bounded by g
√
LH′ , for some universal

constant g > 0, and LH′ ⩽ T .

Next, we bound Part II as follows,
H′∑

h=h′+1

∑
k∈Sh

Lh

|Sh|
(µk∗ − µk∗

h
)
(a)

⩽
H′∑

h=h′+1

∑
k∈Sh

Lh

|Sh|
2CK

L02h
′+1

=

H′∑
h=h′+1

2CKLh

L02h
′+1

= 2CK

H′∑
h=h′+1

2h−(h′+1)

(b)

⩽ KC2,

(13)

where inequality (a) is due to (9), and inequality (b) is because H ′ − h′ ⩽ H − h′ ⩽ log2 C.

Hence, substituting (12) and (13) into the regret bound, we have the pseudo-regret bound with a
probability of at least 1− δ as follows,

R̄T ⩽ L0 + 4g
√
2K log(2KH/δ)T + 4

√
T log2 T + 4KC log2 T +KC2

= O

(√
KT log

(
K log T

δ

)
+
√
T log T +KC log T +KC2

)
.

With a similar analysis as in the proof in Theorem 6, we can show that the realized regret RT also
has the same upper bound (in order) with a probability of at least 1− δ.

G ADDITIONAL EXPERIMENT DETAILS AND RESULTS

G.1 ATTACK POLICY ON STOCHASTIC BANDITS

We adopt the attack strategy against UCB-type algorithms in Jun et al. (2018). Initially, the adversary
randomly selects one suboptimal arm as the target. At each round t, after observing the pulled arm
It and its reward realization XIt,t, the adversary determines the attack αt according to Equation
(7) in Jun et al. (2018) and returns the attacked reward X̃It,t = XIt,t − αt to the learner. We set
∆0 = 0.1, σ = 1, and δ = 0.05 in the attack model. The attacker cannot attack anymore if the
attack budget C is exhausted.
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(c) C = 6000
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(d) C = 9000

Figure 5: Regret comparison of algorithms with known attack budgets when varying budget C
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Figure 6: Regret comparison of algorithms with unknown attack budgets when varying budget C

G.2 EXPERIMENTS WITH LARGER GAPS

We take K = 10 and T = 200, 000, with rewards for all arms following Bernoulli distributions
Bern(µi) and mean rewards defined as [0.9, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3]. We use
four attack budgets C ∈ {0, 3000, 6000, 9000}. Each experiment is repeated 10 times. Figures 5
and 6 illustrate the cumulative regrets of different algorithms.

With known attack budgets, as depicted in Figure 5, the performance of FSAAER (Lykouris et al.,
2018) gradually deteriorates, while our proposed algorithms remain robust as the attack budget
C increases. When attack budgets are unknown to the learner, as shown in Figure 6, baselines
including MLAAER (Lykouris et al., 2018) achieve sublinear regrets for small budgets (e.g., C = 0
and C = 3000) as expected, but perform poorly when the budgets become large (e.g., C = 6000)
and fail entirely when C = 9000. As the attack budget C varies, our robust PE-WR and MS-SE-WR
algorithms consistently maintain sublinear regrets.

Developing these two STOP algorithms for the known budget case is mainly for (1) later algorithm
design for the unknown budget case and (2) the theoretical interest of deriving gap-independent
and multiplicative C bounds. The worst performance of the two STOP algorithms when C = 0 is
expected. Because both STOP conditions are triggered when there are still some suboptimal arms
in the candidate arm set. Then, after the STOP conditions, the algorithms uniformly pull these
remaining arms, resulting in a linear increasing in regret. Although the regret increases in linear
in the later stage of the plot, it is still logarithmic bounded theoretically. Because the remaining
suboptimal arms are with reward means close to the optimal arm, which only incurs a slow linear
regret increase. On the other hand, note that the y-axis in Figure 3(a) is in 103 scale while the
scales of Figures 3(b)(c)(d) are in 104. That is, the two STOP algorithms — although with the
worst performance among plots in Figure 3(a) with C = 0 — still outperform other scenarios when
C = 3000, 6000, 9000.
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